Answer:
2/3.
Step-by-step explanation:
.
Answer:
Solution given:
the relationship between perpendicular and base is given by tan angle
Tan 60=opposite/Adjacent
[tex]\sqrt{3}[/tex]=x/3
x=[tex]3\sqrt{3}[/tex]
The value of x is [tex]3\sqrt{3}[/tex]
find the value of x and HI. H and J are the endpoints
Answer:
x = 6
HI = 29
Step-by-step explanation:
✔️HI = ½(AB) => Triangle Mid-segment Theorem
HI = 5x - 1
AB = 58
Plug in the values and solve for x
5x - 1 = ½(58)
5x - 1 = 29
Add 1 to both sides
5x - 1 + 1 = 29 + 1
5x = 30
Divide both sides by 5
5x/5 = 30/5
x = 6
✔️HI = 5x - 1
Plug in the value of x
HI = 5(6) - 1
HI = 30 - 1
HI = 29
answer asap --------------
Answer:
h(n) = - 5.3 [tex](-11)^{n-1}[/tex]
Step-by-step explanation:
This is a geometric sequence with explicit formula
h(n) = h(1) [tex](r)^{n-1}[/tex]
where h(1) is the first term and r the common ratio
Here h(1) = - 5.3 and r = - 11 , then
h(n) = - 5.3 [tex](-11)^{n-1}[/tex]
Help someone ????please!
Answer:
D. no function
Explanation:
We have a function because this graph passes the vertical line test. It is impossible to draw a single vertical line to have it pass through more than one point on the V shaped curve. Any x input leads to exactly one y output.
Even though we have a function, it is not one-to-one. Note how the curve fails the horizontal line test. It is possible to draw a horizontal line and have it pass through more than one point on the curve.
For example, draw a horizontal line through y = 3 and it passes through (-3,3) and (3,3) simultaneously. A one-to-one function is where any y output corresponds to exactly one x input, and vice versa. The output y = 3 corresponds to two different inputs x = -3 and x = 3 at the same time.
Why do we care about one-to-one functions? Well it's to help set up the inverse. The inverse goes the opposite direction of what the original function does. In this case, this function doesn't have an inverse unless we restrict the domain in some way.
Just need 1 answered
please help asap
Find the volume of this cone.
Use 3 for TT.
5in
V =
Answer:
V=πr2h /3
V=πr2h /3=π·2.52·8 /3≈52.35988
so the volume is 52.36 inches
Find all possible values of α+
β+γ when tanα+tanβ+tanγ = tanαtanβtanγ (-π/2<α<π/2 , -π/2<β<π/2 , -π/2<γ<π/2)
Show your work too. Thank you!
Answer:
[tex]\rm\displaystyle 0,\pm\pi [/tex]
Step-by-step explanation:
please note that to find but α+β+γ in other words the sum of α,β and γ not α,β and γ individually so it's not an equation
===========================
we want to find all possible values of α+β+γ when tanα+tanβ+tanγ = tanαtanβtanγ to do so we can use algebra and trigonometric skills first
cancel tanγ from both sides which yields:
[tex] \rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \alpha ) \tan( \beta ) \tan( \gamma ) - \tan( \gamma ) [/tex]
factor out tanγ:
[tex]\rm\displaystyle \tan( \alpha ) + \tan( \beta ) = \tan( \gamma ) (\tan( \alpha ) \tan( \beta ) - 1)[/tex]
divide both sides by tanαtanβ-1 and that yields:
[tex]\rm\displaystyle \tan( \gamma ) = \frac{ \tan( \alpha ) + \tan( \beta ) }{ \tan( \alpha ) \tan( \beta ) - 1}[/tex]
multiply both numerator and denominator by-1 which yields:
[tex]\rm\displaystyle \tan( \gamma ) = - \bigg(\frac{ \tan( \alpha ) + \tan( \beta ) }{ 1 - \tan( \alpha ) \tan( \beta ) } \bigg)[/tex]
recall angle sum indentity of tan:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( \alpha + \beta ) [/tex]
let α+β be t and transform:
[tex]\rm\displaystyle \tan( \gamma ) = - \tan( t) [/tex]
remember that tan(t)=tan(t±kπ) so
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm k\pi ) [/tex]
therefore when k is 1 we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta\pm \pi ) [/tex]
remember Opposite Angle identity of tan function i.e -tan(x)=tan(-x) thus
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm \pi ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal which yields:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm \pi [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ \pm \pi }[/tex]
when is 0:
[tex]\rm\displaystyle \tan( \gamma ) = -\tan( \alpha +\beta \pm 0 ) [/tex]
likewise by Opposite Angle Identity we obtain:
[tex]\rm\displaystyle \tan( \gamma ) = \tan( -\alpha -\beta\pm 0 ) [/tex]
recall that if we have common trigonometric function in both sides then the angle must equal therefore:
[tex]\rm\displaystyle \gamma = - \alpha - \beta \pm 0 [/tex]
isolate -α-β to left hand side and change its sign:
[tex]\rm\displaystyle \alpha + \beta + \gamma = \boxed{ 0 }[/tex]
and we're done!
