Find the total area of all the shaded rectangles.
4
The total area of all the shaded rectangles is
(Simplify your answer. Type an expression using x as the variable​

Find The Total Area Of All The Shaded Rectangles.4The Total Area Of All The Shaded Rectangles Is(Simplify

Answers

Answer 1

Answer:

25x^2 + 40x + 16

Step-by-step explanation:

area = 5x * 5x + 5x * 4 + 5x * 4 + 4 * 4

area = 25x^2 + 40x + 16

Answer 2

25x² + 40x + 16 is the required equation in variable x.

What is mensuration ?

Mensuration is a branch of mathematics where we calculate length, width, area, volume, lateral surface area, total surface area.

The sum of the areas of the shaded rectangles is the total area.

By observation we can see that the four shaded rectangles together form a square.

We all know that the area of the square is (side)²

= (5x + 4)²

= 25x² + 40x + 16  this is the required equation.

learn more about mensuration here :

https://brainly.com/question/23877107

#SPJ2


Related Questions

what is the end point of a ray​

Answers

Answer:

point A is the rays endpoint

Step-by-step explanation:

Answer:

The "endpoint" of a ray is the origin point of the ray, or the point at which the ray starts.

Step-by-step explanation:

A ray starts at a given point, the endpoint, and then goes in a certain direction forever ad infinitum.  The origin point of a ray is called "the endpoint".

Cheers.

The ratio of the number of Anne's pencils to the number of jason's pencils is 4:3 Anne has 100 pencils how many pencils does jason have

Answers

Answer:

75

Step-by-step explanation:

4:3

4x25=100

3x25=75

Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.

Answers

[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]

The sum exists if [tex]|r|<1[/tex]

[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists

[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]

[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]

A random sample of 1003 adult Americans was asked, "Do you think televisions are a necessity or a luxury you could do without?" Of the 1003 adults surveyed, 521 indicated that televisions are a luxury they could do without. Construct and interpret a 95% confidence interval for the population proportion of adult Americans who believe that televisions are a luxury they could do without out.

Answers

Answer:

The  95% confidence interval is  [tex]0.503 < p < 0.535[/tex]

The  interpretation is that there is 95% confidence that the true population proportion lie within the confidence interval

Step-by-step explanation:

From the question we are told that

    The  sample size is n  =  1003

     The number that indicated television are a luxury is  k  =  521

Generally the sample mean is mathematically represented as

           [tex]\r p = \frac{k}{n}[/tex]

          [tex]\r p = \frac{521}{1003}[/tex]

         [tex]\r p = 0.519[/tex]

Given the confidence level is  95% then the level of significance is mathematically evaluated as

       [tex]\alpha = 100 - 95[/tex]

       [tex]\alpha = 5\%[/tex]

       [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is  

          [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

The  margin of error is mathematically represented as

           [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p (1- \r p )}{n} }[/tex]

=>       [tex]E = 1.96 * \sqrt{ \frac{ 0.519 (1- 0.519 )}{1003} }[/tex]

=>       [tex]E = 0.016[/tex]

The  95%  confidence interval is mathematically represented as

       [tex]\r p -E < p < \r p +E[/tex]

=>   [tex]0.519 - 0.016 < p < 0.519 + 0.016[/tex]

=>    [tex]0.503 < p < 0.535[/tex]

Find the smallest positive integer that satisfies both of the following equations: = 3 (mod4) and = 5 (mod6)

Answers

Answer:

x=3mod4

Means that when x is divided by 4 it gives an unknown integer and a remainder of 3.

x/4 = Z + 3/4

Z= (x-3)/4

Where Z is the integer

x=5 mod6

x/6 = Y + 5/6

Y = (x-5)/6

Where Y is the integer

Z-Y must be an integer on equal to zero

(x-3)/4 - (x-5)/6

3(x-3)/12 - 2(x-5)/12

(3x-9-2x+10)/12

(x+1)/12

If it is equal to 0

x=-1. But x should be positive

If it is equal to 1

x=11

Hence the smallest possible number is 11

[tex]\sqrt{x+1+5=x}[/tex] Please help [tex]\sqrt{5x-x=0}[/tex] I actually can't do this, also thirty points

Answers

Answer:

It is undefined.

