Find the length of FT¯¯¯¯¯¯¯ A. 77.71 B. 72.47 C. 56.84 D. 49.42

Find The Length Of FT A. 77.71 B. 72.47 C. 56.84 D. 49.42

Answers

Answer 1

Answer:

D, 49.42

Step-by-step explanation:

ΔVFT=180-90-43=47

formula

a/sin A = b/sin B/ = c/sin C

So,

FV/sin90=53/sin47

FV=72.4684

FT=√(72.4684)^2-(53)^2

FT=49.4234

Ans:D

Answer 2

The length FT in the given right-angle triangle is 49.42.

So option D is the correct answer.

We are given a right-angle triangle and to find the length of any side we can use Pythagoras theorem or trigonometric identities.

In the triangle, we see that TV = 53 and ∠ FVT = 43°

We will find the length FT by using Pythagoras theorem or trigonometric identities.

What are trigonometric functions?

There are some commonly used trigonometric identities:

SinФ = Perpendicular / hypotenuse

Cos Ф = Base / hypotenuse

Tan Ф =  Perpendicular / Base

We will use Tan Ф =  Perpendicular / Base to find the length FT.

Because we need to use trigonometric identities that have TV and FT.

Tan Ф = FT / TV

Tan 43° = FT / 53

FT = Tan 43° x 53

FT = 0.932515 X 53

FT = 49.42

Thus we got FT = 49.42 using the tan function.

Learn more about trigonometric functions here:

https://brainly.com/question/14746686

$SPJ2


Related Questions

consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation

Answers

Answer:

Explained below.

Step-by-step explanation:

Enter the data in an Excel sheet.

(a)

Go to Insert → Chart → Scatter.

Select the first type of Scatter chart.

The scatter plot is attached below.

(b)

The scatter plot with the line of best fit is attached below.

The line of best fit is:

[tex]y=-0.8046x+103.56[/tex]

(c)

Compute the value of x for y = 30 as follows:

[tex]y=-0.8046x+103.56[/tex]

[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]

Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.

(d)

The Pearson's Correlation Coefficient is:

[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]

  [tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]

Thus, the Pearson's Correlation Coefficient is -0.71.

(e)

A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.

The correlation between Advanced Mathematics and English results is -0.71.

This implies that there is a strong negative correlation.

A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?​

Answers

Answer:

4/6 or 66.666...%

Step-by-step explanation:

If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.

Researchers recorded that a certain bacteria population declined from 450,000 to 900 in 30 hours at this rate of decay how many bacteria will there be in 13 hours

Answers

Answer:

30,455

Step-by-step explanation:

Exponential decay

y = a(1 - b)^x

y = final amount

a = initial amount

b = rate of decay

x = time

We are looking for the rate of decay, b.

900 = 450000(1 - b)^30

1 = 500(1 - b)^30

(1 - b)^30 = 0.002

1 - b = 0.002^(1/30)

1 - b = 0.81289

b = 0.1871

The equation for our case is

y = 450000(1 - 0.1871)^x

We are looking for the amount in 13 hours, so x = 13.

y = 450000(1 - 0.1871)^13

y = 30,455

��2222 is the diameter of a circle. The coordinates are �(−2, −3) and �(−12, −5). At what coordinate is the center of the circle located? A. (5, 1) B. (−5, −1) C. (−4, −7) D. (−7, −4)

Answers

Answer:

D ). (-7,-4)

Step-by-step explanation:

To locate the position or the location of the centre of the circle we have to bear in mind that the center of the circle is the midpoint of the diameter line.

Formula for midpoint of a line is given below

Midpoint= (X1+x2)/2 ,(y1+y2)/2

Where X1= -2,y1= -3

X2= -12, y2= -5

The midpoint= (-2+(-12))/2,(-3+(-5))/2

Midpoint= (-2-12)/2,(-3-5)/2

Midpoint= (-14)/2,(-8)/2

Midpoint=( -7,-4)

The center of the circle is located at the point (-7,-4)

A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.