Answer:
-π, 0, and π
Step-by-step explanation:
You can solve for tan y :
tan y (tan a + tan B - 1) = tan a + tan y
Assuming tan a + tan B ≠ 1, we obtain
[tex]tan/y/=-\frac{tan/a/+tan/B/}{1-tan/a/tan/B/} =-tan(a+B)[/tex]
which implies that
y = -a - B + kπ
for some integer k. Thus
a + B + y = kπ
With the stated limitations, we can only have k = 0, k = 1 or k = -1. All cases are possible: we get k = 0 for a = B = y = 0; we get k = 1 when a, B, y are the angles of an acute triangle; and k = - 1 by taking the negatives of the previous cases.
It remains to analyze the case when "tan "a" tan B = 1, which is the same as saying that tan B = cot a = tan(π/2 - a), so
[tex]B=\frac{\pi }{2} - a + k\pi[/tex]
but with the given limitation we must have k = 0, because 0 < π/2 - a < π.
On the other hand we also need "tan "a" + tan B = 0, so B = - a + kπ, but again
k = 0, so we obtain
[tex]\frac{\pi }{2} - a=-a[/tex]
a contradiction.
using quadratic equation:
help me solve it
[tex]10x - \frac{1}{x } = 3[/tex]
Answer:
[tex]10x - \frac{1}{x} = 3 \\ 10x = 3 + \frac{1}{x} \\ 10x = \frac{3x + 1}{x} \\ 10x \times x = 3x + 1 \\ 10 {x}^{2} = 3x + 1 \\ 10 {x}^{2} - 3x - 1 = 0 \\ 10 {x}^{2} - 5x + 2x - 1 = 0 \\ 5x(2x - 1) + 1(2x - 1) = 0 \\ (5x + 1)(2x - 1) = 0 \\ \\ 5x + 1 = 0 \\ 5x = - 1 \\ x = \frac{ - 1}{5} \\ \\ 2x - 1 = 0 \\ 2x = 1 \\ x = \frac{1}{2} [/tex]
hope this helps you.
Have a nice day!
Gabe went out to lunch with his best friend. The bill cost $16.40 before tax and tip. He paid a 9% tax and he left a 20% tip. How much did Gabe spend?
Hint: Tax and tip are both based on the original cost of the bill.
Don't forget to round to the nearest cent!
A taxi firm charges a fixed cost of $10 together with a variable cost of $3 per mile. (a) Work out the average cost per mile for a journey of 4 miles. (b) Work out the minimum distance travelled if the average cost per mile is to be less than $3.25
Answer:
$5.5 per mile
40 miles
Step-by-step explanation:
Given :
Fixed cost = $10
Variable cost = $3
For a journey of 4 miles ;
Cost = fixed cost + Variable Cost
Cost = $10 + $3x
x = number of miles
Cost = $10 + $3(4)
Cost = $10 + $12 = $22
Average cost per mile for a journey of 4 miles
Cost / number of miles
$22 / 4 = $5.5 per mile
Minimum distance if average per mile is to be less Than 3.25
$3.25 = (10 + 3x) / x
3.25x = 10 + 3x
3.25x - 3x = 10
0.25x = 10
x = 10 / 0.25
x = 40 miles
Please help me finish these for summer school :)
How to find the domain
help me pls beestar is not fun
Answer:
C. 3/9
Step-by-step explanation:
First, you need to understand what the tree diagram means.
You spin a three-color spinner once. You can get one of three results:
green, blue, or yellow. This is shown in the figure under "1st spin."
Now you spin the spinner a second time. This second spin can also have three outcomes, green, blue, or yellow. For each of the three outcomes of the first spin, you can have 3 different outcomes of the second spin. That is shown under the "2nd spin."
