Answer:
87108
Step-by-step explanation:
854 x 102
= 854 x ( 100 + 2 )
= 854 ( 100 ) + 854 ( 2 )
= 85400 + 1708
= 87108
triangle ABC is reflected about the line Y equals negative X to give triangle ABC with vertices A (-1, 1), B (-2, -1), C (-1,0). What are the vertices of triangle ABC?
9514 1404 393
Answer:
A'(-1, 1)B'(1, 2)C'(0, 1)Step-by-step explanation:
Reflection across the line y = -x is accomplished by the transformation ...
(x, y) ⇒ (-y, -x)
Then the images of the given points are ...
A(-1, 1) ⇒ A'(-1, 1) . . . . this point is on the line of reflection, so doesn't move
B(-2, -1) ⇒ B'(1, 2)
C(-1, 0) ⇒ C'(0, 1)
If (-3)^-5 = 1/x, what is the value of x?
Answer:
-243
Step-by-step explanation:
(-3) (-3) (-3) (-3) (-3) = - 243
[tex]\frac{1}{-243 }[/tex]
A market surveyor wishes to know how many energy drinks teenagers drink each week. They want to construct a 98% confidence interval for the mean and are assuming that the population standard deviation for the number of energy drinks consumed each week is 1.1. The study found that for a sample of 1027 teenagers the mean number of energy drinks consumed per week is 5.9. Construct the desired confidence interval. Round your answers to one decimal place.
Answer:
The 98% confidence interval for the mean number of energy drinks consumed per week by teenagers is (5.8, 6).
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.01 = 0.99[/tex], so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.327\frac{1.1}{\sqrt{1027}} = 0.1[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 5.9 - 0.1 = 5.8 drinks per week.
The upper end of the interval is the sample mean added to M. So it is 5.9 + 0.1 = 6 drinks per week.
The 98% confidence interval for the mean number of energy drinks consumed per week by teenagers is (5.8, 6).
125. Albert surveyed a class of 25 students on sports. 5 kids love baseball. 7 kids love basketball. 10 kids
love football. How many students did not like baseball, basketball, or football?
25 students
12 students
22 students
3 students
Answer:
3 students
Step-by-step explanation:
since the total number of students is 25,when you add those that like baseball, basketball and football the total number must be 25 but in this case it's 22 meaning 2 student liked neither.
7+5+10+x=25
x=25-22
=3
I hope this helps
someone please help
Answer:
28
Step-by-step explanation:
78
Can someone help me? I am struggling and I would be so happy if any of you helped me. Thank you for your help.
Answer:
mean=256229+253657+218747+246163+235626+288694+316265+196721+285077+215152+253291+315011+199901+265443+291806+303556+215359+258554+293658+289935÷21
=5198845÷21
=247564.0
=247564 to the next whole number
B.6 times
Which graph represents the function f (x) = StartFraction 1 Over x + 3 EndFraction minus 2?
Given:
The function is:
[tex]f(x)=\dfrac{1}{x+3}-2[/tex]
To find:
The graph of the given function.
Solution:
We have,
[tex]f(x)=\dfrac{1}{x+3}-2[/tex]
It can be written as:
[tex]f(x)=\dfrac{1-2(x+3)}{x+3}[/tex]
[tex]f(x)=\dfrac{1-2x-6}{x+3}[/tex]
[tex]f(x)=\dfrac{-2x-5}{x+3}[/tex]
Putting [tex]x=0[/tex] to find the y-intercept.
[tex]f(0)=\dfrac{-2(0)-5}{(0)+3}[/tex]
[tex]f(0)=\dfrac{-5}{3}[/tex]
So, the y-intercept is [tex]\dfrac{-5}{3}[/tex].
Putting [tex]f(x)=0[/tex] to find the x-intercept.
[tex]0=\dfrac{-2x-5}{x+3}[/tex]
[tex]0=-2x-5[/tex]
[tex]2x=-5[/tex]
[tex]x=\dfrac{-5}{2}[/tex]
[tex]x=-2.5[/tex]
So, the x-intercept is [tex]-2.5[/tex].
For vertical asymptote, equate the denominator and 0.
[tex]x+3=0[/tex]
[tex]x=-3[/tex]
So, the vertical asymptote is [tex]x=-3[/tex].
The degrees of numerator and denominator are equal, so the horizontal asymptote is the ratio of leading coefficients.
[tex]y=\dfrac{-2}{1}[/tex]
[tex]y=-2[/tex]
So, the horizontal asymptote is [tex]y=-2[/tex].