Step-by-step explanation:

Let's take a look at the first equation- if we simplify and move the terms, it becomes sqrt of 6 = 0, which results in an undefined value of x. The second equation works with x=0 but not the first so the value of x is undefined.

Need a little help thanks :D

Answers

Answer:

  71°

Step-by-step explanation:

Consider triangle BDH. x is the external angle that is remote to internal angles B and D, so is equal to their sum:

  x° = 41° +30°

  x° = 71°

49, 34, and 48 students are selected from the Sophomore, Junior, and Senior classes with 496, 348, and 481 students respectively. Group of answer choices

Answers

Answer:

Stratified Random sampling.

Step-by-step explanation:

As per the scenario, It is stratified random sampling as it divides students into strata which represent Sophomores, Juniors, and Seniors.

Simple random samples of the given sizes of the proportional to the size of the stratum which is to be taken from every stratum that is to be about 10 percent of students from every class that is selected here.

Hence, according to the given situation, the correct answer is a random stratified sampling.

Solve for y: 1/3y+4=16

Answers

Hey there! I'm happy to help!

We want to isolate y on one side of the equation to see what it equals. To do this, we use inverse operations to cancel out numbers on the y side and find the correct value.

1/3y+4=16

We subtract 4 from both sides, canceling out the +4 on the right but keeping the same y-value by doing the same to the other side.

1/3y=12

We divide both sides by 1/3 (which is multiplying both sides by 3) which will cancel out the 1/3 and tell us what y is equal to.

y=36

Now you know how to solve basic equations! Have a wonderful day! :D

1/3y=16-4
1/3y=12
y=12/1/3
y= 36.3

A box contains 40 identical discs which are either red or white if probably picking a red disc is 1/4. Calculate the number of;
1. White disc.
2. red disc that should be added such that the probability of picking a red disc will be 1/4

Answers

The wording in this question is off... I am assuming you’re asking for the number of white discs and red discs if the probability of picking a red disc is 1/4.
If the probability of picking a red disc is 1/4, there are 10 red discs and 30 white discs.

Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. [Start 4 By 4 Matrix 1st Row 1st Column 4 2nd Column 5 3rd Column 7 4st Column 5 2nd Row 1st Column 0 2nd Column 1 3rd Column 4 4st Column 6 3rd Row 1st Column 0 2nd Column 0 3rd Column 3 4st Column 8 4st Row 1st Column 0 2nd Column 0 3rd Column 0 4st Column 1 EndMatrix ]

Answers

Answer:

Yes, it is invertible

Step-by-step explanation:

We need to find in the matrix determinant is different from zero, since iif it is, that the matrix is invertible.

Let's use co-factor expansion to find the determinant of this 4x4 matrix, using the column that has more zeroes in it as the co-factor, so we reduce the number of determinant calculations for the obtained sub-matrices.We pick the first column for that since it has three zeros!

Then the determinant of this matrix becomes:

[tex]4\,*Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] +0+0+0[/tex]

And the determinant of these 3x3 matrix is very simple because most of the cross multiplications render zero:

[tex]Det\left[\begin{array}{ccc}1&4&6\\0&3&8\\0&0&1\end{array}\right] =1 \,(3\,*\,1-0)+4\,(0-0)+6\,(0-0)=3[/tex]

Therefore, the Det of the initial matrix is : 4 * 3 = 12

and then the matrix is invertible

a) which function has the graph with the greatest slope?

b) which functions have graphs with y intercepts greater than 3?

c)which function has the graph with a y intercept closest to 0

Answers

Answer:

a). Function (4)

b). Function (2)

c). Function (3)

Step-by-step explanation:

Characteristics of the functions given,

Function (1),

Form the given graph,

Slope = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

          = [tex]-\frac{4}{1}[/tex]

          = -4

Y- intercept of the given function = 2

Function (2),

From he given table,

Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

         = [tex]\frac{5-3}{0+1}[/tex]

         = 2

y-intercept = 5 [Value of y for x = 0]

Function (3),

y = -x - 1

By comparing this equation with y = mx + b

Where 'm' = slope

and b = y-intercept

Slope = (-1)

y-intercept = (-1)

Function (4),

Slope = 5

y-intercept = (-4)

(a). Greatest slope of the function → Function (4)

(b). y-intercept greater than 3 → Function (2)

(c). Function with y-intercept closest to 0 → Function (3)

Here is some information about the goals scored in some hockey games. Each game has four quarters. Please give the answer asap with full explanation and working out.