(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2

(b) Find the steady state distribution by solving πP = π.

Answers

Answer:

A) distribution of x2 = ( 0.4167 0.25 0.3333 )

B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]

Step-by-step explanation:

Hello attached is the detailed solution for problems A and B

A) distribution states for A ,B, C:

Po = ( 1/3, 1/3, 1/3 )  we have to find the distribution of x2 as attached below

after solving the distribution

x 2 = ( 0.4167, 0.25, 0.3333 )

B ) finding the steady state distribution solving

[tex]\pi p = \pi[/tex]

below is the detailed solution and answers

Which graph shows the polar coordinates (-3,-) plotted

Answers

Graph 1 would be the answer

Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.

Answers

Answer:

  1/8, 3/8

Step-by-step explanation:

Let x and y represent the two fractions. Then we are given ...

  x + y = 1/2

  x + 5y = 2

Subtracting the first equation from the second, we get ...

  (x +5y) -(x +y) = (2) -(1/2)

  4y = 3/2 . . . . . simplify

  y = 3/8 . . . . . . divide by 4

  x = 1/2 -3/8 = 1/8

The two numbers are 1/8 and 3/8.

Brainliest! Jared uses the greatest common factor and the distributive property to rewrite this sum: 100 + 75 Drag one number into each box to show Jared's expression. Brainliest!

Answers

Answer:

25(4 + 3)

Step-by-step explanation:

100 = 2^2 + 5^2

75 = 3 * 5^2

GCF = 5^2 = 25

100 + 75 =

= 25 * 4 + 25 * 3

= 25(4 + 3)

Pamela drove her car 99 kilometers and used 9 liters of fuel. She wants to know how many kilometers (k)left parenthesis, k, right parenthesis she can drive with 12 liters of fuel. She assumes the relationship between kilometers and fuel is proportional.


How many kilometers can Pamela drive with 12 liters of fuel?

Answers

Answer:

132 kilo meters

Step-by-step explanation:

Pro por tions:

9 lite rs ⇒ 99 km

12 lite rs  ⇒  P km

P = 99*12/9

P = 132 km

Answer:

132

Step-by-step explanation:

give person above brainliest :))

You are going to your first school dance! You bring $20,
and sodas cost $2. How many sodas can you buy?
Please write and solve an equation (for x sodas), and
explain how you set it up.

Answers

Answer:

10

Step-by-step explanation:

Let the no. of sodas be x

Price of each soda = $2

Therefore, no . of sodas you can buy = $2x

2x=20

=>x=[tex]\frac{20}{2}[/tex]

=>x=10

you can buy 10 sodas

Answer: 10 sodas

Step-by-step explanation:

2x = 20       Divide both sides by 2  

x = 10

If I brought 20 dollars and I  want to by only sodas and each sodas cost 2 dollars, then I will divide the total amount of money that I brought  by 2 to find out how many sodas I could by.

Simplify . 7+ the square root of 6(3+4)-2+9-3*2^2 The solution is

Answers

Answer:

7+sqrt(37)

Step-by-step explanation:

7+sqrt(6*(3+4)-2+9-3*2^2)=7+sqrt(6*7+7-3*4)=7+sqrt(42+7-12)=7+sqrt(37)

The expression (x - 4)2 is equivalent to which expression

Answers

Answer:

8-2x

Step-by-step explanation:

2 distributed over the entire expression equals 8-2x

Answer:

the answer is b

Step-by-step explanation:

AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?

Answers

Answer:

4

Step-by-step explanation:

Original coordinates:

A (0, 2)

B (2, 3)

The scale is what number the original coordinates was multiplied by to reach the new coordinates

1. Divide

(0, 8) ÷ (0, 2) = 4

(8, 12) ÷ (2, 3) = 4

AB was dilated by a scale factor of 4.