That means there are 9 possible outcomes (numbered from 1 to 9 below):
1. green, green
2. green, blue
3. green, yellow
4. blue, green
5. blue, blue
6. blue, yellow
7. yellow, green
8. yellow, blue
9. yellow, yellow
Each of the 9 outcomes above shows the outcome of the first spin followed by the outcome of the second spin. As you can see there are 9 different outcomes of the two spins.
Now count the number of outcomes that have the same color for the first and second spin. They are shown in bold below.
1. green, green
2. green, blue
3. green, yellow
4. blue, green
5. blue, blue
6. blue, yellow
7. yellow, green
8. yellow, blue
9. yellow, yellow
3 out of 9 outcomes are the same color twice.
Answer: C. 3/9
ayuda por favor es para mañana
Answer:
sorry??
Step-by-step explanation:
What are the coordinates of the point that 1/6 of the way from A to B
Answer:
D
Step-by-step explanation:
The distance from - 2 to 10 is 12. 12/6 is 2, so 2 spaces across
product of (n+bv^2) (5n+3bv2)
Answer:
5n² + 8bnv² + 3b²v^4
Step-by-step explanation:
(n+bv²) (5n+3bv²)
5n² + 3bnv² + 5bnv² + 3b²v^4
5n² + 8bnv² + 3b²v^4
Instructions: Problem 2 ! Find the missing angle in the image below. Do not include spaces in your answers
Step-by-step explanation:
since angles in a triangle add up to 180
<vuw=180-(71+23)
=86°
since angles in a straight line add up to 180
<vuf=180-86
=94
please help me for 5 points
Answer:
275 adults
130 children
Step-by-step explanation:
Answer:
275 adults, 130 children
Step-by-step explanation:
Two friends enter a contest. Kelsey scored 200 more points than Jake. Together,
they collected a total of 1250 points. How many points did they each score?
Subtract the amount Kelsey got more than Jake from the total:
1250 - 200 = 1050
Divide by 2:
1050/2 = 525
Jake got 525
Kelsey got 525 + 200 = 725
Can someone help with this problem
Step-by-step explanation:
x+35+25=180
x+60 =180
x = 120.
y+x =18
a person earns 17/5 dollars in 1/2 hours. What is the unit rate in dollars pure hour
Answer:
35 2/3 dollars per hour
Step-by-step explanation:
The unit rate in dollars per hour is 6.8 dollars per hour.
To find the unit rate in dollars per hour, we need to divide the amount earned by the time taken.
The person earns 17/5 dollars in 1/2 hours. To calculate the unit rate in dollars per hour, we divide the amount earned (17/5 dollars) by the time taken (1/2 hours):
Unit rate = (Amount earned) / (Time taken) = (17/5 dollars) / (1/2 hours)
To divide fractions, we multiply the numerator of the first fraction by the reciprocal of the second fraction:
Unit rate = (17/5 dollars) x (2/1 hours)
Simplifying the expression:
Unit rate = (17 x 2) / (5 x 1) = 34/5 = 6.8
Therefore, the unit rate in dollars per hour is 6.8 dollars per hour.
To know more about an expression follow
https://brainly.com/question/28699958
#SPJ2
The perimeter of a rectangular swimming pool is 154 meters. Its length is 2m more than twice its breadth. What are the length and the breadth of the pool?
Step-by-step explanation:
Hey there!
According to the question;
Perimeter of rectangle (p) = 154 m
Let the breadth of rectangle be "X" then length will be 2x+2.
Then;
Perimeter (p) = 2(l+b)
154 = 2((2x+2) + x)
154 = 2(3x+2)
154 = 6x + 4
or, 6x = 154-4
or, X = 150/6
Therefore, X= 25.
Hence;
Length = 2*25+2 = 52 m
Breadth = 25 m
Hope it helps!
We can assume,
Perimeter of rectangle = 154 m
Breadth = x
Length = 2x + 2
Now, perimeter = 2(l+b)
[tex] \sf \to 154= 2((2x+2) + x)[/tex]
[tex] \sf \to 154 = 2(3x+2)[/tex]
[tex] \sf \to 6x = 154-4[/tex]
[tex] \sf \to x = \frac{150}{6} = 25[/tex]
Then,
Breadth = 25 m
Length [tex] \sf = 2x + 2[/tex]
[tex] \sf \to (2 \times 25) + 2[/tex]
[tex] \sf \to 52 \: m[/tex]
If z varies jointly as x and y and inversely as w^2?, and
z = 72 when x = 80, y = 30 and
w=5, then find z when x = 20, y = 60 and w=9.