Answers

Answer:

8 home games and 10 away games

Step-by-step explanation:

Total home goals

= 8+5+9+8

= 30

Number of home games

= 30/3.75

= 8

Total away game goals

= 7+8+4+5

= 24

Number of away games

= 24/2.4

= 10

Answer:

i think it is 8 home and 10 away matches

Step-by-step explanation:

Please answer this correctly without making mistakes I need to finish this today as soon as possible

Answers

Answer:

14 miles

Step-by-step explanation:

Since we know that the distance of the paths from Cedarburg to Allenville is 22 and 13/16 miles, and we know the distance from Cedarburg to Lakeside is 8 and 13/16 miles.

We know that the total distance is made up of the distance from C to L and L to A.

So 22 and 13/16 = 8 and 13/16 + L to A

We can subtract 22 and 13/16 by 8 and 13/16 to get 14 miles.

Hope this helps.

When x€Q, what is the solution of 3x-2/2=x-1/2 ?​

Answers

Answer:

x = [tex]\frac{1}{2}[/tex]

Step-by-step explanation:

[tex]\frac{3x-2}{2}[/tex] = [tex]\frac{x-1}{2}[/tex]

Cross-multiply:

2(3x-2) = 2(x-1)

Simplify:

6x - 4 = 2x - 2

Subtract 2x from both sides:

4x - 4 = -2

Add 4 to both sides:

4x = 2

Divide both sides by 4:

x = [tex]\frac{1}{2}[/tex]

The amount of money spent on textbooks per year for students is approximately normal.
A. To estimate the population mean, 19 students are randomly selected the sample mean was $390 and the standard deviation was $120. Find a 95% confidence for the population meam.
B. If the confidence level in part a changed from 95% 1 to 1999%, would the margin of error for the confidence interval:
1. decrease.
2. stay the same.
3. increase not.
C. If the sample size in part a changed from 19% 10 to 22, would the margin of errot for the confidence interval:
1. decrease.
2. stay the same.
3. increase
D. To estimate the proportion of students who purchase their textbookslused, 500 students were sampled. 210 of these students purchased used textbooks. Find a 99% confidence interval for the proportion of students who purchase used text books.

Answers

Answer:

(A) A 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval would increase.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval would decrease.

(D) A 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

Step-by-step explanation:

We are given that 19 students are randomly selected the sample mean was $390 and the standard deviation was $120.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean = $390

            s = sample standard deviation = $120

            n = sample of students = 19

            [tex]\mu[/tex] = population mean

Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.101 < [tex]t_1_8[/tex] < 2.101) = 0.95  {As the critical value of t at 18 degrees of

                                               freedom are -2.101 & 2.101 with P = 2.5%}  

P(-2.101 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.101) = 0.95

P( [tex]-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ]

                        = [ [tex]\$390-2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] , [tex]\$390+2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] ]

                        = [$332.16, $447.84]

(A)  Therefore, a 95% confidence for the population mean is [$332.16, $447.84] .

(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would increase because of an increase in the z value.

(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex]  would decrease because as denominator increases; the whole fraction decreases.

(D) We are given that to estimate the proportion of students who purchase their textbooks used, 500 students were sampled. 210 of these students purchased used textbooks.

Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;

                             P.Q.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion students who purchase their used textbooks = [tex]\frac{210}{500}[/tex] = 0.42    

            n = sample of students = 500

            p = population proportion

Here for constructing a 99% confidence interval we have used a One-sample z-test statistics for proportions

So, 99% confidence interval for the population proportion, p is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5%

                                               level of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99

99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]

= [ [tex]0.42 -2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] , [tex]0.42 +2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] ]

= [0.363, 0.477]

Therefore, a 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477]  .

line and passes through C -2,0 in the 1, -3) Quetion of the line in standard form

Answers

Answer:

[tex]\huge\boxed{x+y=-2}[/tex]

Step-by-step explanation:

The standard form of an equation of a line:

[tex]Ax+By=C[/tex]

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

where

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points (-2, 0) and (1, -3).