A raffle offers one $8000.00 prize, one $4000.00 prize, and five $1600.00 prizes. There are 5000 tickets sold at $5 each. Find the expectation if a person buys one ticket.

Answers

Answer:

The expectation is  [tex]E(1 )= -\$ 1[/tex]

Step-by-step explanation:

From the question we are told that  

     The first offer is  [tex]x_1 = \$ 8000[/tex]

     The second offer is  [tex]x_2 = \$ 4000[/tex]

      The third offer is  [tex]\$ 1600[/tex]

      The number of tickets is  [tex]n = 5000[/tex]

      The  price of each ticket is  [tex]p= \$ 5[/tex]

Generally expectation is mathematically represented as

             [tex]E(x)=\sum x * P(X = x )[/tex]

     [tex]P(X = x_1 ) = \frac{1}{5000}[/tex]    given that they just offer one

    [tex]P(X = x_1 ) = 0.0002[/tex]    

 Now  

     [tex]P(X = x_2 ) = \frac{1}{5000}[/tex]    given that they just offer one

     [tex]P(X = x_2 ) = 0.0002[/tex]    

 Now  

      [tex]P(X = x_3 ) = \frac{5}{5000}[/tex]    given that they offer five

       [tex]P(X = x_3 ) = 0.001[/tex]

Hence the  expectation is evaluated as

       [tex]E(x)=8000 * 0.0002 + 4000 * 0.0002 + 1600 * 0.001[/tex]

      [tex]E(x)=\$ 4[/tex]

Now given that the price for a ticket is  [tex]\$ 5[/tex]

The actual expectation when price of ticket has been removed is

      [tex]E(1 )= 4- 5[/tex]

      [tex]E(1 )= -\$ 1[/tex]

Which function below has the following domain and range?
Domain: { -6, -5,1,2,6}
Range: {2,3,8)
{(2,3), (-5,2), (1,8), (6,3), (-6, 2)
{(-6,2), (-5,3), (1,8), (2,5), (6,9)}
{(2,-5), (8, 1), (3,6), (2, - 6), (3, 2)}
{(-6,6), (2,8)}​

Answers

Answer:

{(2,3), (-5,2), (1,8), (6,3), (-6, 2)

Step-by-step explanation:

The domain is the input and the range is the output

We need inputs of -6 -5 1 2 6

and outputs of 2 3 and 8

Tonya and Leo each bought a cell phone at the same time. The trade-in values, in dollars, of the cell phones are modeled by the given functions, where x is the number of months that each person has owned the phone.

Answers

Answer:

The answer is: Leo's phone had the greater initial trade-in value. Tonya's phone decreases at an average rate slower than the trade in value of Leo's phone.

Step-by-step explanation:

I got it right. Hope this helps.

The initial trade-in value of Tonia's phone is greater when compared with Leo's    

There is a decrease in the trade-in value of Leo's phone at an average slower rate

[tex]f(x) = 490\times 0.88[/tex]

[tex](x)[/tex] ⇒ [tex]g(x)[/tex]

[tex]0[/tex] ⇒ [tex]480[/tex]

[tex]2[/tex] ⇒ [tex]360[/tex]

[tex]4[/tex] ⇒ [tex]470[/tex]

Now we will solve with the greater initial value

The initial value is when x = 0. So, we have

[tex]f(x) = 490 \times o.88^x\\\ f(o) = 490 \times 0.88 ^0\\f(0 =490 \times 1 \\f(o) = 490[/tex]

From leos table

[tex]g(0) = 480\\f(0) > g(o)\\i.e \\490 > 480[/tex]

So Tonia had a greater initial value

Solving (b): The phone with a lesser rate

y [tex]y = a b ^ x[/tex]

An exponential function is:

where [tex]b \rightarrow rate[/tex]

For Tonia

[tex]b = o.88[/tex]

For Leo we have

[tex](x_{1} , y_{1} )= (0,480)\\(x_{1}, y_{1} ) = (2, 360)[/tex]

So the equation becomes

[tex]y = ab ^x \\480 = ab ^0 \\and \\360 = ab ^2[/tex]

On solving

[tex]480 = a \times 1\\a = 480[/tex]

[tex]360 = ab ^ 2[/tex]

so it becomes

[tex]480 = 360 \times b ^2 \\[/tex]

On dividing both sides by [tex]480[/tex]  we get

[tex]b ^ 2 = 0.87[/tex]

[tex]b ^ 2 = 0.75[/tex]

On taking square root we get

[tex]b = 0.87[/tex]

In comparison, we get Leo's rate is slower.

