Answer:
The required ratio is 1.99.
Explanation:
We need to find the atio of speeds of a proton and an alpha particle accelerated through the same voltage.
We know that,
[tex]eV=\dfrac{1}{2}mv^2[/tex]
The LHS for both proton and an alpha particle is the same.
So,
[tex]\dfrac{v_p}{v_a}=\sqrt{\dfrac{m_a}{m_p}} \\\\\dfrac{v_p}{v_a}=\sqrt{\dfrac{6.64\times 10^{-27}}{1.67\times 10^{-27}}} \\\\=1.99[/tex]
So, the ratio of the speeds of a proton and an alpha particle is equal to 1.99.
How much power does it take to lift 70.0 N to 5.0 m high in 5.00 s?
Answer:
Power = 70 W
Explanation:
Given that,
Force, F = 70 N
Height, h = 5 m
Time, t = 5 s
We need to find the power of the object. We know that,
Power = work done/time
Put all the values,
[tex]P=\dfrac{Fd}{t}\\\\P=\dfrac{70\times 5}{5}\\\\P=70\ W[/tex]
So, the required power is 70 W.
A mass of 4 kg is traveling over a quarter circular ramp with a radius of 10 meters. At the bottom of the incline the mass is moving at 21.3 m/s and at the top of the incline the mass is moving at 2.8 m/s. What is the work done by all non-conservative force in Joules?
Answer:
499.7 J
Explanation:
Since total mechanical energy is conserved,
U₁ + K₁ + W₁ = U₂ + K₂ + W₂ where U₁ = potential energy at bottom of incline = mgh₁, K₁ = kinetic energy at bottom of incline = 1/2mv₁² and W₁ = work done by friction at bottom of incline, and U₂ = potential energy at top of incline = mgh₂, K₁ = kinetic energy at top of incline = 1/2mv₂² and W₂ = work done by friction at top of incline. m = mass = 4 kg, h₁ = 0 m, v₁ = 21.3 m/s, W₁ = 0 J, h₂ = radius of circular ramp = 10 m, v₂ = 2.8 m/s, W₂ = unknown.
So, U₁ + K₁ + W₁ = U₂ + K₂ + W₂
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
Substituting the values of the variables into the equation, we have
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
4 kg × 9.8 m/s²(0) + 1/2 × 4 kg × (21.3 m/s)² + 0 = 4 kg × 9.8 m/s² × 10 m + 1/2 × 4 kg × (2.8 m/s)² + W₂
0 + 2 kg × 453.69 m²/s² = 392 kgm²/s² + 2 kg × 7.84 m²/s² + W₂
907.38 kgm²/s² = 392 kgm²/s² + 15.68 kgm²/s² + W₂
907.38 kgm²/s² = 407.68 kgm²/s² + W₂
W₂ = 907.38 kgm²/s² - 407.68 kgm²/s²
W₂ = 499.7 kgm²/s²
W₂ = 499.7 J
Since friction is a non-conservative force, the work done by all the non-conservative forces is thus W₂ = 499.7 J
A force of 3 newtons moves a 10 kilogram mass horizontally a distance of 3 meters. The mass does not slow down or speed up as it moves. Which of the following must be true?
a) 9 joules of kinetic energy were produced
b) 9 joules of gravitational potential energy were produced
c) 9 joules of heat energy were produced
d) 9 joules of kinetic energy and heat were produced
Answer:
9 joules of heat energy was produced
Explanation: there is no acceleration therefore its not a kinetic energy
Energy= force × distance
= 3×3
=9
What recommendations would you give to the global government to help Decrease the global effects of human impact on the environment mystery recommendations and how they will positively impact our planet
Answer:
We can help to keep it magnificent for ourselves, our children and grandchildren, and other living things besides us.
Explanation:
5 ways our governments can confront climate change
PROTECT AND RESTORE KEY ECOSYSTEMS
SUPPORT SMALL AGRICULTURAL PRODUCERS
PROMOTE GREEN ENERGY
COMBAT SHORT-LIVED CLIMATE POLLUTANTS
BET ON ADAPTATION, NOT JUST MITIGATION
g Is a nucleus that absorbs at 4.13 δ more shielded or less shielded than a nucleus that absorbs at 11.45 δ? _________ Does the nucleus that absorbs at 4.13 δ require a stronger applied field or a weaker applied field to come into resonance than the nucleus that absorbs at 11.45 δ?
Answer: A nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded and a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field
Explanation:
While interpreting the data in NMR, the positions of signals are studied.
