Help please ……………….zzzz
1) I think 15 choose (d)
2) The choose (C) -4fg+4g
3) The choose (d) 3xy/2
4) The choose (a) ab/6
5) The choose (C) 2p+4q-6
6)
[tex]\pi {r}^{2} h = 3.14 \times {3}^{2} \times 1.5 = 42.39 {m}^{3} = 42.390 {m}^{3} [/tex]
Point 6 I think there is an error because the unit m must be m³ because it is r² (m²) and h(m) becomes m³.
I hope I helped you^_^
1. On the set of axes below, graph . State the roots of
Is this question complete?
How many numbers multiple of 3 are in the range [2,2000]?
Answer: so there are 666 multiples of 3 between 2 and 2000.
Step-by-step explanation:
the smallest number = 3 which is 3*1. The largest number is = 1998 = 3*666
multiples of 3 between {2,2000} = 666-1+1 = 666
Express 5 cm in metre and kilometre.in decimals........................ ncert maths class 7 pls
will be marked as brainliest trust me
Answer:
Converting into metre (1m=100cm)= 5/100=0.05m.. Converting into km. (1km=100000cm). so 5 cm=5/100000=0.00005km.
Answer:
5cm in meters = 0.05 metre
5cm in kilometres = 0.00005km
If ABCD is dilated by a factor of 3, the
coordinate of D' would be:
4
с
3
B
2
1
-5
-4
-3
-2
-1 0
1
N
3
4
5
DAN
- 1
-2
D
-3
D' = ([?], [ ]
Enter
Pls help me
Answer:
(6,-6)
Step-by-step explanation:
First let's identify the current coordinates of D
It appears that D is located at (2 , -2)
Now let's find the coordinate of D if it were dilated by a scale factor of 3.
To find the coordinates of a point after a dilation you simply multiply the x and y values of the pre image coordinates by the scale factor
In this case the scale factor is 3 and the coordinates are (2,-2)
That being said let's apply the dilation rule
Current coordinates: (2,-2)
Scale factor:3
Multiply x and y values by scale factor
(2 * 3 , -2 * 3) --------> (6 , -6)
The coordinates of D' would be (6,-6)
For the following function, one zero is given. Find all other zeros.
f(x)=x3-7x2+17x-15; 2-i
Answer:
1,-3,-5
Step-by-step explanation:
Given:
f(x)=x^3+7x^2+7x-15
Finding all the possible rational zeros of f(x)
p= ±1,±3,±5,±15 (factors of coefficient of last term)
q=±1(factors of coefficient of leading term)
p/q=±1,±3,±5,±15
Now finding the rational zeros using rational root theorem
f(p/q)
f(1)=1+7+7-15
=0
f(-1)= -1 +7-7-15
= -16
f(3)=27+7(9)+21-15
=96
f(-3)= (-3)^3+7(-3)^2+7(-3)-15
= 0
f(5)=5^3+7(5)^2+7(5)-15
=320
f(-5)=(-5)^3+7(-5)^2+7(-5)-15
=0
f(15)=(15)^3+7(15)^2+7(15)-15
=5040
f(-15)=(-15)^3+7(-15)^2+7(-15)-15
=-1920
Hence the rational roots are 1,-3,-5 !
[18].Simplify (TTE): x(2x+y+5) - 2(x²+xy+5) + y(x + y)
Answer:
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 5x -10 + y\²[/tex]
Step-by-step explanation:
Given
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y)[/tex]
Required
Simplify
We have:
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y)[/tex]
Open brackets
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 2x\²+xy+5x - 2x\²-2xy-10 + xy + y\²[/tex]
Collect like terms
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 2x\²- 2x\²+xy-2xy+ xy+5x -10 + y\²[/tex]
[tex]x(2x+y+5) - 2(x\²+xy+5) + y(x + y) = 5x -10 + y\²[/tex]
Write the point-slope form of an equation of the line through the points (-4, 7) and (5,-3).
0
A. Y+4= -1; (1 – 7)
B.Y-5 = = 10 (x+3)
OC. y +3 = = 10 (2+5)
D. y - 7= -5° (x+4)
Answer:
Step-by-step explanation:
There are two possible equations, but neither matches the the choices you listed. The choices seem to have several typographical errors.
Point-slope form of an equation of the line through the points (-4, 7) and (5,-3) is y - 7 =(-10/9)(x + 4).
