1. Which of the following equations is equivalent to y = ? 048 = 7x - 21 28 = 12x - 36 O 4x - 3 = 84 O4x - 12 = 84
Answer:
4x - 12 = 84
Step-by-step explanation:
The last answer choice is correct because when you cross-multiply:
[tex]4(x-3) = 12(7)[/tex] [tex]4x - 12 = 84[/tex]you get 4x - 12 = 84.
Therefore, the last option is correct.
Answer:
D would be the answer (4x-12=84)
Step-by-step explanation:
4/7=12/x-3
=>1/7=3/x-3
=>x-3=21
Multiplying both sides by 4
4(x-3)=4x21
=>4x-12=84
Hope this helped :)
Teresa is maintaining a camp fire. She can keep the fire burning for 4 hours with 6 logs. She wants to know how
many logs (g) she needs to keep the fire burning for 18 hours. She assumes all logs are the same.
How many logs does Teresa need to maintain the fire for 18 hours?
Answer:
27
Step-by-step explanation:
6/4 = 1.5
1.5 * 18 = 27
If you can walk 1/4 mile in 1/2 hour, how far could you walk in one hour?
Answer:
1/2 + 1/2 = 1
1/4 + 1/4 = 1/2
So you would walk 1/2 mile in 1 hour
Answer:
1/2
Step-by-step explanation:
1/4*2 multiply 1/4 by 2 because its you walk 1/4 in half a hour so times that by 2 for a full hour.
help!! !,
is it right or not
Answer:
No
Step-by-step explanation:
The answer is to find the sum of each number, because factors are pulling out from total numbers, but when multiplying you don't need to pull out anything so it would be number
Yep!!! Your correct
Solve for w:
4/5w=8
Answer:
4/5w=8
cross multiply
8×52/w=4
40w=4
w=4/40
w=0.1
Write two Pythagorean triplets each having one of the numbers as 5.
Answer:
3, 4, 5 and 5, 12, 13
Step-by-step explanation:
The square of the largest side is equal to the sum of the squares of the other 2 sides.
5² = 3² + 4²
13² = 5² + 12²
The 2 triplets are (3, 4, 5 ) and (5, 12, 13)
Write in slope-intercept form an equation of the line that passes through the given points. (0,−1),(−8,−2)
solve pls brainliest
Answer:
first put 2 in the numerator for the first blank and 2/9 in the second blank
Step-by-step explanation:
1/3 equals 3/9 and 3/9-1/9=2/9
Answer:
[tex]\frac{3}{9}[/tex]
Step-by-step explanation:
The graphs of two rational functions of f and g are shown. One of them is given by the expression 2-3x/x. Which graph is it? Thanks will mark brainliest
Answer:
It's the left graph, y = f(x)
Step-by-step explanation:
If you find the x-intercepts, you'd solve (2-3x)/x = 0. This means you'd really solve 2-3x=0, which gives you x=3/2.
So the graph must have an x-intercept at (1.5, 0). Only f(x) has that.
[tex]y=\frac{2-3x}{x}[/tex]
Vertical asymptote[tex]\Rightarrow x=0[/tex]
[tex]2-3x=0\\\Rightarrow 3x=2\\\Rightarrow x=\frac{2}{3}[/tex]
Zeroes [tex]x=\frac{2}{3}[/tex]
[tex]\Rightarrow[/tex]graph cuts [tex]x-axis[/tex] at [tex]x=\frac{2}{3}[/tex]
Horizontal asymptote[tex]=\frac{coefficient \ of \ higest \ degree \ term \ in \ numerator}{coefficient \ of \ higest \ degree \ term \ in \ denominator}[/tex]
[tex]y=\frac{-3}{1}[/tex]
[tex]=-3[/tex]
Horizontal asymptote[tex]y=-3[/tex]
[tex]\therefore[/tex] Given graph is [tex]y=f(x)[/tex]
pls helppppppp ill give brainliest
Answer:
2n-3
Step-by-step explanation:
three less so -3
Julie runs three less than 2 times what Hannah ran
Hannah ran n miles
so Julie ran three less than 2n
write a peacewise function for the graph
please help me
Answer:
[tex]\left \{ {{y=x; \ \ x\le 0} \atop {y=4+ \frac12x;\ \ x>0}} \right.[/tex]
Step-by-step explanation:
If you look at the graph you see that:
before 0, the graph has same y as it has x, or y=x.
after 0, the graph starts at 4, and increases by 1 every 2 steps horizontally, or has a slope of 1/2.
Finally, the 0 has to be included in the blue part of the graph based on where the solid dot is.
Find the value if f(x) = -3x -8 and g(x) = x2 + 3. f(-3) =
Step-by-step explanation:
f(x) = -3x - 8
f(-3) = -3(-3) - 8
f(-3) = 9 - 8
f(-3) = 1
What is 4 times 3/4 multiples by 3/4
Answer:
9/4
hope it helps.................
If we convert 0.14 x10^3 to scientific notation, which direction should the
decimal move and how spaces should it move?
Answer:
Move it to the right by 3 spaces.