The nucleus/ protons having a higher value of [tex]\delta[/tex] are said to be less shielded. They are said to be upfield.
The nucleus/protons having a lower value of [tex]\delta[/tex] are said to be more shielded. They are said to be downfield.
So, a nucleus that absorbs at [tex]11.45\delta[/tex] is less shielded by the nucleus that absorbs at [tex]4.13\delta[/tex]
Also, the less shielded nucleus/protons will require a weak applied field to come into resonance than the more shielded nucleus/protons
So, a nucleus that absorbs at [tex]4.13\delta[/tex] will require a stronger applied field to come into resonance than the nucleus that absorbs at [tex]11.45\delta[/tex]
FROM THE _____ WHOLE WATER CYCLE STARTS ALL OVER AGAIN
From the water whole water cycle starts again.
Most possibly water should be the answer.The following 1H NMR absorptions were obtained on a spectrometer operating at 200 MHz and are given in Hz downfield from TMS. Convert the absorptions to δ units. a) 416 Hz = δ b) 1.97×103 Hz = δ c) 1.50×103 Hz = δ
Answer:
For (a): The chemical shift is [tex]2.08\delta[/tex]
For (b): The chemical shift is [tex]9.85\delta[/tex]
For (c): The chemical shift is [tex]7.5\delta[/tex]
Explanation:
To calculate the chemical shift, we use the equation:
[tex]\text{Chemical shift in ppm}=\frac{\text{Peak position (in Hz)}}{\text{Spectrometer frequency (in MHz)}}[/tex]
Given value of spectrometer frequency = 200 MHz
For (a):Given peak position = 416 Hz
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{416Hz}{200MHz}\\\\\text{Chemical shift in ppm}=2.08\delta[/tex]
For (b):Given peak position = [tex]1.97\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.97\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=9.85\delta[/tex]
For (c):Given peak position = [tex]1.50\times 10^3 Hz[/tex]
Putting values in above equation, we get:
[tex]\text{Chemical shift in ppm}=\frac{1.50\times 10^3Hz}{200MHz}\\\\\text{Chemical shift in ppm}=7.5\delta[/tex]
At 20 ◦C a copper wire has a resistance of 4×10−3 Ω and a temperature coefficient of resistivity of 3.9×10−3 (C◦)−1, its resistance at 100 ◦C is
A.
52.5 × 10-3 Ω
B.
5.25 × 10-3 Ω
C.
5.25 × 10-4 Ω
D.
5.25 × 10-2 Ω
E.
25.5 × 10-3 Ω
Answer:
[tex]R _{t} = R _{0}( \alpha t + 1) \\ = 4 \times {10}^{ - 3} (3.9 \times {10}^{ - 3} \times 20 + 1) \\ = 4 \times {10}^{ - 3} (1.078) \\ = 4.312 \times {10}^{ - 3} \: Ω[/tex]
What happens in the gray zone between solid and liquid?-,-
B. Complete the lists:
Things that I must do for my family
Things I must never do to my family
1.
2.
2.
3.
3.
4.
5.
5.
Answer:
Things you should do for your family
help your parentstreat them kindlylisten and obey themappreciate them for anything they do for you talk softlythings you shouldn't
backanswering them Disobey And anything that's harsh or make it parents sadConsider a swimmer that swims a complete round-trip lap of a 50 m long pool in 100 seconds. What is the swimmers average speed and average velocity?
Answer:
The average speed is 1 m/s
The average velocity is 0
Explanation:
Given;
length of the pool, L = 50 m
time taken for the motion, t = 100 s
The total distance = 50 m + 50 m
The total distance = 100 m
The average speed = total distance / total time
= 100 / 100
= 1 m/s
The average velocity = change in displacement / change in time
change in displacement = 50 m - 50 m = 0
The average velocity = 0 / 100
The average velocity = 0
According to Newton’s law of universal gravitation, which statements are true?
please help very easy 5th grade work giving brainliest
Answer:
the answer is option B because opposit sides of the magnets attract each other
A positively charged plastic ruler is brought close to a piece paper resting on the desk. The piece of paper was initially neutral. When the ruler was brought closer, the paper is attracted to the ruler. The surface of the paper became charged through:_________
Answer: static electricity
Explanation:
When the plastic ruler is rubbed, friction opposes the motion and causes the transfer of electron from one surface to another such that plastic becomes negatively charged. When ruler is brought nearer to the paper, it induces the positive charge in the piece of paper.
Calculate the current flowing when the voltage across is 35V and the resistance is 7ohms.