Substitute:

[tex]x_1=-2;\ y_1=0;\ x_2=1;\ y_2=-3[/tex]

[tex]m=\dfrac{-3-0}{1-(-2)}=\dfrac{-3}{1+2}=\dfrac{-3}{3}=-1\\\\y-0=-1(x-(-2))\\\\y=-(x+2)[/tex]

[tex]y=-x-2[/tex]         add x to both sides

[tex]x+y=-2[/tex]

Karmen returned a bicycle to Earl's Bike Shop. The sales receipt showed a total paid price of $211.86, including the 7% sales tax. What was the cost of the bicycle without the sales tax? Any help would be very appreciated! Thank you very much!

Answers

Answer:

$198

Step-by-step explanation:

198x.07=13.86

198+13.86=211.86

Find the SURFACE AREA of the composite figure below
ASAP

Answers

Answer:

248.26 cm²

Step-by-step explanation:

Surface area of the composite figure = (surface area of cuboid + surface area of hemisphere) - 2(base area of hemisphere)

Surface area of cuboid = [tex] 2(lw + lh + hw) [/tex]

Where,

l = 10 cm

w = 5 cm

h = 4 cm

Plug in the values into the formula:

[tex] SA = 2(10*5 + 10*4 + 4*5) [/tex]

[tex] SA = 2(50 + 40 + 20) [/tex]

[tex] SA = 2(110) = 220 cm^2 [/tex]

Surface area of hemisphere = 3πr²

Where,

π = 3.14

r = 3 cm

SA of hemisphere = 3*3.14*3² = 3*3.14*9 = 84.78 cm²

Base area of hemisphere = πr²

BA = 3.14*3² = 3.14*9 = 28.26 cm²

Surface area of the composite shape = (220 + 84.78) - 2(28.26)

= 304.78 - 56.52

SA = 248.26 cm²

Can someone explain to me what a “derivative” means? How do you find the derivative of f(x)=x^3+1?

Answers

The derivative is the rate of change of a function, basically represents the slope at different points. To find the derivative of the given function you can use the power rule, which means, if n is a real number, d/dx(x^n)= nx^(n-1). This is a simplification of the chain rule based on the fact that d/dx(x)=1. Anyway, this means that d/dx(x^3 + 1)= 3x^2. Here n is 3 and so it is 3*x^(3-1)= 3x^2. The derivative of x^3+1 is 3x^2.

If you are wondering what happened to the 1, for any constant C, d/dx(C)=0.


There are 937 entries for a talent show.
What is the value of the 3?

Answers

Answer:

the value of the 3 is 30

Step-by-step explanation:

the second digit to the left of a decimal is always tens column

a is inversely proportional to (b - 4).
If a = 8 and b = 22, express a in terms of b.

Answers

Answer:

Step-by-step explanation:

a is expressed in terms of b as a = 144/(b - 4).

If A is inversely proportional to (b - 4), we can express this relationship using the formula:

A = k/(b - 4),

where k is the constant of proportionality.

To determine the value of k, we can use the given information when a = 8 and b = 22:

8 = k/(22 - 4).

Simplifying the equation:

8 = k/18.

To isolate k, we multiply both sides of the equation by 18:

8 * 18 = k.

k = 144.

Now that we know the value of k, we can rewrite the equation in terms of b:

A = 144/(b - 4).

Therefore, a is expressed in terms of b as a = 144/(b - 4).

Learn more about proportional here

https://brainly.com/question/32890782

#SPJ2

Find X so that m is parallel to n. Identify the postulate or theorem you used. Please help with these 3 problems, I don’t understand it at all

Answers

the corresponding angles should be equal

so, [tex] 5x+15=90 \implies 5x=75\implies x=15^{\circ}[/tex]

A bag contains 6 red marbles, 3 blue marbles and 1 green marble. What is the probability that a randomly selected marble is not blue?

