Step-by-step explanation:
Hey, there!!
Look this figure, simply we find that;
In triangle ABC,
angle CBD is an exterior angle of a triangle.
and its measure is 90°
Then,
angle CBD= y +48° {sum of interior opposite angle is equal to exterior angle or from theorem}.
or, 90°= y + 48°
Shifting, 48° in left side,
90°-48°= y
Therefore, the value of y is 42°.
Hope it helps...
A bag contains two six-sided dice: one red, one green. The red die has faces numbered 1, 2, 3, 4, 5, and 6. The green die has faces numbered 1, 2, 3, 4, 4, and 4. A die is selected at random and rolled four times. You are told that two rolls were 1's and two were 4's. Find the probability the die chosen was green.
Answer:
the probability the die chosen was green is 0.9
Step-by-step explanation:
Given that:
A bag contains two six-sided dice: one red, one green.
The red die has faces numbered 1, 2, 3, 4, 5, and 6.
The green die has faces numbered 1, 2, 3, 4, 4, and 4.
From above, the probability of obtaining 4 in a single throw of a fair die is:
P (4 | red dice) = [tex]\dfrac{1}{6}[/tex]
P (4 | green dice) = [tex]\dfrac{3}{6}[/tex] =[tex]\dfrac{1}{2}[/tex]
A die is selected at random and rolled four times.
As the die is selected randomly; the probability of the first die must be equal to the probability of the second die = [tex]\dfrac{1}{2}[/tex]
The probability of two 1's and two 4's in the first dice can be calculated as:
= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^4[/tex]
= [tex]\dfrac{4!}{2!(4-2)!} ( \dfrac{1}{6})^4[/tex]
= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^4[/tex]
= [tex]6 \times ( \dfrac{1}{6})^4[/tex]
= [tex](\dfrac{1}{6})^3[/tex]
= [tex]\dfrac{1}{216}[/tex]
The probability of two 1's and two 4's in the second dice can be calculated as:
= [tex]\begin {pmatrix} \left \begin{array}{c}4\\2\\ \end{array} \right \end {pmatrix} \times \begin {pmatrix} \dfrac{1}{6} \end {pmatrix} ^2 \times \begin {pmatrix} \dfrac{3}{6} \end {pmatrix} ^2[/tex]
= [tex]\dfrac{4!}{2!(2)!} \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]
= [tex]6 \times ( \dfrac{1}{6})^2 \times ( \dfrac{3}{6})^2[/tex]
= [tex]( \dfrac{1}{6}) \times ( \dfrac{3}{6})^2[/tex]
= [tex]\dfrac{9}{216}[/tex]
∴
The probability of two 1's and two 4's in both dies = P( two 1s and two 4s | first dice ) P( first dice ) + P( two 1s and two 4s | second dice ) P( second dice )
The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{216} \times \dfrac{1}{2} + \dfrac{9}{216} \times \dfrac{1}{2}[/tex]
The probability of two 1's and two 4's in both die = [tex]\dfrac{1}{432} + \dfrac{1}{48}[/tex]
The probability of two 1's and two 4's in both die = [tex]\dfrac{5}{216}[/tex]
By applying Bayes Theorem; the probability that the die was green can be calculated as:
P(second die (green) | two 1's and two 4's ) = The probability of two 1's and two 4's | second dice)P (second die) ÷ P(two 1's and two 4's in both die)
P(second die (green) | two 1's and two 4's ) = [tex]\dfrac{\dfrac{1}{2} \times \dfrac{9}{216}}{\dfrac{5}{216}}[/tex]
P(second die (green) | two 1's and two 4's ) = [tex]\dfrac{0.5 \times 0.04166666667}{0.02314814815}[/tex]
P(second die (green) | two 1's and two 4's ) = 0.9
Thus; the probability the die chosen was green is 0.9
A soup can has a height of 4 inches and a radius of 2.5 inches. What's the volume of soup in cubic inches that would fill one soup can? Question 3 options: A) 62.8 in3 B) 125.7 in3 C) 78.5 in3 D) 314 in3
Answer:
C. 78.5 in^3
Step-by-step explanation:
A soup can is in the shape of a cylinder. The volume of a cylinder can be found using the following formula:
[tex]v=\pi r^2h[/tex]
We know that the height is 4 inches and the radius is 2.5 inches.
r= 2.5 in
h= 4 in
[tex]v=\pi (2.5in)^2*4in[/tex]
Evaluate the exponent.
