The missing side length is 10 unit.
What is Pythagoras theorem?The relationship between the three sides of a right-angled triangle is explained by the Pythagoras theorem, commonly known as the Pythagorean theorem. The Pythagorean theorem states that the square of a triangle's hypotenuse is equal to the sum of its other two sides' squares.
We have,
Perpendicular = 6
Base = 8
Using Pythagoras theorem
c² = P² + B²
c² = 6² + 8²
c²= 36 + 64
c² = 100
c= 10 unit.
Thus, the missing length is 10 unit.
Learn more about Pythagoras theorem here:
https://brainly.com/question/343682
#SPJ7
6/5 times 17/18 in lowest terms
Answer:
17/15
Step-by-step explanation:
6/5 * 17/18
1/5 * 17/3
17/15
x=cos(2t), y=sin(2t) find a rectangular coordinate equation for the curve by eliminating the parameter
Answer:
x^2+y^2=1
Step-by-step explanation:
Since cos^2(x)+sin^2(x)=1, x^2+y^2=1
An appliance uses 120 W. If this appliance is on for 8 hours a day, how much CO2 will this produce in the month of April?
...
Calculate Energy Cost by Appliance
Multiply the device's wattage by the number of hours the appliance is used per day.Divide by 1000.Multiply by your kWh rate.hope it's helpful for you!!..pls give me brainlist !!....Muhammad lives twice as far from the school as Hita. Together, the live a total of 12 km
from the school. How far away drom the school does each of them live?
Answer:
Muhammad lives 8 km away from the school.
Hita lives 4 km away from the school.
Step-by-step explanation:
First of all, find a number that, when you double that number and add both numbers, you will get 12. That number is 4. So double 4 and get 8. Then add both to get 12.
21 × 6 ÷ 7 + 12 - 15
Answer:
15
Step-by-step explanation:
By order of operations, multiplication and division are done first, then the addition and subtraction. Remember, multiplication and division have the same precedence, as does addition and subtraction.
21*6 = 126
126/7 = 18
18 + 12 = 30
30 - 15 = 15
Answer:
15
Step-by-step explanation:
21 × 6 ÷ 7 + 12 - 15
= 126 ÷ 7 + 12 - 15
= 18 + 12 - 15
= 30 - 15
= 15
find the length of side x
Answer:
x=8
Step-by-step explanation:
Clear parentheses by applying the distributive property.
-(-4s + 9t + 7)
Answer:
4s-9t-7
Step-by-step explanation:
multiply the negative one with all terms inside the bracket, since they are all unlike terms the answer remains the same
A. If x:y= 3:5, find = 4x + 5 : 6y -3
Answer:
17 : 27
Step-by-step explanation:
x=3
y=5
4(3)+5 : 6(5)-3
= 12+5 : 30-3
= 17 : 27
what is 32⋅(12)x+1=2x−14?
Answer:
[tex]x=-\frac{15}{382}[/tex]
Step-by-step explanation:
32 × 12x + 1 = 2x - 14
384x + 1 = 2x - 14
384x + 1 - 1 = 2x - 14 - 1
384x = 2x - 15
384x - 2x = 2x - 2x - 15
382x = - 15
382x ÷ 382 = - 15 ÷ 382
[tex]x=-\frac{15}{382}[/tex]
solve above question
Please help, I’m not sure about this question.
Claims from Group A follow a normal distribution with mean 10,000 and standard deviation 1,000. Claims from Group B follow a normal distribution with mean 20,000 and standard deviation 2,000. All claim amounts are independent of the other claims. Fifty claims occur in each group. Find the probability the total of the 100 claims exceeds 1,530,000.
Answer:
0.0287 = 2.87% probability the total of the 100 claims exceeds 1,530,000.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
n instances of a normal variable:
For n instances of a normal variable, the mean is [tex]n\mu[/tex] and the standard deviation is [tex]s = \sigma\sqrt{n}[/tex]
Sum of normal variables:
When two normal variables are added, the mean is the sum of the means, while the standard deviation is the square root of the sum of the variances.
Group A follow a normal distribution with mean 10,000 and standard deviation 1,000. 50 claims of group A.