Answers

Answer:

3/10

Step-by-step explanation:

6+3+1=10

since there are 3 blue marbles, we put the 3 into the place of the numerator

and since there is 10 marbles in total it goes into the denominator

The probability that a randomly selected marble is not blue will be 0.70.

What is probability?

Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.

A bag contains 6 red marbles, 3 blue marbles and 1 green marble.

The total number of the event will be

Total event = 6 + 3 + 1

Total event = 10

Then the probability that a randomly selected marble is not blue will be

Favorable event = 7 {red, green}

Then the probability will be

P = 7 / 10

P = 0.70

More about the probability link is given below.

https://brainly.com/question/795909

#SPJ2

Let A = {June, Janet, Jill, Justin, Jeffrey, Jelly}, B = {Janet, Jelly, Justin}, and C = {Irina, Irena, Arena, Arina, Jelly}. Find the given set. A ∪ C a. {June, Janet, Jill, Justin, Jeffrey, Jelly, Irina, Irena, Arena, Arina} b. {June, Justin, Irina, Irena, Arena, Arina, Jelly} c. {June, Janet, Jill, Justin, June, Jelly} {Jelly} d. ∅

Answers

Answer:

{June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

Step-by-step explanation:

A ∪ C

This means union so we join the sets together

A = {June, Janet, Jill, Justin, Jeffrey, Jelly} + C = {Irina, Irena, Arena, Arina, Jelly}

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, Jelly}

We get rid of repeats

A U C =  {June, Janet, Jill, Justin, Jeffrey, Jelly,Irina, Irena, Arena, Arina, }

1-What is the sum of the series? ​∑j=152j​ Enter your answer in the box.

2-What is the sum of the series? ∑k=14(2k2−4) Enter your answer in the box.

3-What is the sum of the series? ∑k=36(2k−10)

4-Which answer represents the series in sigma notation? 1+12+14+18+116+132+164 ∑j=1712(j+1) ∑j=172j−1 ∑j=1712j+1 ∑j=17(12)j−1

5-Which answer represents the series in sigma notation? −3+(−1)+1+3+5 ∑j=155j−1 ∑j=15(3j−6) ∑j=15(2j−5) ∑j=15−3(13)j−1

Answers

Answer:

Please see the Step-by-step explanation for the answers

Step-by-step explanation:

1)

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] 2j

The sum of series from j=1 to j=5 is:

∑ = 2(1) + 2(2) + 2(3) + 2(4) + 2(5)

  =  2 + 4 + 6 + 8 + 10

∑ = 30

2)

This question is not given clearly so i assume the following series that will give you an idea how to solve this:

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²

The sum of series from k=1 to j=4 is:

∑ = 2(1)² + 2(2)² + 2(3)² + 2(4)²

  = 2(1) + 2(4) + 2(9) + 2(16)

  =  2 + 8 + 18 + 32

∑ = 60

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²

∑ = (2*1)² + (2*2)² + (2*3)² + (2*4)²

  = (2)² + (4)² + (6)² + (8)²

  = 4 + 16 + 36 + 64

∑ = 120

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] (2k)²- 4

∑ = (2*1)²-4 + (2*2)²-4 + (2*3)²-4 + (2*4)²-4

  = (2)²-4 + (4)²-4 + (6)²-4 + (8)²-4

  = (4-4) + (16-4) + (36-4) + (64-4)

  = 0 + 12 + 32 + 60

∑ = 104

∑[tex]\left \ {{4} \atop {k=1}} \right.[/tex] 2k²- 4

∑ = 2(1)²-4 + 2(2)²-4 + 2(3)²-4 + 2(4)²-4

  = 2(1)-4 + 2(4)-4 + 2(9)-4 + 2(16)-4

  = (2-4) + (8-4) + (18-4) + (32-4)

  = -2 + 4 + 14 + 28

∑ = 44

3)

∑[tex]\left \ {{6} \atop {k=3}} \right.[/tex] (2k-10)

∑ = (2×3−10) + (2×4−10) + (2×5−10) + (2×6−10)  

  = (6-10) + (8-10) + (10-10) + (12-10)

  = -4 + -2 + 0 + 2  

∑ = -4

4)