[tex](2.5 in)^2=2.5 in*2.5in=6.25 in^2[/tex]
[tex]v=\pi *6.25 in^2*4 in[/tex]
Multiply 6.25 in^2 and 4 in.
[tex]6.25 in^2*4 in=25 in^3[/tex]
[tex]v=\pi*25 in^3[/tex]
Multiply pi and 25 in^3.
[tex]v=78.5398163 in^3[/tex]
Round to the nearest tenth. The 3 in the hundredth place tells us to leave the 5 in the tenth place.
[tex]v=78.5 in^3[/tex]
78.5 cubic inches can fill one soup can.
Why is f (x) = (3x + 1/3)^2 + 8/9 not the vertex form of f (x)
not the vertex form of f (x) = 9x^2 +2x +1?
O The expression has a constant outside of the squared term.
O Some of the terms are fractions instead of integers.
O The expression is not the product of two binomials.
O The variable x has a coefficient.
Answer:
The Variable has a coefficient.
Step-by-step explanation:
Please answer this correctly without making mistakes
Answer:
1/8
Step-by-step explanation:
3/8-1/8-1/8=1/8
Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (3x2 − 2y2)i + (4xy + 4)j
In order for F to be conservative, there must be a scalar function f such that the gradient of f is equal to F. This means
[tex]\dfrac{\partial f}{\partial x}=3x^2-2y^2[/tex]
[tex]\dfrac{\partial f}{\partial y}=4xy+4[/tex]
Integrate both sides of the first equation with respect to x :
[tex]f(x,y)=x^3-2xy^2+g(y)[/tex]
Differentiate both sides with respect to y :
[tex]\dfrac{\partial f}{\partial y}=-4xy+\dfrac{\mathrm dg}{\mathrm dy}=4xy+4\implies\dfrac{\mathrm dg}{\mathrm dy}=8xy+4[/tex]
But we assume g is a function of y, which means its derivative can't possibly contain x, so there is no scalar function f whose gradient is F. Therefore F is not conservative.
In this problem, since the condition of equal derivatives does not apply, the vector field is not conservative.
A vector field can be described as:
[tex]F = <P,Q>[/tex]
It is conservative if:
[tex]\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}[/tex]
In this problem, the field is:
[tex]F = <3x^2 - 2y^2, 4xy + 4>[/tex]
Then:
[tex]P(x,y) = 3x^2 - 2y^2[/tex]
[tex]\frac{\partial P}{\partial y} = -4y[/tex]
[tex]Q(x,y) = 4xy + 4[/tex]
[tex]\frac{\partial Q}{\partial x} = 4y[/tex]
Since [tex]\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}[/tex], the field is not conservative.
A similar problem is given at https://brainly.com/question/15236009
Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal
There are [tex]10[/tex] divisions between $3.2$ and $3.3$
so that means each division is $\frac{3.3-3.2}{10}=0.01$
A is the 3rd division after $3.2$, So A is $3.2+3\times0.01=3.23$
similarly, C is 3 division behind $3.2$ so it will be $3.17$
and B is $3.34$
A represents the decimal 3.23
B represents the decimal 3.34
C represents the decimal 3.17
Calculating the decimal values:We can see that there are 10 divisions between 3.2 and 3.3.
The difference between the two points for 10 divisions is 3.3 -3.2 = 0.1 unit.
Therefore, one division will be equal to 0.1/10 = 0.01 unit
So, point A is 3 divisions after 3.2, thus
A = 3.2 + 0.01×3
A = 3.23
Similarly,
B = 3.3 + 0.01×4
B = 3.34
And,
C = 3.2 - 0.01×3
C = 3.17
Learn more about decimals:
https://brainly.com/question/548650?referrer=searchResults
henry incorrectly said the rate 1/5 pound/ 1/20 quart can be written as the unit rate 1/100 pound per quart. What is the correct unit rate? What error did Henry likely make?
Answer:
4 pounds per quart
Step-by-step explanation:
Henry divided by 20 instead of multiplying by 20.
1/5 pound is the numerator and 1/20 quart is the denominator. To make the denominator equal to 1 quart, you need to multiply by 20.
So 1/5 x 20 = 4 pounds.
Literally, a unit rate means a rate for one.