Step-by-step explanation:
10^3 is 1000
On a number line the negative numbers are on the left and the positive numbers are on the right. So since the exponent is a positive 3 we move it to the right by 3 spaces to get 140
Solve for x x^2 + 6x + 1 = 0
Answer:
x = -.1715 ≈ - .172 or x = -5.83
Step-by-step explanation:
x² + 6x + 1 = 0
x² + 6x = -1
Complete the square Add to both sides (1/2 of the x-term, then square it.)
x² + 6x + 9 = -1 + 9
(x + 3)(x + 3) = 8
(x + 3)² = 8
[tex]\sqrt{(x + 3)^{2}[/tex] = [tex]\sqrt{8}[/tex]
x + 3 = ± [tex]\sqrt{8}[/tex]
x = -3 ± [tex]\sqrt{8}[/tex]
x = -3 + [tex]\sqrt{8}[/tex] or x = -3 - [tex]\sqrt{8}[/tex]
x = -.1715 ≈ - .172 or x = -5.83
Please help xxxxxxxx
Answer:
a. [tex]\bold{45000\times \:10^7}[/tex]b. [tex]\bold{3500}[/tex]Step-by-step explanation:
a. [tex]\left(5\times \:10^3\right)\left(9\times \:10^7\right)[/tex]
[tex]5\times 10^3 = 5000\\\\5000\times \:9\times \:10^7[/tex]
[tex]\mathrm{Multiply\:the\:numbers:}\:5000\times \:9=45000[/tex]
[tex]=45000\times \:10^7[/tex]
b. [tex]\left(7\times 10^5\right)\div \left(2\times 10^2\right)[/tex]
[tex]\left(7\times 10^5\right)\div \left(2\times 10^2\right)=\frac{7\times \:10^5}{2\times \:10^2}[/tex]
[tex]\frac{10^5}{10^2} = 10^3[/tex]
[tex]\frac{7\times \:10^3}{2}[/tex]
[tex]\mathrm{Factor}\:\: 10^3 : 2^3\times5^3[/tex]
[tex]\frac{7\times \:2^3\times \:5^3}{2}[/tex]
[tex]\frac{2^3}{2}=2^2[/tex]
[tex]7\times \:2^2\times \:5^3=3500[/tex]
Please helppppppppppppp
Answer:
101
HOPE THIS HELPS
- Todo ❤️
Step-by-step explanation:
Suplemetary angles
180-79=101
50 POINTS PLS HELP ME I'LL MARK BRAINLIEST
Find a polynomial of degree n that has only the given zeros. (There are many correct answers.)
x = −3, 8; n = 3
Thank you so much!!
Answer:
Step-by-step explanation:
Here we need to find a 3rd degree polynomial that has only two distinct zeros: {-3, 8}.
Focusing on the zero x = 8 and assuming that this 8 has a multiplicity of 2, we come up with the following polynomial in which the factor x - 8 shows up twice:
f(x) = a(x - 8)(x - 8)(x + 3), or f(x) = a(x - 8)^2(x + 3)
One such polynomial is thus
f(x) = a(x - 8)^2(x + 3), where 'a' is a constant coefficient. This polynomial has a double zero at x = 8 and a third zero at x = -3.
Step-by-step explanation:
The polynomial has degree 3 and two zeros: - 3 and 8.
Since it has degree 3 it should have 3 zero's.
Two possible scenarios
1. -3 has multiplicity of two:
a(x + 3)²(x - 8) - is the factored form of the polynomial where a is the constant2. 8 has multiplicity of two:
a(x + 3)(x - 8)² - is the factored form of the polynomialThe diameter of the rear tire of a bike is 34 inches. In low gear, you need to rotate the pedals 3 times to make the rear tire rotate 360° all the way around. How far will you travel in low gear each time you rotate the pedals? (Hint: find the circumference of the tire, then divide it by the number of rotations needed of the pedals.) Round the answer to the nearest hundredth. *
PLEASE DO NOT PUT INAPPROPIATE CONTENT!!!
the perimeter of this triangle is 46cm find x
Answer:
the value of x is 12
......
Find the value of x.
Answer:
i think the answer should be 8
Step-by-step explanation:
find the value of 4x-6y when x=3 and y= -2
Answer:
here the answer is 24
Step-by-step explanation:
answerrrrrerrr issss hereeeeeee
Answer:
0
Step-by-step explanation:
4 multiply by x(3) = 12
6 multiply by y(2) = 12
12 -12 =0
Write 2.04 × 10 ⁴ as an ordinary number
Answer:
20400
Step-by-step explanation:
its 2.03x10x10x10x10 so first ten: 20.4 and ten: 204 3rd ten: 2040 last ten :20400
QUESTION: What fraction of 1/2 is 1/3?
PLEASE READ: First to answer gets brainly— MUST include how they got the answer, ill skim through it to double check if its right
Answer:
1/6
Step-by-step explanation:
questions which include 'of 'usually means "×" (multiplication sign) so when u multiply them it gives 1/6
Which best describes the error in finding the area of the parallelogram?
15 meters was used for the height instead of 13 meters.
15 meters was used for the height instead of 13 meters.
8 meters was used for the height instead of 13 meters.