1+1/2+1/4+1/8+1/16+1/32+1/64

This is a geometric sequence where first term is 1 and the common ratio is 1/2 So

a = 1

This can be derived as

1/2/1 = 1/2 * 1 = 1/2

1/4/1/2 = 1/4 * 2/1 = 1/2

1/8/1/4 = 1/8 * 4/1  = 1/2

1/16/1/8 = 1/16 * 8/1  = 1/2

1/32/1/16 = 1/32 * 16/1  = 1/2

1/64/1/32 = 1/64 * 32/1  = 1/2

Hence the common ratio is r = 1/2

So n-th term is:

[tex]ar^{n-1}[/tex] = [tex]1(\frac{1}{2})^{n-1}[/tex]

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{7} \atop {j=1}} \right.[/tex] [tex](\frac{1}{2})^{j-1}[/tex]

5)

−3+(−1)+1+3+5

This is an arithmetic sequence where the first term is -3 and the common difference is 2. So  

a = 1

This can be derived as

-1 - (-3) = -1 + 3 = 2

1 - (-1) = 1 + 1 = 2

3 - 1 = 2

5 - 3 = 2

Hence the common difference d = 2

The nth term is:

a + (n - 1) d

= -3 + (n−1)2

= -3 + 2(n−1)

= -3 + 2n - 2

= 2n - 5

So the answer that represents the series in sigma notation is:

∑[tex]\left \ {{5} \atop {j=1}} \right.[/tex] (2j−5)

For (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

We have different series in the question.

It is required to find the sum of all series.

What is a series?

In mathematics, a series can be defined as a group of data that followed certain rules of arithmetic.

1) We have:

[tex]\rm \sum j=2j[/tex]   where j = 1 to j = 5

After expanding the series, we get:

= 2(1)+2(2)+2(3)+2(4)+2(5)

=2(1+2+3+4+5)

= 2(15)

=30

2) We have:

[tex]\rm \sum k=(2k^2-4)[/tex]  where k = 1 to k = 4

After expanding the series, we get:

[tex]\rm = (2(1)^2-4)+(2(2)^2-4)+(2(3)^2-4)+(2(4)^2-4)+(2(5)^2-4)\\[/tex]

[tex]\rm = 2[1^2+2^2+3^2+4^2+5^2]-4\times5\\\\\rm=2[55]-20\\\\\rm = 90[/tex]

3) We have:

[tex]\rm \sum k= (2k-10)[/tex]  where k = 3 to k = 6

After expanding the series, we get:

[tex]= (2(3)-10)+(2(4)-10)+(2(5)-10)+(2(6)-10)\\\\=2[3+4+5+6] - 10\times4\\\\=2[18] - 40\\\\= -4[/tex]

4) The series given below:

[tex]1, \frac{1}{2} ,\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32},\frac{1}{64}[/tex]

It is a geometric progression:

[tex]\rm n^t^h[/tex] for the geometric progression is given by:

[tex]\rm a_n = ar^{n-1}[/tex]

[tex]\rm a_n = 1(\frac{1}{2})^{n-1}\\\\\rm a_n = (\frac{1}{2})^{n-1}\\[/tex]

In sigma notation we can write:

[tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7

5) The given series:

−3+(−1)+1+3+5, it is arithmetic series.

[tex]\rm n^t^h[/tex] for the arithmetic progression is given by:

[tex]\rm a_n = a+(n-1)d[/tex]

[tex]\rm a_n = -3+(n-1)(2)\\\\\rm a_n = 2n-5[/tex]

In sigma notation we can write:

[tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5

Thus, for (1) the sum is 30, for (2) the sum is 90, for (3) the sum is -4, for(4) the sigma notation is  [tex]\rm \sum j = 1(\frac{1}{2})^{j-1}\\[/tex]  where j = 1 to j = 7, and for (5) the sigma notation is  [tex]\rm\sum j = (2j-5)[/tex]  where j = 1 to j = 5.