The unit rate is 4 pounds per quartHenry used the wrong arithmetic operatorThe rate is given as:
[tex]\mathbf{Rate = \frac{1}{5}\ pound\ per\ \frac{1}{20}\ quart}[/tex]
Per means divide.
So, the expression becomes
[tex]\mathbf{Rate = \frac{1}{5}\ pound\ \div \frac{1}{20}\ quart}[/tex]
Express as products
[tex]\mathbf{Rate = \frac{1}{5}\ pound\ \times \frac{20}{1\ quart}}[/tex]
Simplify
[tex]\mathbf{Rate = \frac{1}{1}\ pound\ \times \frac{4}{1\ quart}}[/tex]
Rewrite as:
[tex]\mathbf{Rate = \frac{4\ pound}{1\ quart}}[/tex]
So, the unit rate is 4 pounds per quart
Henry's error is that: He multiplied 1/5 by 1/20, instead of dividing 1/5 by 1/20
Read more about unit rates at:
https://brainly.com/question/18065083
A 14 sided die is rolled find the probability of rolling an odd number the set of equally likely outcomes is shown below
Answer:
Probability= 0.5
Step-by-step explanation:
A 14 sided die is rolled
Total number of occurrence= 14 numbers
Total odd numbers present
= 1,3,5,7,9,11,13
Total number of odd numvers present
= 7
Probability= number of required outcome/total possible outcome
Probability= 7/14
Probability= 0.5
Jan. 2 Purchased merchandise on account from Nunez Company, $20,000, terms 3/10, n/30. (Lily uses the perpetual inventory system.)
Feb. 1 Issued a 9%, 2-month, $20,000 note to Nunez in payment of account.
Mar. 31 Accrued interest for 2 months on Nunez note.
Apr. 1 Paid face value and interest on Nunez note.
July 1 Purchased equipment from Marson Equipment paying $10,000 in cash and signing a 10%, 3-month, $63,600 note.
Sept. 30 Accrued interest for 3 months on Marson note.
Oct. 1 Paid face value and interest on Marson note.
Dec. 1 Borrowed $22,800 from the Paola Bank by issuing a 3-month, 8% note with a face value of $22,800.
Dec. 31 Recognized interest expense for 1 month on Paola Bank note.
If x=64 &y=27 Evaluate x½-y⅓÷y-x⅔
━━━━━━━☆☆━━━━━━━
▹ Answer
-191/162
▹ Step-by-Step Explanation
Answer:
-191/162
Step-by-step explanation:
Substitute the numbers for the variables:
64 1/2 - 27 1/3 ÷ 27 - 64 2/3
Convert the mixed numbers to improper fractions:
129/2 - 82/3 * 1/27 - 194/3
Multiply the improper fractions:
129/2 - 82/81 - 194/3
= -191/162
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Question:
If V7 - y = 6, then y =
A. -29
B. -5
C. 1
D. 29
[tex] \sqrt{7 - y = 6} [/tex]
Answer:
-29
Step-by-step explanation:
[tex] {\sqrt{7 - y }}^{2} = {6}^{2} [/tex]
[tex]7 - y = {6}^{2} [/tex]
y = 7-36
y = -29
A regression analysis between sales (y in $1000) and advertising (x.in dollars) resulted in the following equation: ỹ= 30,000 + 4x
The above equation implies that an:________
a. increase of $l in advertising is associated with an increase of $4 in sales.
b. increase of $4 in advertising is associated with an increase of $4000 in sales.
c. increase of $1 in advertising is associated with an increase of $34,000 in sales.
d. increase of $1 in advertising is associated with an increase of $4000 in sales.
Answer:
Correct answer is option d. increase of $1 in advertising is associated with an increase of $4000 in sales.
Step-by-step explanation:
Given the equation of regression analysis is given as:
[tex]y= 30,000 + 4x[/tex]
where [tex]x[/tex] is the cost on advertising in Dollars.
and [tex]y[/tex] is the sales in Thousand Dollars.
To find:
The correct increase in sales when there is increase in the advertising cost.
Solution:
Suppose there is an increase of [tex]\$1[/tex] in the advertising cost.
Let the initial cost be [tex]x[/tex] then the cost will be [tex](x+1)[/tex].