End behavior of the given function:
[tex]f(x)\to -2[/tex] as [tex]x\to -\infty[/tex]
[tex]f(x)\to -\infty[/tex] as [tex]x\to -3^-[/tex]
[tex]f(x)\to \infty[/tex] as [tex]x\to -3^+[/tex]
[tex]f(x)\to -2[/tex] as [tex]x\to \infty[/tex]
Using all these key features, draw the graph of given function as shown below.
Answer:
The Answer Is A.
Step-by-step explanation:
Hari earns Rs 4300 per month. He spends 80% from his income. How much amount does he save in a year?
Answer:
Hari saves $ 10,320 in a year.
Step-by-step explanation:
Given that Hari earns $ 4300 per month, and he spends 80% from his income, to determine how much amount does he save in a year, the following calculation must be performed:
100 - 80 = 20
4300 x 0.20 x 12 = X
860 x 12 = X
10320 = X
Therefore, Hari saves $ 10,320 in a year.
Is the answer right?
Answer:
one solution.. your answer is correct
Step-by-step explanation:
discriminate = 900 - (4*9*25) = 0
thus only one solution
The triangles are similar.
What is the value of x?
Enter your answer in the box.
x =
Answer:
x=12
Step-by-step explanation:
each side of the smaller triangle, we can multiply by 4 to get the side of the larger triangle
ex: 8*4=32 and 17*4=68
so we can assume that 15*4= 4x+12
60=4x+12
48=4x
x=12
Answer:
x = 12
Step-by-step explanation:
The triangles are similar so we can use ratios
4x+12 32
------- = ------------
15 8
Using cross products
(4x+12) *8 = 15 * 32
(4x+12) *8 = 480
Divide each side by 8
(4x+12) *8/8 = 480/8
4x+12 = 60
Subtract 12 from each side
4x+12 -12 = 60-12
4x = 48
Divide by 4
4x/4 = 48/4
x = 12
The function f(x)=log4x is dilated to become g(x)=f(13x).
What is the effect on f(x)?
Answer:
f(x) is compressed horizontally
Step-by-step explanation:
Given
[tex]f(x) = \log(4x)[/tex]
[tex]g(x) = f(13x)[/tex]
Required
The effect on f(x)
[tex]g(x) = f(13x)[/tex] implies that f(x) is horizontally compressed by 13.
So, we have:
[tex]f(13) = \log(4 * 13x)[/tex]
[tex]f(13) = \log(52x)[/tex]
So:
[tex]g(13) = \log(52x)[/tex]
Determine the probability of landing on tails at most 33 times if you flip a fair coin 80 times. Round your answer to the nearest tenth.
Answer:
0.0728177272
Step-by-step explanation:
Given :
Number of flips = 80
Probability of landing on tail at most 33 times ;
Probability of landing on tail on any given flip = 1 / 2 = 0.5
This a binomial probability problem:
Hence ;
P(x ≤ 33) = p(x=0) + p(x=1) +... + p(x = 33)
Using a binomial probability calculator :
P(x ≤ 33) = 0.0728177272
What is the true solution to the equation below? 2 lne^ln2x-lne^ln10x=ln30
It looks like the equation is
[tex]2\ln\left(e^{\ln(2x)}\right)-\ln\left(e^{\ln(10x)}\right) = \ln(30)[/tex]
Right away, we notice that any solution to this equation must be positive, so x > 0.
For any base b, we have [tex]b^{\log_b(a)}=a[/tex], so we can simplify this to
[tex]2\ln(2x)-\ln\left(10x\right) = \ln(30)[/tex]
Next, [tex]\ln(a^b)=b\ln(a)[/tex], so that
[tex]\ln(2x)^2-\ln\left(10x\right) = \ln(30)[/tex]
[tex]\ln\left(4x^2\right)-\ln\left(10x\right) = \ln(30)[/tex]
Next, [tex]\ln\left(\frac ab\right)=\ln(a)-\ln(b)[/tex], so that
[tex]\ln\left(\dfrac{4x^2}{10x}\right) = \ln(30)[/tex]
For x ≠ 0, we have [tex]\frac xx=1[/tex], so that
[tex]\ln\left(\dfrac{2x}5\right) = \ln(30)[/tex]
Take the antilogarithm of both sides:
[tex]e^{\ln\left((2x)/5\right)} = e^{\ln(30)}[/tex]
[tex]\dfrac{2x}5 = 30[/tex]
Solve for x :
[tex]2x = 150[/tex]
[tex]\boxed{x=75}[/tex]
The midpoint of a segment is (6,−4) and one endpoint is (13,−2). Find the coordinates of the other endpoint.