Learn more about Equation here:

https://brainly.com/question/14686792

# SPJ2

Factor completely 6x - 18.
6(x + 3)
6(x-3)
6X (-18)
Prime

Answers

Answer:

6(x-3)

Step-by-step explanation:

the common number for 6 and 18 is 6 so if you extract that from the expression then it turns to 6(x-3) which cannot be factored further

Answer:

Option B:  6(x - 3)

Step-by-step explanation:

Consider the surface f(x,y) = 21 - 4x² - 16y² (a plane) and the point P(1,1,1) on the surface.

Required:
a. Find the gradient of f.
b. Let C' be the path of steepest descent on the surface beginning at P, and let C be the projection of C' on the xy-plane. Find an equation of C in the xy-plane.
c. Find parametric equations for the path C' on the surface.

Answers

Answer:

A) ( -8, -32 )

Step-by-step explanation:

Given function : f (x,y) = 21 - 4x^2 - 16y^2

point p( 1,1,1 ) on surface

Gradient of F

attached below is the detailed solution

Please Solve
F/Z=T for Z

Answers

Answer:

F /T = Z

Step-by-step explanation:

F/Z=T

Multiply each side by Z

F/Z *Z=T*Z

F = ZT

Divide each side by T

F /T = ZT/T

F /T = Z

Answer:

[tex]\boxed{\red{ z = \frac{f}{t} }}[/tex]

Step-by-step explanation:

[tex] \frac{f}{z} = t \\ \frac{f}{z} = \frac{t}{1} \\ zt = f \\ \frac{zt}{t} = \frac{f}{t} \\ z = \frac{f}{t} [/tex]

solve the equation ​

Answers

Answer:

x = 10

Step-by-step explanation:

2x/3 + 1 = 7x/15 + 3

(times everything in the equation by 3 to get rid of the first fraction)

2x + 3 = 21x/15 + 9

(times everything in the equation by 15 to get rid of the second fraction)

30x+ 45 = 21x + 135

(subtract 21x from 30x; subtract 45 from 135)

9x = 90

(divide 90 by 9)

x = 10

Another solution:

2x/3 + 1 = 7x/15 + 3

(find the LCM of 3 and 15 = 15)

(multiply everything in the equation by 15, then simplify)

10x + 15 = 7x + 45

(subtract 7x from 10x; subtract 15 from 45)

3x = 30

(divide 30 by 3)

x = 10

Given the sequence 38, 32, 26, 20, 14, ..., find the explicit formula. A. an=44−6n B. an=41−6n C. an=35−6n D. an=43−6n

Answers

Answer:

The answer is option A

Step-by-step explanation:

The sequence above is an arithmetic sequence

For an nth term in an arithmetic sequence

A(n) = a + ( n - 1)d

where a is the first term

n is the number of terms

d is the common difference

From the question

a = 38

d = 32 - 38 = - 6 or 20 - 26 = - 6

Substitute the values into the above formula

A(n) = 38 + (n - 1)-6

= 38 - 6n + 6

We have the final answer as

A(n) = 44 - 6n

Hope this helps you

Answer:

a

Step-by-step explanation:

you're welcome!

The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.

Answers

Answer:

7/11 = 0.6363...

Step-by-step explanation:

7 + 4 = 11

probability of winning: 7/11 = 0.6363...