Explanation:
V= IR
35=I×7
I=35/7
I=5amperes
pls give brainliest
A 5 kg box drops a distance of 10 m to the ground. If 70% of the initial potential energy goes into increasing the internal energy of the box, determine the magnitude of the increase.
Answer:
Explanation:
From the given information:
The initial PE [tex](PE)_i[/tex] = m×g×h
= 5 kg × 9.81 m/s² × 10 m
= 490.5 J
The change in Potential energy P.E of the box is:
ΔP.E = [tex]P.E_f -P.E_i[/tex]
ΔP.E = 0 - [tex](PE)_i[/tex]
ΔP.E = [tex]-P.E_i[/tex]
If we take a look at conservation of total energy for determining the change in the internal energy of the box;
[tex]\Delta P.E + \Delta K.E + \Delta U = 0[/tex]
[tex]\Delta U = -\Delta P.E - \Delta K.E[/tex]
this can be re-written as:
[tex]\Delta U =- (-\Delta P.E_i) - \Delta K.E[/tex]
Here, K.E = 0
Also, 70% goes into raising the internal energy for the box;
Thus,
[tex]\Delta U =(70\%) \Delta P.E_i-0[/tex]
[tex]\Delta U =(0.70) (490.5)[/tex]
ΔU = 343.35 J
Thus, the magnitude of the increase is = 343.35 J
PLEASE HELP ME WITH THIS ONE QUESTION
Given the atomic mass of Boron-9 is 9.0133288 u, what is the nuclear binding energy of Boron-9? (Mproton = 1.0078251, Mneutron = 1.0086649, c^2 = 931.5 eV/u)
A) 59 eV
B) 58 eV
C) 57 eV
D) 56 eV
Answer:
a. 59 ev. helpful answer
PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. How much of the sample is left after 1.98 x 10^4 seconds?
A) 8.03 x 10^16 nuclei
B) 4.01 x 10^16 nuclei
C) 2.02 x 10^16 nuclei
D) 1.61 x 10^17 nuclei
OPTION C is the correct answer.
The radioactive decay follows the first order kinetics. The number of atoms decaying at any time is proportional to the number of atoms present at that instant. The amount of sample left is 2.02 x 10¹⁶nuclei. The correct option is C.
What is half-life?The time required for the decay of one half of the amount of the species is defined as the half-life period of a radionuclide. The half-life period is a characteristic of a radionuclide. The half lives can vary from seconds to billions of years.
The isotope decay of an atom is given by the equation:
ln [A] = -kt + ln [A]₀
The rate constant, k is:
k = ln 2 / Half life
k = ln 2 / 4.96 x 10³
k = 1.40 × 10⁻⁴ s⁻¹
t = 1.98 x 10⁴
[A]₀ = 3.21 x 10¹⁷
ln [A] = -1.40 × 10⁻⁴ × 1.98 x 10⁴ + ln [3.21 x 10¹⁷] = 37.538
[A] = 2.02 x 10¹⁶ nuclei
Thus the correct option is C.
To know more about half-life, visit;
https://brainly.com/question/24710827
#SPJ3
how do you use the coefficient to calculate the number of atoms in each molecule?
Answer:
To find out the number of atoms: MULTIPLY all the SUBSCRIPTS in the molecule by the COEFFICIENT. (This will give you the number of atoms of each element.)
Explanation:
reviews the general principles in this problem. A projectile is launched from ground level at an angle of 13.0 ° above the horizontal. It returns to ground level. To what value should the launch angle be adjusted, without changing the launch speed, so that the range doubles?
Answer: θ would equal approximately 28.7°
This is a kinematics problem, where one is only given the theta value 13.0° in regards to the range; thus, the problem is testing one's understanding of the relationships between the variables.
Range (aka x) = (v₀ sin (2θ₀))/g, where θ₀ = 13.0°
Now if we multiply the range by 2, we get:
2x = 2((v₀ sin (2θ₀))/g) → to verbalize, if range equates to (v₀ sin (2θ₀))/g, and doubling the range equals twice the product value, then:
2θ = sin⁻¹(2sin(2(13.0° )) = sin⁻¹(2(0.76255845048)) = sin⁻¹ (1.52511690096) = 57.35560850015109°/2 = θ
Thus, θ = 28.67780425
It's been awhile since I did this; though I hope it helped!