This means that:
[tex]\mu_A = 10000*50 = 500000[/tex]
[tex]s_A = 1000\sqrt{50} = 7071[/tex]
Group B follow a normal distribution with mean 20,000 and standard deviation 2,000. 50 claims of group B.
This means that:
[tex]\mu_B = 20000*50 = 1000000[/tex]
[tex]s_B = 2000\sqrt{50} = 14142[/tex]
Distribution of the total of the 100 claims:
[tex]\mu = \mu_A + \mu_B = 500000 + 1000000 = 1500000[/tex]
[tex]s = \sqrt{s_A^2+s_B^2} = \sqrt{7071^2+14142^2} = 15811[/tex]
Find the probability the total of the 100 claims exceeds 1,530,000.
This is 1 subtracted by the p-value of Z when X = 1530000. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{1530000 - 1500000}{15811}[/tex]
[tex]Z = 1.9[/tex]
[tex]Z = 1.9[/tex] has a p-value of 0.9713
1 - 0.9713 = 0.0287
0.0287 = 2.87% probability the total of the 100 claims exceeds 1,530,000.
The starting salaries of individuals with an MBA degree are normally distributed with a mean of $40,000 and a standard deviation of $5,000. What percentage of MBA's will have starting salaries of $34,000 to $46,000
Answer:
The correct answer is "76.98%".
Step-by-step explanation:
According to the question,
⇒ [tex]P(34000<x<46000) = P[\frac{34000-40000}{5000} <\frac{x- \mu}{\sigma} <\frac{46000-40000}{5000} ][/tex]
[tex]=P(-1.2<z<1.2)[/tex]
[tex]=P(z<1.2)-P(z<-1.2)[/tex]
[tex]=0.8849-0.1151[/tex]
[tex]=0.7698[/tex]
or,
[tex]=76.98[/tex]%
Certify Completion Icon Tries remaining:2 A town recently dismissed 10 employees in order to meet their new budget reductions. The town had 7 employees over 50 years of age and 18 under 50. If the dismissed employees were selected at random, what is the probability that exactly 5 employees were over 50
Answer:
0.055 = 5.5% probability that exactly 5 employees were over 50.
Step-by-step explanation:
The employees are removed from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
7 + 18 = 25 employees, which means that [tex]N = 25[/tex]
7 over 50, which means that [tex]k = 7[/tex]
10 dismissed, which means that [tex]n = 10[/tex]
What is the probability that exactly 5 employees were over 50?
This is P(X = 5). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 5) = h(5,25,10,7) = \frac{C_{7,5}*C_{18,5}}{C_{25,10}} = 0.055[/tex]
0.055 = 5.5% probability that exactly 5 employees were over 50.
What proportion of the students scored at least 23 points on this test, rounded to five decimal places
This question is incomplete, the complete question is;
The distribution of scores on a recent test closely followed a Normal Distribution with a mean of 22 points and a standard deviation of 2 points. For this question, DO NOT apply the standard deviation rule.
What proportion of the students scored at least 23 points on this test, rounded to five decimal places?
Answer:
proportion of the students that scored at least 23 points on this test is 0.30850
Step-by-step explanation:
Given the data in the question;
mean μ = 22
standard deviation σ = 2
since test closely followed a Normal Distribution
let
Z = x-μ / σ { standard normal random variable ]
Now, proportion of the students that scored at least 23 points on this test.
P( x ≥ 23 ) = P( (x-μ / σ) ≥ ( 23-22 / 2 )
= P( Z ≥ 1/2 )
= P( Z ≥ 0.5 )
= 1 - P( Z < 0.5 )
Now, from z table
{ we have P( Z < 0.5 ) = 0.6915 }
= 1 - P( Z < 0.5 ) = 1 - 0.6915 = 0.30850
P( x ≥ 23 ) = 0.30850
Therefore, proportion of the students that scored at least 23 points on this test is 0.30850
Evaluate the expression 3√64
Answer:
4
Step-by-step explanation:
We want the cubed root of 64
(64)^(1/3)
(4*4*4) ^ (1/3)
4
Unless this is 3 * sqrt(64)
then it would be
3 sqrt(8*8)
3 (8)
24
Write an equation of the line through each pair of points in slope-intercept form.
a(– 3,–2) and (–3,4)
b(3,2)and (–4,–5)
Answer and I will give you brainiliest
Answer:
see below
Step-by-step explanation:
a) (– 3, –2) and (–3, 4)
First you want to find the slope of the line that passes through these points. To find the slope of the line, we use the slope formula: (y₂ - y₁) / (x₂ - x₁)
Plug in these values:
(4 - (-2) / (-3 - (-3))
Simplify the parentheses.