The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]

Given that the odds  of the horse winning the race is 7:4

Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:

[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]

From the given question;

The probability of the horse winning the race is:

[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]

[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]

Learn more about probability here:

https://brainly.com/question/11234923?referrer=searchResults

If f(x) = 2x2 – 3x – 1, then f(-1)=

Answers

ANSWER:
Given:f(x)=2x^2-3x-1
Then,f(-1)=2(-1)^2-3(-1)-1
f(-1)=2(1)+3-1
f(-1)=5-1
f(-1)=4


HOPE IT HELPS!!!!!!
PLEASE MARK BRAINLIEST!!!!!

The value of function at x= -1 is f(-1) = 4.

We have the function as

f(x) = 2x² - 3x -1

To find the value of f(-1) when f(x) = 2x² - 3x -1, we substitute x = -1 into the expression:

f(-1) = 2(-1)² - 3(-1) - 1

      = 2(1) + 3 - 1

      = 2 + 3 - 1

      = 4.

Therefore, the value of function at x= -1 is f(-1) = 4.

Learn more about Function here:

https://brainly.com/question/32020999

#SPJ6

evaluate the expression 4x^2-6x+7 if x = 5

Answers

Answer:

77

Step-by-step explanation:

4x^2-6x+7

Let x = 5

4* 5^2-6*5+7

4 * 25 -30 +7

100-30+7

7-+7

77

According to the local union president, the mean gross income of plumbers in the Salt Lake City area follows a normal distribution with a mean of $48,000 and a population standard deviation of $2,000. A recent investigative reporter for KYAK TV found, for a sample of 49 plumbers, the mean gross income was $47,600. At the 0.05 significance level, is it reasonable to conclude that the mean income is not equal to $47,600? Determine the p value. State the Null and Alternate hypothesis: State the test statistic: State the Decision Rule: Show the calculation: What is the interpretation of the sample data? Show the P value

Answers

Answer:

Step-by-step explanation:

Given that:

population mean [tex]\mu[/tex] = 47600

population standard deviation [tex]\sigma[/tex] = 2000

sample size n = 49

Sample mean [tex]\over\ x[/tex] = 48000

Level of significance = 0.05

The null and the alternative hypothesis can be computed as follows;

[tex]H_0 : \mu = 47600 \\ \\ H_1 : \mu \neq 47600[/tex]

Using the table of standard normal distribution, the value of z that corresponds to the two-tailed probability 0.05 is 1.96. Thus, we will reject the null hypothesis if the value of the test statistics is less than -1.96 or more than 1.96.

The test statistics can be calculated by using the formula:

[tex]z= \dfrac{\overline X - \mu }{\dfrac{\sigma}{ \sqrt{n}}}[/tex]

[tex]z= \dfrac{ 48000-47600 }{\dfrac{2000}{ \sqrt{49}}}[/tex]

[tex]z= \dfrac{400 }{\dfrac{2000}{ 7}}[/tex]

[tex]z= 1.4[/tex]

Conclusion:

Since 1.4 is lesser  than 1.96 , we fail to reject the null hypothesis and  that there is insufficient information to conclude that the   mean gross income is not equal to $47600

The P-value is being calculate as follows:

P -value = 2P(Z>1.4)

P -value =  2 (1 - P(Z< 1.4)

P-value = 2 ( 1 - 0.91924)

P -value = 2 (0.08076 )

P -value = 0.16152

Please help 1-7 questions

Answers

Answer:

25= q+20

25 - 20 =q

5 = q

Hi there! Hopefully this helps!

-------------------------------------------------------------------------------------------

Answer: q = 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[tex]25 = q + 20[/tex]

Swap sides so that all variable terms are on the left hand side.

[tex]q + 20 = 25[/tex]

Subtract 20 from both sides.

[tex]q = 25 - 20[/tex]

Subtract 20 from 25 to get, you guessed it, 5!