Initial sales
[tex]y= 30,000 + 4x[/tex] ....... (1)
After increase of $1 in advertising cost, final cost:
[tex]y'= 30,000 + 4(x+1)\\\Rightarrow y' = 30,000+4x+4\\\Rightarrow y' = 30,004+4x ..... (2)[/tex]
Subtracting (2) from (1) to find the increase in the sales:
[tex]y'-y=30004+4x-30000-4x = 4[/tex]
The units of sales is Thousand Dollars ($1000).
So, increase in sales = [tex]4 \times1000 = \bold{\$4000}[/tex]
So, correct answer is:
d. increase of $1 in advertising is associated with an increase of $4000 in sales.
What are the roots for x?
Answer:
B
Step-by-step explanation:
Use the quadractic equation, x=-b+or-sqrtb^2-4ac/2a, then simplify.
I'm really sorry that it looks messy, I don't know how to make my text look better :(
Suppose log subscript a x equals 3, log subscript a y equals 7, and log subscript a z equals short dash 2. Find the value of the following expression. log subscript a open parentheses fraction numerator x cubed y over denominator z to the power of 4 end fraction close parentheses
Answer:
24Step-by-step explanation:
Given the following logarithmic expressions [tex]log_ax = 3, log_ay = 7, log_az = -2[/tex], we are to find the value of [tex]log_a(\frac{x^3y}{z^4} )[/tex]
[tex]from\ log_ax = 3, x = a^3\\\\from\ log_ay = 7,y = a^7\\\\from\ log_az = -2, z = a^{-2}[/tex]Substituting x = a³, y = a⁷ and z = a⁻² into the log function [tex]log_a(\frac{x^3y}{z^4} )[/tex] we will have;
[tex]= log_a(\frac{x^3y}{z^4} )\\\\= log_a(\dfrac{(a^3)^3*a^7}{(a^{-2})^4} )\\\\= log_a(\dfrac{a^9*a^7}{a^{-8}} )\\\\= log_a\dfrac{a^{16}}{a^{-8}} \\\\= log_aa^{16+8}\\\\= log_aa^{24}\\\\= 24log_aa\\\\= 24* 1\\\\= 24[/tex]
Hence, the value of the logarithm expression is 24
There were 18,652 geese on a lake. What is this number rounded to the ten
thousands place?
Answer:
20,000
Step-by-step explanation:
To round a number to the nearest ten thousands place, we have to look at the thousand place and see whether it crosses the "hill" of 5 as it's digit.
The thousand digit is 8, so it will round UP, making 18,652 become 20,000.
Hope this helped!
Answer:
[tex]\boxed{20,000}[/tex]
Step-by-step explanation:
Hey there!
Well the ten thousands number is 1 and the 1rst thousands place number is 8 so since 8 is more than 5 we have to round 1 UP to 2,
so the answer is 20,000.
Hope this helps :)
Timothy invested $2,000 in an account earning 3.5% annual interest that is compounded continuously. How long will it take the investment to grow to $3,500?
Answer: 16 years
Step-by-step explanation:
The exponential function for continuous growth is given by :-
[tex]P=Ae^{rt}[/tex]
, where A = initial amount, r= rate of growth and t = time.
As per given , we have
A= $2,000, =r 3.5%=0.035 and P= $3500
put these vales in equation , we get
[tex]3500=2000e^{0.035t}\\\\\Rightarrow\ \dfrac{3500}{2000}=e^{0.035t}\\\\\Rightarrow\ 1.75=e^{0.035t}[/tex]
Taking log on both sides , we get
[tex]\ln 1.75=0.035t\\\\\Rightarrow\ t=\dfrac{\ln1.75}{0.035}=\dfrac{0.560}{0.035}=16[/tex]
Hence, it will take 16 years to grow to $3,500.
Find the equation of the para bola that has zeros of x = -2 and x = 3 and a y-intercept of (0,-30)
Answer:
y = 5x^2-5x-30
Step-by-step explanation:
A parabola with x-intercepts at (-2,0) and (3,0) has the equation
y = a(x+2)(x-3)
where a is to be determined.