= (4 + 2) / (-3 + 3)
Simplify the fraction.
(6) / (0)
= undefined
If your slope is undefined, it is a vertical line. The equation of a vertical line is x = #.
In this case, the x-coordinate for both points is -3.
Therefore, your equation is x = -3.
b) (3, 2) and (–4, –5)
First you want to find the slope of the line that passes through these points. To find the slope of the line, we use the slope formula: (y₂ - y₁) / (x₂ - x₁)
Plug in these values:
(-5 - 2) / (-4 - 3)
Simplify the parentheses.
= (-7) / (-7)
Simplify the fraction.
-7/-7
= 1
This is your slope. Plug this value into the standard slope-intercept equation of y = mx + b.
y = 1x + b or y = x + b
To find b, we want to plug in a value that we know is on this line: in this case, I will use the first point (3, 2). Plug in the x and y values into the x and y of the standard equation.
2 = 1(3) + b
To find b, multiply the slope and the input of x(3)
2 = 3 + b
Now, subtract 3 from both sides to isolate b.
-1 = b
Plug this into your standard equation.
y = x - 1
This is your equation.
Check this by plugging in the other point you have not checked yet (-4, -5).
y = 1x - 1
-5 = 1(-4) - 1
-5 = -4 - 1
-5 = -5
Your equation is correct.
Hope this helps!
Please help.
Evaluate 6!
3,125
720
120
[tex]\huge\textsf{Hey there!}[/tex]
[tex]\large\textsf{6!}\\\large\textsf{= 6}\times\large\textsf{5}\times\large\textsf{4}\times\large\textsf{3}\times\large\textsf{2}\times\large\textsf{1}\\\large\textsf{6(5) = \bf 30}\\\large\textsf{= 30}\times\large\textsf{4}\times\large\textsf{3}\times\large\textsf{2}\times\large\textsf{1}\\\large\textsf{30(4) = \bf 120}\\\large\textsf{= 120}\times\large\textsf{3}\times\large\textsf{2}\times\textsf{1}\\\large\textsf{120(3) = \bf 360}\\\large\textsf{= 360}\times\large\textsf{2}\times\large\textsf{1}[/tex]
[tex]\large\textsf{360(2) = \bf 720}\\\large\textsf{720}\times\large\textsf{1}\\\large\textsf{= \bf 720}[/tex]
[tex]\boxed{\boxed{\huge\textsf{Therefore, your answer is: \bf 720}\huge\textsf{ (option B)}}}\huge\checkmark[/tex]
[tex]\large\textsf{Good luck on your assignment and enjoy your day!}[/tex]
~[tex]\frak{Amphitrite1040:)}[/tex]
Coordinate plane with quadrilaterals EFGH and E prime F prime G prime H prime at E 0 comma 1, F 1 comma 1, G 2 comma 0, H 0 comma 0, E prime negative 1 comma 2, F prime 1 comma 2, G prime 3 comma 0, and H prime negative 1 comma 0. F and H are connected by a segment, and F prime and H prime are also connected by a segment. Quadrilateral EFGH was dilated by a scale factor of 2 from the center (1, 0) to create E'F'G'H'. Which characteristic of dilations compares segment F'H' to segment FH
Answer:
[tex]|F'H'| = 2 * |FH|[/tex]
Step-by-step explanation:
Given
[tex]E = (0,1)[/tex] [tex]E' = (-1,2)[/tex]
[tex]F = (1,1)[/tex] [tex]F' = (1,2)[/tex]
[tex]G = (2,0)[/tex] [tex]G' =(3,0)[/tex]
[tex]H = (0,0)[/tex] [tex]H' = (-1,0)[/tex]
[tex](x,y) = (1,0)[/tex] -- center
[tex]k = 2[/tex] --- scale factor
See comment for proper format of question
Required
Compare FH to F'H'
From the question, we understand that the scale of dilation from EFGH to E'F'G'H is 2;
Irrespective of the center of dilation, the distance between corresponding segment will maintain the scale of dilation.
i.e.