Which one is correct? in need of large help

Answers

Answer:

Option C. x + 12 ≤ 2(x – 3)

Step-by-step explanation:

From the question, we obtained the following information:

x + 12 ≤ 5 – y .......(1)

5 – y ≤ 2(x – 3) ....... (2)

To know which option is correct, do the following:

From equation 2,

5 – y ≤ 2(x – 3)

Thus, we can say

5 – y = 2(x – 3)

Now, we shall substitute the value of 5 – y into equation 1 as shown below:

x + 12 ≤ 5 – y

5 – y = 2(x – 3)

x + 12 ≤ 2(x – 3)

From the above illustration, we can see that if x + 12 ≤ 5 – y and 5 – y ≤ 2(x – 3), then x + 12 ≤ 2(x – 3) must be true.

Option C gives the correct answer.

Evaluate integral _C x ds, where C is
a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)
b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Answers

Answer:

a.    [tex]\mathbf{36 \sqrt{5}}[/tex]

b.   [tex]\mathbf{ \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Step-by-step explanation:

Evaluate integral _C x ds  where C is

a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)

i . e

[tex]\int \limits _c \ x \ ds[/tex]

where;

x = t   , y = t/2

the derivative of x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt}= \dfrac{1}{2}[/tex]

and t varies from 0 to 12.

we all know that:

[tex]ds=\sqrt{ (\dfrac{dx}{dt})^2 + ( \dfrac{dy}{dt} )^2}} \ \ dt[/tex]

[tex]\int \limits _c \ x \ ds = \int \limits ^{12}_{t=0} \ t \ \sqrt{1+(\dfrac{1}{2})^2} \ dt[/tex]

[tex]= \int \limits ^{12}_{0} \ \dfrac{\sqrt{5}}{2}(\dfrac{t^2}{2}) \ dt[/tex]

[tex]= \dfrac{\sqrt{5}}{2} \ \ [\dfrac{t^2}{2}]^{12}_0[/tex]

[tex]= \dfrac{\sqrt{5}}{4}\times 144[/tex]

= [tex]\mathbf{36 \sqrt{5}}[/tex]

b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Given that:

x = t  ; y = 3t²

the derivative of  x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt} = 6t[/tex]

[tex]ds = \sqrt{1+36 \ t^2} \ dt[/tex]

Hence; the  integral _C x ds is:

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

Let consider u to be equal to  1 + 36t²

1 + 36t² = u

Then, the differential of t with respect to u is :

76 tdt = du

[tex]tdt = \dfrac{du}{76}[/tex]

The upper limit of the integral is = 1 + 36× 2² = 1 + 36×4= 145

Thus;

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

[tex]\mathtt{= \int \limits ^{145}_{0} \sqrt{u} \ \dfrac{1}{72} \ du}[/tex]

[tex]= \dfrac{1}{72} \times \dfrac{2}{3} \begin {pmatrix} u^{3/2} \end {pmatrix} ^{145}_{1}[/tex]

[tex]\mathtt{= \dfrac{2}{216} [ 145 \sqrt{145} - 1]}[/tex]

[tex]\mathbf{= \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Please please help :((((

Answers

Answer:

y = x-4

Step-by-step explanation:

The y intercept is -4

We have 2 points so we can find the slope

( 0,-4) and(4,0)

m = ( y2-y1)/(x2-x1)

    = ( 0- -4)/ (4-0)

    = 4/4

   =1

The slope intercept form is

y = mx+b

y = 1x-4

y = x-4

I'm not sure about this one please I need someone to help me.

Answers

Answer:

The corresponding graph is Graph A.

Step-by-step explanation:

Part 1: Rewriting the inequality and solving for d

To start, the inequality will need simplified.

[tex]9-4d\geq -3\\\\-4d\geq -12\\\\\frac{-4d}{-4} \geq \frac{-12}{-4} \\\\d \leq 3[/tex]

Because simplifying the inequality involved dividing by a negative number, the sign must be flipped.

Part 2: Determining the graph for the inequality

Now, refer to the rules for graphing inequalities.