We know that it passes through the point (0,-30), so
-30 = a(0+2)(0-3) = -6a
Therefore solve for a to get
a = 5
y = 5(x+2)(x-3)
y = 5(x^2-x+6)
y = 5x^2-5x-30
A la propiedad fundamental de las proporcionas, comprueba si las siguientes son o no hay elementos a) 5/7 a 15/21 b) 20/7 a 5/3 c) 16/8 a 4/2
Answer:
fucuvucybycych tcy bic ttx TV ubtx4 cub yceec inivtxr xxv kb
Step-by-step explanation:
t tcextvtcbu6gt CNN tx r.c tct yvrr TV unu9gvt e tch r,e xxv t u.un4crcuv3cinycycr xxv yctzrctvtcrzecycyvubr xiu nyfex tut uhyh
Kim is earning money for a trip. She has saved and she earns per hour babysitting. The total amount of money earned (y) after (x) number of hours worked is given by the equation . How many hours will she need to work in order to earn for her trip?
Answer:
what is the amount of money Kim earn per hour of babysitting? Also I need to know how much trip cost to find out how many hours she need to work.
Step-by-step explanation:
Help with this please
[tex](f+g)(x)=\sqrt{4x+6}+\sqrt{4x-6}[/tex]
Answer:
[tex]\huge\boxed{Option \ 4: (f+g)(x) = \sqrt{4x+6} + \sqrt{4x-6}}[/tex]
Step-by-step explanation:
[tex]f(x) = \sqrt{4x+6}\\ g(x) = \sqrt{4x-6}[/tex]
Adding both
[tex](f+g)(x) = \sqrt{4x+6} + \sqrt{4x-6}[/tex]
A 95% confidence interval indicates that:
A. 95% of the intervals constructed using this process based on samples from this population will
include the population mean
B. 95% of the time the interval will include the sample mean
C. 95% of the possible population means will be included by the interval
D. 95% of the possible sample means will be included by the interval
95% interval would be 95% of the population mean.
The answer should be:
A. 95% of the intervals constructed using this process based on samples from this population will
include the population mean
Answer:
A
Step-by-step explanation:
A 95% confidence interval indicates that 95% of the intervals constructed using this process based on samples from this population will
include the population mean
Find the measure of a.
A. 60
B. 57
C. 40
D. 80
Answer:
Option (C)
Step-by-step explanation:
Since angle 'a' is the inscribed angle of the given triangle
Therefore, angle measure of the intercepted arc will be equal to the double of the inscribed angle.
x = 2a ⇒ a = [tex]\frac{x}{2}[/tex]
By the tangent-chord theorem,
"Angle between a chord and tangent measure the half of the angle measure of intercepted minor arc"
[tex]\frac{x}{2}[/tex] = 40°
Therefore, a = [tex]\frac{x}{2}[/tex] = 40°
Option (C) will be the answer.
A market researcher believes that brand perception of one of the company's products may vary between different groups. After interviewing 307 persons, the following data was compiled. Can we conclude that brand perception is dependent on age?
Age Favorable Unfavorable Neutral Total
18-30 67 24 20 111
30-45 50 14 16 80
Over 45 69 41 26 116
Total 186 59 62 307
Find the value of the test statistic.
Answer:
The value for the Chi -square test statistics = 1.149
Step-by-step explanation:
The observed value Table can be shown better as:
Observed Value
Age Favorable Unfavorable Neutral Total
18-30 67 24 20 111
30-45 50 14 16 80
Over 45 69 21 26 116
Total 186 59 62 307
NOTE: when computing the question, in the third row and the second column, there is a mistake , the value is supposed to be 21 and not 41 because :
69 +21+ 26 will eventually give = 116
69 + 41 + 26 = 136
With that error being fix , let's get started.