Learn more about the series here:

https://brainly.com/question/10813422

Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 5, x1 = 2n xn f(xn) f '(xn) f(xn)/f '(xn) xn − f(xn)/f '(xn)1 2

Answers

Answer:

Step-by-step explanation:

Given that:

[tex]\mathsf{f(x) = x^2 -5 } \\ \\ \mathsf{x_1 = 2}[/tex]

The derivative of the first function of (x) is:

[tex]\mathsf{f'(x) =2x }[/tex]

According to Newton's Raphson method for function formula:

[tex]{\mathrm{x_{n+1} = x_n - \dfrac{f(x_n)}{f'(x_n)}}[/tex]

where;

[tex]\mathbf{x_1 =2}[/tex]

The first iteration is as follows:

[tex]\mathtt{f(x_1) = (2)^2 - 5} \\ \\ \mathbf{f(x_1) = -1}[/tex]

[tex]\mathtt{f'(x_1) = 2(2)} \\ \\ \mathbf{ = 4}[/tex]

[tex]\mathtt{\dfrac{f(x_1)}{f'(x_1)}} = \dfrac{-1}{4}}[/tex]

[tex]\mathbf{\dfrac{f(x_1)}{f'(x_1)} =-0.25}[/tex]

[tex]\mathtt{x_1 - \dfrac{f(x_1)}{f'(x_1)}} = \mathtt{2 - (-0.25)}}[/tex]

[tex]\mathbf{x_1 - \dfrac{f(x_1)}{f'(x_1)} = 2.25}[/tex]

Therefore;

[tex]\mathbf{x_2 = 2.25}[/tex]

For the second iteration;

[tex]\mathtt f(x_2) = (2.25)^2 -5}[/tex]

[tex]\mathtt f(x_2) = 5.0625-5}[/tex]

[tex]\mathbf{ f(x_2) =0.0625}[/tex]

[tex]\mathtt{f'(x_2)= 2(2.25)}[/tex]

[tex]\mathbf{f'(x_2)= 4.5}[/tex]

[tex]\mathtt{ \dfrac{f(x_2)}{f'(x_2)}} = \dfrac{0.0625}{4.5}}[/tex]

[tex]\mathbf{ \dfrac{f(x_2)}{f'(x_2)} = 0.01389}[/tex]

[tex]\mathtt{x_2 - \dfrac{f(x_2)}{f'(x_2)}} = \mathtt{2.25 -0.01389}}[/tex]

[tex]\mathbf{x_2 - \dfrac{f(x_2)}{f'(x_2)} = 2.2361}}[/tex]

Therefore, [tex]\mathbf{x_3 = 2.2361}[/tex]

In a study of 24 criminals convicted of antitrust offenses, the average age was 60 years, with a standard deviation of 7.4 years. Construct a 95% confidence interval on the true mean age. (Give your answers correct to one decimal place.)___ to____ years

Answers

Answer: 56.9 years to 63.1 years.

Step-by-step explanation:

Confidence interval for population mean (when population standard deviation is unknown):

[tex]\overline{x}\pm t_{\alpha/2}{\dfrac{s}{\sqrt{n}}}[/tex]

, where [tex]\overline{x}[/tex]= sample mean, n= sample size, s= sample standard deviation, [tex]t_{\alpha/2}[/tex]= Two tailed t-value for [tex]\alpha[/tex].

Given: n= 24

degree of freedom = n- 1= 23

[tex]\overline{x}[/tex]= 60 years

s= 7.4 years

[tex]\alpha=0.05[/tex]

Two tailed t-critical value for significance level of [tex]\alpha=0.05[/tex] and degree of freedom 23:

[tex]t_{\alpha/2}=2.0687[/tex]

A 95% confidence interval on the true mean age:

[tex]60\pm (2.0686){\dfrac{7.4}{\sqrt{24}}}\\\\\approx60\pm3.1\\\\=(60-3.1,\ 60+3.1)\\\\=(56.9,\ 63.1)[/tex]

Hence, a 95% confidence interval on the true mean age. : 56.9 years to 63.1 years.

x
Find the value
of x. Show
3
10
your work.

Answers

Step-by-step explanation:

Hello, there!!!