If the sign is simply < or >, the graph will start at the number that it begins at and the circle will be open.If the sign is ≤ or ≥, the graph will start at the number that it begins at and the circle will be closed.

Therefore, because [tex]d \leq 3[/tex], the graph will start at 3 as a closed dot. Then, it will go left because values must be equal to 3 or less than 3.

Therefore, the graph that represents this is Graph A.

Answer:

Graph A

I hope this helps!

Other Questions
HELP ASAP WILL MARK BRAINLIEST!!! Add or subtract. Write your answer in scientific notation. 4.2 x 10^6 1.2 x 10^5 2.5 x 10^5 3.3 x 10^9 + 2.6 x 10^9 + 7.7 x 10^8 8.0 x 10^4 3.4 x 10^4 1.2 x 10^3 Who were the first producers of rap records? how can i solve this factorial? A 6,2- P6- A 5,3 + P5 g One of the harmonics in an open-closed tube has frequency of 500 Hz. The next harmonic has a frequency of 700 Hz. Assume that the speed of sound in this problem is 340 m/s. a. What is the length of the tube If x is 5, then 6x = _____. please help >- The graph shows the weight of a jar when filled with different numbers of marbles.What does the y-intercept represent?A)The weight of the marbles without the jar.B)The weight of the jar without the marbles.C)The weight of one marble and the jar.D)The unit rate for each marble added. the indian physician sushruta wrote a medical text describing more than 300 procedures Data pertaining to a company's joint production for the current period follows Quantities produced 310 lbs. 260 lbsMarket value at split-off point . $10.2/lb. $20.4/lb Compute the cost to be allocated to Product L for this period's $792 of joint costs if the value basis is used. (Do not round intermediate calculations.) a. $295.81. b. $49619. c. $39600. d. $2,926.00. e. $962.19. Pioneer Venture Capital firm recently offered a biotech company $50 million funding in exchange for 25% of the biotech company's ownership. What is the company's implied post-money valuation For each of the following expressions, decide whether it is a polynomial. Explain your answer. 1. x2+3x12 I 2. 13x2y-9y2 3. 3x-3 4. 23t2-1t2 Name 3 Native American groups who sided with the French Need help 24 to 28 giving 30 points which graph represents (x,y)(x,y)left parenthesis, x, comma, y, right parenthesis-pairs that make the equation y = 0.5x+5y=0.5x+5y, equals, 0, point, 5, x, plus, 5 true? Blake bought two iced coffees from Dutch Bros. He originally had $13.50 and now has $9. Write and solve an equation to find out how much each icedcoffee cost. Which of the following is an example of reproductive isolation? A building 50ft tall is on top of a hill A surveyor is at a point on the hill and observes that the angle of elevation to the top of thebuilding measures 48 and to the bottom of the building is 20. How far is the surveyor from the bottom of the building? Which colony was most likely to be based around shipbuilding How did the Constitution overcome the weaknesses of the Articles of Confederation? a. The new plan of government centralized power heavily into a single entity. b. The new plan of government had a strong centralized government but protected state autonomy and rights. c. The new plan of government weakened the central government and provided states more control. d. The new plan of government centralized power and left the states to determine their own role. Wilson Dover Inc. The total value (debt plus equity) of Wilson Dover Inc. is $500 million and the face value of its 1-year coupon debt is $200 million. The volatility () of Wilson Dover's total value is 0.60, and the risk-free rate is 5%. Assume that N(d1) = 0.9720 and N(d2) = 0.9050. Refer to the data for Wilson Dover Inc. What is the yield on Wilson Dover's debt? a. 7.05% b. 6.04% c. 6.70% d. 7.42% e. 6.36% Which graph best represents the function f(x) = 2(1.5)x? graph of increasing exponential function going through point 0, 2 graph of increasing exponential function going through point 0, 3 graph of increasing exponential function going through point 0, 1 graph of increasing exponential function going through point 0, 4