Trong máy phát điện xoay chiều ba pha khi tổng điện áp tức thời của cuộn 1,2 là e1+e2=120V thì điện áp tức thời của cuộn 3 là
Answer:
I just noticd i dont speak this launguage
Explanation:
An electric device, which heats water by immersing a resistance wire in the water, generates 20 cal of heat
per second when an electric potential difference of 6 V is placed across its leads. What is the resistance in Ω
of the heater wire? (Note: 1 cal = 4.186 J)
Select one:
a. 0.86
b. 0.17
c. 0.29
d. 0.43
Answer:
1 cal/s =4.184w
p=50 cal/s =2093w
v=12v
P = V*I
I =P/V
I = 17.43 A
P =1²*R
R = P/I²
R = 0.68A gymnast of mass 70.0 kgkg hangs from a vertical rope attached to the ceiling. You can ignore the weight of the rope and assume that the rope does not stretch. Use the value 9.81m/s29.81m/s2 for the acceleration of gravity.
PART A Calculate the tension T in the rope if the gymnast climbs the rope at a constant rate.
PART B Calculate the tension TTT in the rope if the gymnast climbs up the rope with an upward acceleration of magnitude 1.00 m/s2
PART C Calculate the tension TTT in the rope if the gymnast slides down the rope with a downward acceleration of magnitude 1.00 m/s2m/s2 .
Answer:
43994
Explanation:
Hope this helps!
what is the difference between VELOCITY and SPEED?
Answer:
Speed is the time rate at which an object is moving along a path, while velocity is the rate and direction of an object's movement. Put another way, speed is a scalar value, while velocity is a vector. ... In its simplest form, average velocity is calculated by dividing change in position (Δr) by change in time (Δt).
Explanation:
Electromagnetic radiation from a 8.25 mW laser is concentrated on a 1.23 mm2 area. Suppose a 1.12 nC static charge is in the beam, and moves at 314 m/s. What is the maximum magnetic force it can feel
Answer:
The maximum magnetic force is 2.637 x 10⁻¹² N
Explanation:
Given;
Power, P = 8.25 m W = 8.25 x 10⁻³ W
charge of the radiation, Q = 1.12 nC = 1.12 x 10⁻⁹ C
speed of the charge, v = 314 m/s
area of the conecntration, A = 1.23 mm² = 1.23 x 10⁻⁶ m²
The intensity of the radiation is calculated as;
[tex]I = \frac{P}{A} \\\\I = \frac{8.25 \times 10^{-3} \ W}{1.23 \ \times 10^{-6} \ m^2} \\\\I = 6,707.32 \ W/m^2[/tex]
The maximum magnetic field is calculated using the following intensity formula;
[tex]I = \frac{cB_0^2}{2\mu_0} \\\\B_0 = \sqrt{\frac{2\mu_0 I}{c} } \\\\where;\\\\c \ is \ speed \ of \ light\\\\\mu_0 \ is \ permeability \ of \ free \ space\\\\B_0 \ is \ the \ maximum \ magnetic \ field\\\\B_0 = \sqrt{\frac{2 \times 4\pi \times 10^{-7} \times 6,707.32 }{3\times 10^8} } \\\\B_0 = 7.497 \times 10^{-6} \ T[/tex]
The maximum magnetic force is calculated as;
F₀ = qvB₀
F₀ = (1.12 x 10⁻⁹) x (314) x (7.497 x 10⁻⁶)
F₀ = 2.637 x 10⁻¹² N
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
The question is incomplete. The complete question is :
Assume that the energy lost was entirely due to friction and that the total length of the PVC pipe is 1 meter. Use this length to compute the average force of friction (for this calculation, you may neglect uncertainties).