Let ABC be a Right angled triangle,

where, AB = 3

BC= 10

and AC= x

now,

As the triangle is a Right angled triangle, taking angle C asrefrence angle. we get,

h= AC = x

p= AB = 3

b= BC= 10

now, by Pythagoras relation we get,

[tex]h = \sqrt{ {p}^{2} + {b}^{2} } [/tex]

[tex]or ,\: h = \sqrt{ {3}^{2} + {10}^{2} } [/tex]

by simplifying it we get,

h = 10.44030

Therefore, the answer is x= 10.

Hope it helps...

pls answer my question please

Answers

Bold = changed words

1. We play tennis every Sunday.

2. I own two dogs and a cat. I love animals.

3. My suitcase weighs four kilos (kilograms).

4. When Mary came in, I talked to my mother on the phone. OR: I talked to Mother on the phone when Mary came in.

5. We passed the hotel two minutes ago. OR: We passed by the hotel two minutes ago.

Other Questions
What is the error in this problem 2. A cylinder has a height of 4.5 cm and a diameter of 1.5 cm. What is the surface area of the cylinder in square centimeters? Use 3.14 for pi.21.231.87.924.7 The graph of is positive over the interval and negative over the interval . What happens on the graph when ? Explain. The shape of American government is based mostly on which of the following English political ideas:Atotalitarian governmentB.limited governmentparliamentarian governmentOD.Constitutional Monarchy government 3. A very light bamboo fishing rod 3.0 m long is secured to a boat at the bottom end. It isheld in equilibrium by an 18 N horizontal force while a fish pulls on a fishing lineattached to the rod shown below. How much force F does the fishing line exert on therod? (3)18 Npivot301.8 m3.0 in Uchdorf Company invested $9,000,000 in a new product line. The life cycle of the product is projected to be 7 years with the following net income stream: $360,000, $360,000, $600,000, $1,080,000, $1,200,000, $2,520,000, and $1,444,000.Required:Calculate the ARR. How should the sentence below be changed to include a verb phrase using the indicated verb? By age fifteen, David _______________ a novel. (write) Question 9 options: a) By age fifteen, David writes a novel. b) By age fifteen, David had written a novel. c) By age fifteen, David already wrote a novel. d) None of the above While enumerating an address on the caselist, the enumerator is at the question that asks the occupants origin and race. The respondent asks why that type of personal information is collected. What should the enumerator do? HELP NEED PRECALC HELP WILL GIVE BRAINLIEST PLEASE HELP In the diathesis-stress model of explaining schizophrenia, which factors would represent a psychosocial influence? Suppose that a population begins at a size of 100 and grows continuously at a rate of 200% per year. Give the formula for calculating the size of that population after t years. Does the table represent a linear function ?? Which sentence is an example of the indicative mood? PLEASE HELP ASAP!!1. Read and choose the option with the correct answer. Soy Faustina y vivo en Miami, Florida, pero soy de Puerto Rico. Cuando era pequea, los domingos por la maana, me gustaba mirar a mi abuela cuando tena la caa de azcar en su cocina.Based on the text and what you learned in the lesson, what could Faustina learn from watching her grandmother?A. How to collect the cropB. How to cook temblequeC. How to make clothingD. How to store the food2. Read the scenario and choose the option that answers the question.Lisa era la ms joven de la familia.Based on the text, what is true about Lisa?A. She was older than the rest.B. She was younger than the rest.C. She was the oldest.D. She was the youngest. (Prove) The angle subtended by an arc at the center is double the angle subtended by it at anypoint on the remaining part of the circle. If a sample of aluminum with a density of 2.70 g/cm^3 displaces 36.0 mL of water when placed in a beaker, what is its mass? 13.3 g 97.2 g 0.075 g simplify each expression 17x + 4 - 3x If you have $100 in a savings account earning 3% interest per year, how much will you have intwo years? PLEASE ANSWER ASAP!!!!!!!!!!!!!!!!!!!!! The price of coffee has dropped to $2.30. Yesterday's price was $2.55. Find the percentage decrease. Round your answer to the nearest tenth of a percent Please help me I will mark brainliest! The ratio of the number of boys to the number of girls in a school is 3:4. One-third of the boys and three-eighths of the girls wear spectacles, If there are 612 pupils who do not wear spectacles, a)find the total number of the pupils in the school, and b) how many more girls than boys are there in the school