A. (-1, -6)
B. (-1, 0)
C. (20, -6)
D. (20, 0)
Answer: A. (-1, -6)
Step-by-step explanation:
Use the midpoint formula:
Endpoint #1 = (x₁, y₁) = (13, -2)Endpoint #2 = (x₂, y₂)[tex]midpoint = (\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}) \\\\(6, -4) = (\frac{13+x_{2}}{2}, \frac{-2+y_{2}}{2})\\\\\frac{13+x_{2}}{2} =6\\\\13+x_{2}=6*2\\\\x_{2}=12-13=-1\\\\ \\ \frac{-2+y_{2}}{2}=-4\\\\-2+y_{2}=(-4)*2\\\\y_{2}=-8+2=-6\\\\\\\left \{ {{x_{2}=-1} \atop {y_{2}=-6}} \right.[/tex]
a tree 15m high casts a shadow 8m long. To the nearest degree what is the angle of elevation of the sun?
Answer:
Answered March 20, 2021
This is a right angle triangle where the hypotenuse a^2 = b^2 + c^2
= 15^2 + 8^2 = 225+64= 289
289= 17^2
17 = hypotenuse
The sine of an angle is the ratio of the shortest side to the hypotenuse
= 8/17= 0.4705
sine^-1 0.4705 = 28°
As part of a statistics project, a teacher brings a bag of marbles containing 500 white marbles and 400 red marbles. She tells the students the bag contains 900 total marbles, and asks her students to determine how many red marbles are in the bag without counting them. A student randomly draws 100 marbles from the bag. Of the 100 marbles, 45 are red. The data collection method can best be described as
Answer:
Survey
Step-by-step explanation:
During data collection for a particular study, reaching all target Population might seem illogical or impossible. Therefore, a subset of the population of interest is chosen and the outcome used to infer about the population. This procedure could be referred to a a SURVEY. In the scenario samples drawn from the population of interest is used to make inference on population. During a survey, selected data ponuts or subjects must be drawn at random in other to ensure that it is representative of the larger population data.
Two sides of a triangle have the same length. The third side measures 5 m less than twice the common length. The perimeter of the triangle is 23 m. What are the lengths of the three sides?
What is the length of the two sides that have the same length?
Answer:
Length of all 3 sides: 7, 7, and 9
Length of the two sides that have the same length: 7
Step-by-step explanation:
Let the two sides with equal lengths have a length of [tex]x[/tex]. We can write the third side as [tex]2x-5[/tex].
The perimeter of a polygon is equal to the sum of all its sides. Since the perimeter of the triangle is 23 meters, we have the following equation:
[tex]x+x+2x-5=23[/tex]
Combine like terms:
[tex]4x-5=23[/tex]
Add 5 to both sides:
[tex]4x=28[/tex]
Divide both sides by 4:
[tex]x=\frac{28}{4}=\boxed{7}[/tex]
Therefore, the three sides of the triangle are 7, 7, and 9 and the length of the two sides that have the same length is 7.
You wish to create a 5 digit number from all digits; 0 1 2 3 4 5 6 7 8 9
Repetition is not allowed
* 0 cannot be first as it does not count as a place value if it is first. Ie. 027 is a 2 digit number
How many even numbers can you have?
Answer:
10234
Step-by-step explanation:
one is the smallest number so its first
and then you can place zero
after that just place the second smallest number
and so on
How many counting numbers have three distinct nonzero digits such that the sum of the three digits is 7?
Answer:
6
Step-by-step explanation:
You have 2 conditions.
1. The digits must be different.
2. The digits must add to 7.
There aren't very many
124
142
214
241
412
421
That's it. That's your answer. There are 6 of them
Find the sum of the geometric series given a1=−2, r=2, and n=8.
A. -510
B. -489
C. -478
D. 2
Answer:
A. -510
Step-by-step explanation:
We are given the variable values:
a = -2r = 2n = 8Geometric series formula:
[tex]s = \frac{a( {r}^{n} \times - 1) }{r - 1} [/tex]
Plugging in values we have:
[tex]s = \frac{ - 2( {2}^{8} - 1) }{2 - 1} [/tex]
Simplifying the equation we are left with:
[tex] \frac{ - 2(255)}{1} = - 510[/tex]
Consider the phrase "the sum of 3 times a number and the quotient of the number and 4." Let’s break it down. You want the sum of two values. The first value is 3 times a number. What expression represents 3 times a number?
9514 1404 393
Answer:
3x
Step-by-step explanation:
If x represents the number, then "3 times a number" is 3x.
__
Additional comment
"The quotient of the number and 4" is x/4.
The sum of those two expressions is ...