Expected Value
The expected value can be determined by using the formula:
[tex]Expected \ Value = \dfrac{ row \ total \times column \ total }{grand \ total }[/tex]
For 67; (111 * 186)/307 = 67.251
For 24 : (111 * 59)/307 = 21.332
For 20 : (111 * 62)/307 = 22.417
For 50 :(80*186)/307 = 48.469
For 14 : (80* 59)/307 = 15.375
For 16 : ( 0 * 62)/307 = 16.156
For 69 : (116 * 186)/307 = 70.280
For 21 : (116* 59)/307 = 22.293
For 26 : (116*62)/307 = 23.427
Expected Value :
Age Favorable Unfavorable Neutral Total
18-30 67.251 21.332 22.417 111
30-45 48.469 15.375 16.156 80
Over 45 70.280 22.293 23.427 116
Total 186 59 62 307
The Chi - square test statistics = [tex]\dfrac{(observed \ value - Expected \ value)^2}{Expected \ value}[/tex]
For 67.251 : ( 67 - 67.251)²/67.251 = 0.0009
For 21.332 : ( 24 - 21.332)²/21.332 = 0.3337
For 22.417 : ( 20 - 22.417)²/ 22.417 = 0.2606
For 48.469 : ( 50 - 48.469)²/ 48.469 = 0.0484
For 15.375 : ( 14 - 15.375)²/ 15.375 = 0.1230
For 16.156 : ( 16 - 16.156)²/ 16.156 = 0.0015
For 70.280 : ( 69 - 70.280)²/ 70.280 = 0.0233
For 22.293 : ( 21 - 22.293)²/ 22.293 = 0.0750
For 23.427 : ( 26 - 23.427)²/ 23.427 = 0.2826
The chi square table is as follows:
Age Favorable Unfavorable Neutral Total
18-30 0.0009 0.3337 0.2606 0.5952
30-45 0.0484 0.1230 0.0015 0.1729
Over 45 0.0233 0.0750 0.2826 0.3809
Total 0.0726 0.5317 0.5447 1.149
The value for the Chi -square test statistics = 1.149
I need some help pls! I'm getting stuck!
Answer: 3 pounds.
Step-by-step explanation:
We have two metals:
One that contains 20% nickel, let's call it metal A.
One that contains 80% nickel, let's call it metal B.
We have 6 pounds of metal B, in those 6 punds we have:
0.80*6lb = 4.8lb of nickel.
Now, if we add X pounds of metal A, then we will have:
X + 6lb in total weight.
4.8lb + 0.2*X of nickel.
And we want to have exactly 60% of nickel, so we must have that the quotient between the amount of nickel and the total weight is equal to 0.6
(4.8lb + 0.2*X)/(6lb + X) = 0.6
now we solve it for X:
(4.8lb + 0.2*X) = 0.6*(6lb + X) = 3.6lb + 0.6*X
4.8lb - 3.6lb = 0.6*X - 0.2*X
1.2lb = 0.4*X
1.2lb/0.4 = 3lb = X
We should use 3 pounds of the metal with 20% of nickel.
Find a vector equation and parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5.
The normal vector to the plane x + 3y + z = 5 is n = (1, 3, 1). The line we want is parallel to this normal vector.
Scale this normal vector by any real number t to get the equation of the line through the point (1, 3, 1) and the origin, then translate it by the vector (1, 0, 6) to get the equation of the line we want:
(1, 0, 6) + (1, 3, 1)t = (1 + t, 3t, 6 + t)
This is the vector equation; getting the parametric form is just a matter of delineating
x(t) = 1 + t
y(t) = 3t
z(t) = 6 + t
The vector equation for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5 is v =(1+t)i + (3t)j + (6+t)k
The parametric equations for the line through the point (1,0,6) and perpendicular to the plane x+3y+z=5
x(t) = 1+ty(t) = 3tz(t) = 6+tThe parametric equation of a line through the point A(x, y, z) perpendicular to the plane ax+by+cz= d is expressed generally as:
A + vt where:
A = (x, y, z)
v = (a, b, c) (normal vector)
This can then be expressed as:
s = A + vt
s = (x, y, z) + (a, b, c)t
Given the point
(x, y, z) = (1,0,6)
(a, b, c) = (1, 3, 1)
Substitute the given coordinate into the equation above:
s = (1,0,6) + (1, 3, 1)t
s = (1+t) + (0+3t) + (6+t)
The parametric equations from the equation above are:
x(t) = 1+t
y(t) = 3t
z(t) = 6+t
The vector equation will be expressed as v = xi + yj + zk
v =(1+t)i + (3t)j + (6+t)k
Learn more here: brainly.com/question/12850672
What is the true solution to the equation below? 2 in e in2×-in e in 10×= in 30 A x=30 B x=75 C x=150 D x=300
Answer:
Option B.