[tex]|F'H'| = k * |FH|[/tex]
[tex]|F'H'| = 2 * |FH|[/tex]
To prove this;
Calculate distance of segments FH and F'H' using:
[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
Given that:
[tex]F = (1,1)[/tex] [tex]F' = (1,2)[/tex]
[tex]H = (0,0)[/tex] [tex]H' = (-1,0)[/tex]
We have:
[tex]FH = \sqrt{(1- 0)^2 + (1- 0)^2}[/tex]
[tex]FH = \sqrt{(1)^2 + (1)^2}[/tex]
[tex]FH = \sqrt{1 + 1}[/tex]
[tex]FH = \sqrt{2}[/tex]
Similarly;
[tex]F'H' = \sqrt{(1 --1)^2 + (2 -0)^2}[/tex]
[tex]F'H' = \sqrt{(2)^2 + (2)^2}[/tex]
Distribute
[tex]F'H' = \sqrt{(2)^2(1 +1)}[/tex]
[tex]F'H' = \sqrt{(2)^2*2}[/tex]
Split
[tex]F'H' = \sqrt{(2)^2} *\sqrt{2}[/tex]
[tex]F'H' = 2 *\sqrt{2}[/tex]
[tex]F'H' = 2\sqrt{2}[/tex]
Recall that:
[tex]|F'H'| = 2 * |FH|[/tex]
So, we have:
[tex]2\sqrt 2 = 2 * \sqrt 2[/tex]
[tex]2\sqrt 2 = 2\sqrt 2[/tex] --- true
Hence, the dilation relationship between FH and F'H' is::
[tex]|F'H'| = 2 * |FH|[/tex]
Answer:NOTT !! A segment in the image has the same length as its corresponding segment in the pre-image.
Step-by-step explanation:
pleaseee i need help!
2 questions in one pleasee 90 points!
Answer:
A the answer is A if you look at it .
Answer:
The first one is B) point D
The second one is D) (0,0)
Hope this helps!
btw, coordinates are in (x,y) form, so the other answer above me is wrong.
HELP PLEASE I CANNOT FAIL PLEASE!!!!!!!
Which statement correctly compares the two functions?
A.
They have the same y-intercept and the same end behavior as x approaches ∞.
B.
They have the same x- and y-intercepts.
C.
They have the same x-intercept but different end behavior as x approaches ∞.
D.
They have different x- and y-intercepts but the same end behavior as x approaches ∞.
Answer:
B
Step-by-step explanation:
they have the same intercepts
If computers sell for $1160 per unit and hard drives sell for $ 102 per unit, the revenue from x computers and y hard drives can be represented by what expression? If computers sell for $ per unit and hard drives sell for $102 per unit, the revenue from x computers and y hard drives can be represented by
Two balls are picked at random from a box containing 5 red balls and 3 green balls. What is the probability that 1 red ball and 1 green ball are selected?
Answer:
Step-by-step explanation:
Answer:
3/8 x 5/8= 15/64
Step-by-step explanation:
Denver's elevation is 5280 feet above sea level. Death Valley is -282 feet. Is Death Valley located above sea level or below sea level???
(plz answer, due date is semtemper)
9514 1404 393
Answer:
below
Step-by-step explanation:
When signed numbers are used to represent elevation with respect to sea level, positive signs are used for values above sea level, and negative signs are used for values below sea level. The given elevation of Death Valley indicates it is 282 feet below sea level.
Write the fraction 24/40 in its simplest form.
If P(x) = 2x2 – 3x + 7 and Q(x) = 8 - x), find each function value.