3x + x/4
Simplify
x * x^5 / x^2 * x
Which word phrases represent the variable expression m – 11? Choose all answers that are correct. A. 11 more than a number B. the difference of a number and 11 C. the quotient of a number and 11 D. 11 less than a number
Answer: D
Step-by-step explanation:
m – 11
A. 11 more than a number ( m+11 )
B. the difference of a number and 11 ( 11/m )
C. the quotient of a number and 11 ( m/11 )
D. 11 less than a number ( m-11 )
Which one is greater 4.5% or 0.045
Answer:
They are equal
Step-by-step explanation:
4.5% is 0.045 in decimal form
Answer: They are equal
Step-by-step explanation:
I always remember by taking the two o's in percent and moving them two spots to the left and vise versa if you want to make a decimal into a percent (move it two spots to the right).
Function below, choose the correct description of its graph.
vertical
line
horizontal
line
line with a
negative
slope
line with a parabola
positive opening
slope down
O
O
O
O
O
h(x)=0
k(x) = 4x2 +312
f(x) = x-1
O
o
o
O
O
O
Step-by-step explanation:
I think something went wrong with the answer options you provided. and maybe with the problem statement itself.
I see 3 function definitions.
I can tell you what they are and use the provided option phrasing as closely as possible :
h(x) = 0 is a horizontal line (in fact the x-axis)
k(x) = 4x² + 312 is a parabola with the opening upwards
f(x) = x - 1 is a line with positive slope (going from left to right the line goes up)
Solve for x and y…….
The shapes are the same size. Match the sides.
3x -1 = 17
Add 1 to both sides:
3x = 18
Divide both sides by 3:
X = 6
2y = 16
Divide both sides by 2
Y = 8
Answer: x = 6, y = 8
Last year, the CDC claimed there were 1700 different strains of a virus around the
world. Since then, numbers have increased by 9.7% more than what the scientists
originally estimated. How many strains are estimated currently? Round to the nearest
number.
Answer: 1865
Step-by-step explanation:
Given
Claimed strains of virus is 1700
If it is increased by 9.7%
Estimated value can be given by
[tex]\Rightarrow 1700+1700\times 9.7\%\\\Rightarrow 1700(1+0.097)\\\Rightarrow 1700\times 1.097\\\Rightarrow 1864.9\approx 1865[/tex]
Thus, the estimated number is [tex]1865[/tex]
If 4 gallons of gasoline cost $13.76, how much will 11 gallons of gasoline cost?
Answer:
x=37.84
Step-by-step explanation:
We can write a ratio to solve
4 gallons 11 gallons
--------------- = ----------------
13.76 x dollars
Using cross products
4x = 11*13.76
4x=151.36
Divide by 4
4x/4 = 151.36/4
x=37.84
Write the point-slope form of an equation of the line through the points (-2, 6) and (3,-2).
Answer:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where [tex](x_1,y_1)[/tex] is a point and [tex]m[/tex] is the slope
1) Determine the slope
[tex]m=\frac{\displaystyle y_2-y_1}{\displaystyle x_2-x_2}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (-2, 6) and (3,-2):
[tex]m=\frac{\displaystyle -2-6}{\displaystyle 3-(-2)}\\\\m=\frac{\displaystyle -8}{\displaystyle 3+2}\\\\m=-\frac{\displaystyle 8}{\displaystyle 5}[/tex]
Therefore, the slope of the line is [tex]-\frac{\displaystyle 8}{\displaystyle 5}[/tex]. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
2) Plug in a point [tex](x_1,y_1)[/tex]
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
We're given two points, (-2, 6) and (3,-2), so there are two ways we can write this equation:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x-(-2))\\\\y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y-(-2)=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)\\y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
I hope this helps!
A manager records the repair cost for 14 randomly selected dryers. A sample mean of $88.34 and standard deviation of $19.22 are subsequently computed. Determine the 90% confidence interval for the mean repair cost for the dryers. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
Answer:
Hence the 90% confidence interval estimate of the population mean is [tex](79.24 , 97.44)[/tex]
Step-by-step explanation:
Given that,
Point estimate = sample mean = [tex]\bar x[/tex] = 88.34
sample standard deviation = s = 19.22
sample size = n = 14
Degrees of freedom = df = n - 1 = 13
Critical value =[tex]t\alpha /2,[/tex] df = 1.771
Margin of error
[tex]E = t\alpha/2,df \times (\frac{s}{\sqrt{n} } )\\= 1.771 \times (19.22 / \sqrt 14)[/tex]
Margin of error = E = 9.10
The 90% confidence interval estimate of the population mean is,
[tex]\bar x - E < \mu < \bar x + E\\\\88.34 - 9.10 < \mu < 88.34 + 9.10\\\\79.24 < \mu < 97.44\\(79.24 , 97.44)[/tex]