Step-by-step explanation:
Let as consider the given equation:
[tex]2\ln e^{\ln 2x}-\ln e^{\ln 10x}=\ln 30[/tex]
It can be written as
[tex]2(\ln 2x)-(\ln 10x)=\ln 30[/tex] [tex][\because \ln e^a=a][/tex]
[tex]\ln (2x)^2-(\ln 10x)=\ln 30[/tex] [tex][\because \ln a^b=b\ln a][/tex]
[tex]\ln \dfrac{4x^2}{10x}=\ln 30[/tex] [tex][\because \ln \dfrac{a}{b}=\ln a-\ln b][/tex]
[tex]\ln \dfrac{2x}{5}=\ln 30[/tex]
On comparing both sides, we get
[tex]\dfrac{2x}{5}=30[/tex]
Multiply both sides by 5.
[tex]2x=150[/tex]
Divide both sides by 2.
[tex]x=75[/tex]
Therefore, the correct option is B.
Answer:
b x=75
Step-by-step explanation:
One more than the quotient of a number x and 4. Write an expression to represent:
Answer:
x/4 +1
Step-by-step explanation:
Identifying the Property of Equality
Quick
Check
Identify the correct property of equality to solve each equation.
3+x= 27
X/6 = 5
Answer:
a) Compatibility of Equality with Addition, b) Compatibility of Equality with Multiplication
Step-by-step explanation:
a) This expression can be solved by using the Compatibility of Equality with Addition, that is:
1) [tex]3+x = 27[/tex] Given
2) [tex]x+3 = 27[/tex] Commutative property
3) [tex](x + 3)+(-3) = 27 +(-3)[/tex] Compatibility of Equality with Addition
4) [tex]x + [3+(-3)] = 27+(-3)[/tex] Associative property
5) [tex]x + 0 = 27-3[/tex] Existence of Additive Inverse/Definition of subtraction
6) [tex]x=24[/tex] Modulative property/Subtraction/Result.
b) This expression can be solved by using the Compatibility of Equality with Multiplication, that is:
1) [tex]\frac{x}{6} = 5[/tex] Given
2) [tex](6)^{-1}\cdot x = 5[/tex] Definition of division
3) [tex]6\cdot [(6)^{-1}\cdot x] = 5 \cdot 6[/tex] Compatibility of Equality with Multiplication
4) [tex][6\cdot (6)^{-1}]\cdot x = 30[/tex] Associative property
5) [tex]1\cdot x = 30[/tex] Existence of multiplicative inverse
6) [tex]x = 30[/tex] Modulative property/Result
Answer:
3 + x = 27
✔ subtraction property of equality with 3
x over 6 = 5
✔ multiplication property of equality with 6
A ship leaves the port of Miami with a bearing of S80°E and a speed of 15 knots. After 1 hour, the ship turns 90° toward the south. After 2 hours, maintain the same speed. What is the bearing to the ship from port?
Answer:
The bearing is N 55.62° W
Step-by-step explanation:
ship leaves the port of Miami with a bearing of S80°E and a speed of 15 knots.
It then turns 90° towards the south after one hour.
Still maintain the same speed and direction for two hours.
The bearing is just the angle difference from the ship current location to where it started.
Let the speed be km/h
Distance covered in the first round
= 15*1
= 15km
Distance covered in the second round
=15*2
= 30 km
Angle at C = (90-80)+90
Angle at C = 10+90= 100
Let the distance between the port and the ship be c
C²= a² + b² -2abcos
C²= 15²+30²-2(15)(30)cos 100
C²= 225+900+156.28
C²= 1281.28
C= 35.8 km
Using sine formula
30/sin x= 35.8/sin 100
30/35.8 * sin 100 = sinx
0.838*0.9848= sin x
0.8253= sin x
Sin ^-1 0.8253 = x
55.62° = x
The bearing is N 55.62° W
Michelle is 7 years older than her sister Joan, and Joan is 3 years younger than their brother Ryan. If the sum of their ages is 64, how old is Joan?
16
22
18
19
Answer:
(C) 18
Step-by-step explanation:
We can create a systems of equations. Assuming [tex]m[/tex] is Michelle's age, [tex]j[/tex] is Joan's age, and [tex]r[/tex] is Ryan's age, the equations are:
[tex]m = j + 7[/tex]
[tex]j = r-3[/tex]
[tex]m+j+r = 64[/tex]
We can use substitution, since we know the "values" of m and j.
[tex](j+7)+(r-3)+r = 64\\(j+7)+(2r-3)=64\\2r + j + 4 = 64\\2r + j = 60\\\\[/tex]
[tex]r = 21, j = 18[/tex]
So we know that Joan is 18 years old.
Hope this helped!