15. P(-3)
16. Q(2)
17. P(4)
18. Q(-3)
Answer:
15. 52
16. 6
17. 59
18. 11
Step-by-step explanation:
An experiment consists of tossing a pair of balanced, six-sided dice. (a) Use the combinatorial theorems to determine the number of sample points in the sample space S. 36 Correct: Your answer is correct. sample points (b) Find the probability that the sum of the numbers appearing on the dice is equal to 6. (Round your answer to four decimal places.)
Answer:
Sample space = 36
P(sum of 6) = 5/36
Step-by-step explanation:
Number of faces on a dice = 6
The sample space, for a toss of 2 dice ; (Number of faces)^number of dice
Sample space = 6^2 = 6*6 = 36
Sum of numbers appearing on the dice = 6
The sum of 6 from the roll of two dice has 5 different outcomes ; Hence, required outcome = 5
Total possible outcomes = sample space = 36
Probability, P = required outcome / Total possible outcomes
P = 5 / 36
Probabilities are used to determine the chances of events
The given parameters are:
[tex]n=6[/tex] --- the faces of a six-sided die
[tex]r = 2[/tex] -- the number of dice
(a) The number of sample points
This is calculated as:
[tex]Sample = n^r[/tex]
So, we have:
[tex]Sample = 6^2[/tex]
Evaluate the exponent
[tex]Sample = 36[/tex]
Hence, the number of sample points is 36
(b) The probability that the sum of 6
See attachment for the sample space of the sum of two dice.
From the sample space, there are 5 outcomes where the sum is 6.
So, the probability is:
[tex]Pr = \frac{5}{36}[/tex] --- where 36 represents the number of sample points
Divide 5 by 36
[tex]Pr = 0.1389[/tex]
Hence, the probability that the sum of the numbers appearing on the dice is equal to 6 is 0.1389
Read more about probabilities at:
https://brainly.com/question/10707698
A die is rolled 20 times and the number of twos that come up is tallied. Find the probability of getting the given result. [Binomail Probability] Less than four twos
Answer:
0.5665 = 56.65% probability of less than four twos.
Step-by-step explanation:
For each roll, there are only two possible outcomes. Either it is a two, or it is not a two. The probability of a roll ending up in a two is independent of any other roll, which means that the binomial probability distribution is used.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A die is rolled 20 times
This means that [tex]n = 20[/tex]
One out of six sides is 2:
This means that [tex]p = \frac{1}{6} = 0.1667[/tex]
Probability of less than four twos:
This is:
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{20,0}.(0.1667)^{0}.(0.8333)^{20} = 0.0261[/tex]
[tex]P(X = 1) = C_{20,1}.(0.1667)^{1}.(0.8333)^{19} = 0.1043[/tex]
[tex]P(X = 2) = C_{20,2}.(0.1667)^{2}.(0.8333)^{18} = 0.1982[/tex]
[tex]P(X = 3) = C_{20,3}.(0.1667)^{3}.(0.8333)^{17} = 0.2379[/tex]
So
[tex]P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.0261 + 0.1043 + 0.1982 + 0.2379 = 0.5665[/tex]
0.5665 = 56.65% probability of less than four twos.
Please help with this function problem
Answer:
-2
-1
-2
Step-by-step explanation:
really ? this is a problem ? why ?
f(0) means the functional value for x = 0.
is x = 2 ? no.
so, automatically the other case applies, and f(0) = -2
f(2) means x=2
is x = 2 ? yes.
so that case applies, and f(2) = -1
f(5) means x=5
is x = 2 ? no.
so again, the case for x <> 2 applies, f(5) = -2
Please help …………………….
9514 1404 393
Answer:
(-3, 3)
Step-by-step explanation:
The blanks are trying to lead you through the process of finding the point of interest.
__
The horizontal distance from T to S is 9 . (or -9, if you prefer)
The ratio you're trying to divide the line into is the ratio that goes in this blank:
Multiply the horizontal distance by 2/3 . (9×2/3 = 6)
Move 6 units left from point T.
The vertical distance from T to S is 6 .
Multiply the vertical distance by 2/3 . (6×2/3 = 4)
Move 4 units up from point T.
__
Point T is (3, -1) so 6 left and 4 up is (3, -1) +(-6, 4) = (3-6, -1+4) = (-3, 3). The point that is 2/3 of the way from T to S is (-3, 3).