8 meters was used for the height instead of 13 meters.
The product of 8 and 15 is not 120.
The product of 8 and 15 is not 120.
The formula to use should have been A=12bh instead of A=bh.
The formula to use should have been, cap A is equal to 1 half b h instead of cap A is equal to b h.
Question 2
Correct the error.
A=
=
m2
Answer:
104
Step-by-step explanation:
1. When do we use the method of Difference of two squares?
*
(Factoring polynomials)
Answer:
a
Step-by-step explanation:
find the slope of the line
Answer:
3 i belive 100 pecent tho
Step-by-step explanation:
1.) -3x-8=-14
2.) 4x-6=14
3.)-3-3x=-30
4.) -5x+5=5
Answer:
1.) x = 2
2.) x = 5
3.) x = 9
4.) x = 0
Step-by-step explanation:
1.) -3x - 8 = -14
-3x = -6
x = 2
2.) 4x - 6 = 14
4x = 20
x = 5
3.) -3 - 3x = -30
-3x = -27
x = 9
4.) -5x + 5 = 5
-5x = 0
x = 0
Help me pls i give brain
Answer:
4 3/4
Step-by-step explanation:
8 1/2=8 2/4
8 2/4-3 3/4= 4 3/4
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Question ~}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
Prove that ~
[tex] \dfrac{d}{dx}\sec(x) = \sec(x) \tan(x) [/tex]
by using first principle of differentiation ~
Answer:
METHOD I:(by using the first principle of differentiation)
We have the "Limit definition of Derivatives":
[tex]\boxed{\mathsf{f'(x)= \lim_{h \to 0} \{\frac{f(x+h)-f(x)}{h} \} ....(i)}}[/tex]
Here, f(x) = sec x, f(x+h) = sec (x+h)
Substituting these in eqn. (i)[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \{\frac{sec(x+h)-sec(x)}{h} \} }[/tex]
sec x can be written as 1/ cos(x)[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{1}{cos(x+h)} -\frac{1}{cos(x)} \} }[/tex]
Taking LCM[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{cos(x)-cos(x+h)}{cos(x)cos(x+h)} \} }[/tex]
By Cosines sum to product formula, i.e.,[tex]\boxed{\mathsf{cos\:A-cos\:B=-2sin(\frac{A+B}{2} )sin(\frac{A-B}{2} )}}[/tex]
=> cos(x) - cos(x+h) = -2sin{(x+x+h)/2}sin{(x-x-h)/2}
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{2sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{sin(\frac{h}{2} )}{h} }[/tex]
I shifted a 2 from the first limit to the second limit, since the limits ar ein multiplication this transmission doesn't affect the result[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{2sin(\frac{h}{2} )}{h} }[/tex]
2/ h can also be written as 1/(h/ 2)[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: \lim_{h \to 0} \frac{1\times sin(\frac{h}{2} )}{\frac{h}{2} } }[/tex]
We have limₓ→₀ (sin x) / x = 1.[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: 1 }[/tex]
h→0 means h/ 2→0Substituting 0 for h and h/ 2
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+0)}{cos(x+0)cos(x)} }[/tex]
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)cos(x)} }[/tex]
[tex]\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)}\times \frac{1}{cos x} }[/tex]
sin x/ cos x is tan x whereas 1/ cos (x) is sec (x)[tex]\implies \mathsf{f'(x)= tan(x)\times sec(x) }[/tex]
Hence, we got
[tex]\underline{\mathsf{\overline{\frac{d}{dx} (sec(x))=sec(x)tan(x)}}}[/tex]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
METHOD II:(by using other standard derivatives)
[tex] \boxed{ \mathsf{ \frac{d}{dx} ( \sec \: x) = \sec x \tan x }}[/tex]
sec x can also be written as (cos x)⁻¹We have a standard derivative for variables in x raised to an exponent:
[tex] \boxed{ \mathsf{ \frac{d}{dx}(x)^{n} = n(x)^{n - 1} }}[/tex]
Therefore,
[tex] \mathsf{ \frac{d}{dx}( \cos x)^{ - 1} = - 1( \cos \: x) ^{( - 1 - 1} } \\ \implies \mathsf{\ - 1( \cos \: x) ^{- 2 }}[/tex]
Any base with negative exponent is equal to its reciprocal with same positive exponent[tex] \implies \: \mathsf{ - \frac{1}{ (\cos x) {}^{2} } }[/tex]
The process of differentiating doesn't just end here. It follows chain mechanism, I.e.,
while calculating the derivative of a function that itself contains a function, the derivatives of all the inner functions are multiplied to that of the exterior to get to the final result.
The inner function that remains is cos x whose derivative is -sin x.[tex] \implies \mathsf{ - \frac{1}{ (\cos x )^{2} } \times ( - \sin x) }[/tex]
cos²x can also be written as (cos x).(cos x)[tex] \implies \mathsf{ \frac{ \sin x }{ \cos x } \times ( \frac{1}{cos x} ) }[/tex]
sin x/ cos x is tan x, while 1/ cos x is sec x[tex] \implies \mathsf{ \tan x \times \sec x }[/tex]
= sec x. tan x
Hence, Proved!