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
Solution :
Given that :
The predicted range is 0.3503 m
Time of the fall is :
[tex]$t=\sqrt{\frac{2H}{g}}$[/tex]
[tex]v_1t= 0.35[/tex] ...........(i)
[tex]v_0t= 1.09[/tex] ...........(ii)
Dividing the equation (ii) by (i)
[tex]$\frac{v_0t}{v_1t}=\frac{1.09}{035} = 3.11$[/tex]
∴ [tex]v_0=3.11 \ v_1[/tex]
Now loss of energy = change in the kinetic energy
[tex]$W=\frac{1}{2} m [v_0^2-v_1^2]$[/tex]
[tex]$W=\frac{1}{2} \times (16.3 \times 10^{-3}) \times [v_0^2-\left(\frac{v_0}{3.11}\right)^2]$[/tex]
[tex]$W=7.307\times 10^{-3} \ v_0^2$[/tex]
If f is average friction force, then
(f)(L) = W
(f) (1) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
(f) = [tex]$7.307\times 10^{-3} \ v_0^2$[/tex]
The Average force of friction is ( F ) = 7.307 * 10⁻³ v₀²
Given data:
Predicted range ( v₁t ) = 0.3503 m
Actual range ( v₀t ) = 1.09 m
mass = 16.3 g
First step : Determine the value of V₀
[tex]t = \sqrt{\frac{2H}{g} }[/tex] , v₁t = 0.3503 , ( v₀t ) = 1.09 m
To obtain the value of V₀
Divide ( v₀t ) by ( v₁t ) = 1.09 / 0.3503 = 3.11 v₁
∴ V₀ = 3.11 v₁
Next step : Determine the average force of friction ( f )
given that loss of energy results in a change in kinetic energy
W = [tex]\frac{1}{2} m ( vo^{2} - v1^{2} )[/tex]
= 1/2 * 16.3 * 10⁻³ * [ v₀² - [tex](\frac{v_{0} }{3.11} )^{2}[/tex] ]
∴ W = 7.307 * 10⁻³ v₀²
Average force of friction = W / Actual length
= 7.307 * 10⁻³ v₀² / 1
∴ Average force of friction ( F ) = 7.307 * 10⁻³ v₀²
Hence we can conclude that the average force of friction is 7.307 * 10⁻³ v₀²
Learn more about average force of friction : https://brainly.com/question/16207943
Your question has some missing data below are the missing data related to your question
Mass of the ball : 16.3 g
Predicted range : 0.3503 m
Actual range : 1.09 m
What is the energy equivalent of an object with a mass of 1.05g?
Answer:
The equivalent energy of an object given its mass is calculated through the equation,
E = mc²
where c is the speed of light (3 x 10^8 m/s)
Substituting the known values,
E = (1.05 g/ 1000) (3 x 10^8 m/s)²
E = 9.45x10^13 J
Explanation:
A 56 kg pole vaulter falls from rest from a height of 5.1 m onto a foam rubber pad. The pole vaulter comes to rest 0.29 s after landing on the pad.
Required:
a. Calculate the athlete's velocity just before reaching the pad
b. Calculate the constant force exerted on the pole vaulter due to the collision
a. The athlete's velocity just before reaching the pad is [tex]35.21m/s[/tex]
b. The constant force exerted on the pole vaulter is 6799.52 N
a. We use Newton's equation of motion,
[tex]v=u+at\\\\S=ut+\frac{1}{2}at^{2}[/tex]
Where u is initial velocity, v is final velocity, a is acceleration , t is time and S represent distance.
Given that, s = 5.1 m , t = 0.29s, u = 0
Substitute in above equation.
[tex]5.1=\frac{1}{2}*a*(0.29)^{2} \\\\a=\frac{5.1*2}{0.084}=121.42m/s^{2}[/tex]
the athlete's velocity, [tex]v=0+121.42*(0.29)=35.21m/s[/tex]
b. The constant force exerted on the pole vaulter due to the collision is given as, [tex]Force=mass*acceleration[/tex]
[tex]Force=56*121.42=6799.52N[/tex]
Learn more:
https://brainly.com/question/13532462
Erica (37 kg ) and Danny (45 kg ) are bouncing on a trampoline. Just as Erica reaches the high point of her bounce, Danny is moving upward past her at 4.7 m/s . At that instant he grabs hold of her. What is their speed just after he grabs her?
Answer:
V = 2.58 m/s
Explanation:
Below is the calculation:
Given the weight of Erica = 37 kg
The weight of Danny = 45 kg
Danny's speed to move upward = 4.7 m/s
Use below formula to find the answer.
m1 * u1 = (m1+m2) * V
V = m1*u1 / (m1+m2)
Here, m1 = 45
u1 = 4.7
m1 = 45
m2 = 37
Now plug the values in formula:
V = m1*u1 / (m1+m2)
V = (45*4.7)/(45+37)
V = 2.58 m/s
A spring with a 10-kg mass and a damping constant 15 can be held stretched 2 meters beyond its natural length by a force of 6 newtons. Suppose the spring is stretched 4 meters beyond its natural length and then released with zero velocity. Suppose the spring is stretched 4 meters beyond its natural length and then released with zero velocity.
Required:
Find the position of the mass at any time t.
Answer:
Explanation:
Given that:
mass = 10kg
damping constant C = 15 kg/s
length = 2 m
Force F = 6N
Using the Hooke's law:
F = kx
6 = 15x
k = 6 N /2 m
spring constant k = 3 N/m
For the critical damping
C² - 4k*m= 0
m = C²/4k
m = (15)²/4(3) kg
m = 225/12 kg
m = 18.75 kg