Answer:
Step-by-step explanation:
z = (k*x*y) / w²
Where,
k = constant of proportionality
z = 72 when x = 80, y = 30 and w = 5
z = (k*x*y) / w²
72 = (k * 80 * 30) / 5²
72 = 2400k / 25
Cross product
72 * 25 = 2400k
1800 = 2,400k
k = 2,400/1800
k = 24/18
= 4/3
k = 1 1/3
k = 1.33
find z when x = 20, y = 60 and w=9
z = (k*x*y) / w²
z = (1.33 * 20 * 60) / 9²
z = (1596) / 81
Cross product
81z = 1596
z = 1596/81
z = 19.703703703703
Approximately,
z = 19.7
Which statistic is a measure of how data are dispersed in a population and can be used to give context to larger data sets
Answer:
standard deviation
Step-by-step explanation:
The standard deviation is defined as the measure of how spread out the numbers are in a given population. In other words, statistics refers to the amount of the dispersion or variation of a set of given values.
It is denoted by the Greek letter sigma, σ.
Thus the standard deviation is the measure of how dispersed the data are in the population which can be used to provide context to a larger data sets.
to move a function, you need to___it.
Answer:
shift
Step-by-step explanation:
shift
When Zero added to any integer, what is the result?
Answer:
answer will be the integer only which was added to zero
5 + 3bc =
9a + b =
cd + bc =
Answer:
You can't answer these questons
sorry
Hope This Helps!!!
???????????????????????????
Answer: its 20 I think
Answer:
x = 50
I hope this help the side note also help me a lot as well
Which set of ordered pairs does not represent a function? \{(5, -9), (6, -6), (-3, 8), (9, -6)\}{(5,−9),(6,−6),(−3,8),(9,−6)} \{(-6, -4), (4, -8), (-6, 9), (1, -3)\}{(−6,−4),(4,−8),(−6,9),(1,−3)} \{(1, -1), (-5, 7), (4, -9), (-9, 7)\}{(1,−1),(−5,7),(4,−9),(−9,7)} \{(8, -9), (-3, -6), (-4, 4), (1, -5)\}{(8,−9),(−3,−6),(−4,4),(1,−5)}
Answer:
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
Step-by-step explanation:
Given
[tex]\{(5, -9), (6, -6), (-3, 8), (9, -6)\}[/tex]
[tex]\{(-6, -4), (4, -8), (-6, 9), (1, -3)\}[/tex]
[tex]\{(1, -1), (-5, 7), (4, -9), (-9, 7)\}[/tex]
[tex]\{(8, -9), (-3, -6), (-4, 4), (1, -5)\}[/tex]
Required
Which is not a function
An ordered pair is represented as:
[tex]\{(x_1,y_1),(x_2,y_2),(x_3,y_3),..........,(x_n,y_n)\}[/tex]
However, for the ordered pair to be a function; all the x values must be unique (i.e. not repeated)
From options (a) to (d), option (b) has -6 repeated twice. Hence, it is not a function.
What is 8 x 3 + 10 - 13 x 2? Show your work.
Will give first answer brainliest
Hello!
8 × 3 + 10 - 13 × 2 =
= 24 + 10 - 13 × 2 =
= 24 + 10 - 26 =
= 34 - 26 =
= 8
Good luck! :)
Answer:
8
Step-by-step explanation:
According to bdmas rule
First multiply 8 and 3 or 13 and 2
Then, there will be 24 + 10 - 26
Then add 24 + 10, there will be 34
and again minus by 26
Then finally answer will be 8
P÷✓2=✓t/r+q
express t in the terms of p and q
Given:
Consider the given equation is:
[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]
To find:
The value of t in terms of p, q and r.
Solution:
We have,
[tex]p\div \sqrt{2}=\sqrt{\dfrac{t}{r+q}}[/tex]
It can be written as:
[tex]\dfrac{p}{\sqrt{2}}=\sqrt{\dfrac{t}{r+q}}[/tex]
Taking square on both sides, we get
[tex]\dfrac{p^2}{2}=\dfrac{t}{r+q}[/tex]
Multiply both sides by (r+q).
[tex]\dfrac{p^2(r+q)}{2}=t[/tex]
Therefore, the required solution is [tex]t=\dfrac{p^2(r+q)}{2}[/tex].