How to estimate the point-slope form of an equation of the line through the points (-4, 7) and (5,-3)?Slope
[tex]$= \frac{y_{2} -y_{1}}{x_{2} -x_{1}}[/tex]
= (-3 - 7) / (5 - (-4))
= -10/9
The point-slope equation for the line of slope -(10/9) that passes through the point (5, -3).
y + 3 = (-10/9)(x - 5)
Point slope equation for the line of slope -(10/9) that passes through the point (-4, 7)
Point-slope form of an equation of the line through the points (-4, 7) and (5,-3) is y - 7 = (-10/9)(x + 4).
Therefore, the correct answer is y - 7 = (-10/9)(x + 4).
To learn more about the equation of a line refer to:
https://brainly.com/question/11751737
#SPJ2
find the squre of 17
[tex] \sqrt{17} [/tex]
A truck was driven a 140 miles in 3 1/2 hours. If a car is driven the same distance at an average speed of 20 miles an hour faster than the trucks average speed, how long will it take the car.
Find the speed of the truck:
140 miles / 3.5 hours = 40 miles per hour
The car was 20 miles an hour faster: 40 + 20 = 60 miles per hour.
Divide distance by speed: 140 miles / 60 miles per hour = 2 1/3 hours
Answer: 2 1/3 hours
Answer: 2 2/6 hours
Explanation:
Distance = 140 miles
Time = 3 1/2 hours
= 7/2 hours
Speed = Distance/Time
= 140/(7/2)
= 40 miles
New distance = 140 Miles
New Speed = 60 miles
New Time = 140/60
= 2 2/6 hours
Must click thanks and mark brainliest
Use the distributive property to find the product of the rational number.
5/2 (- 8/5 + 7/5)
9514 1404 393
Answer:
-1/2
Step-by-step explanation:
The factor outside parentheses multiplies each term inside.
5/2(-8/5 +7/5)
= (5/2)(-8/5) +(5/2)(7/5)
= -8/2 +7/2 = -1/2
Give a vector parametric equation for the line through the point (−2,−4,0) that is parallel to the line ⟨−2−3t,1−4t,−5t⟩:
The tangent vector for the given line is
T(t) = d/dt ⟨-2 - 3t, 1 - 4t, -5t⟩ = ⟨-3, -4, -5⟩
On its own, this vector points to a single point in space, (-3, -4, -5).
Multiply this vector by some scalar t to get a whole set of vectors, essentially stretching or contracting the vector ⟨-3, -4, -5⟩. This set is a line through the origin.
Now translate this set of vectors by adding to it the vector ⟨-2, -4, 0⟩, which correspond to the given point.
Then the equation for this new line is simply
L(t) = ⟨-3, -4, -5⟩t + ⟨-2, -4, 0⟩ = ⟨-2 - 3t, -4 - 4t, -5t⟩
The vector parametric equation for the line through the point is [tex]r = (-2, \ -4, \ 0) +(-3, \ -4, \ -5)t\\\\[/tex].
GivenGive a vector parametric equation for the line through the point (−2,−4,0) that is parallel to the line ⟨−2−3t,1−4t,−5t⟩.
What is a parametric equation vector?Parametric equations of the line segment are defined by its endpoints.
To find the vector equation of the line segment, we’ll convert its endpoints to their vector equivalents.
Two lines are parallel if they have the same direction, and in the parametric form, the direction of a line is always the vector of constants that multiply t (or the parameter).
The vector equation of a line is given by:
[tex]\rm v = r_0+tv[/tex]
Where v is the direction vector and [tex]\rm r_0[/tex] is a point of the line.
The tangent vector for the given line is
T(t) = d/dt ⟨-2 - 3t, 1 - 4t, -5t⟩ = ⟨-3, -4, -5⟩
Here,
[tex]\rm r_0 = (-2,-4,0) \ and \ v=(-3, \ -4, \ -5)t\\\\[/tex]
Then,
[tex]r = (-2, \ -4, \ 0) +(-3, \ -4, \ -5)t\\\\[/tex]
x = -2-3t, y = -4-4t, and z = 0-5t
To know more about the Parametric equation click the link given below.
https://brainly.com/question/14701215
You need 675 mL of a 90% alcohol solution. On hand, you have a 25% alcohol mixture. How much of the 25% alcohol mixture and pure alcohol will you need to obtain the desired solution?
Answer:
90 ml of the 25 percent mixture and 585 of pure alcohol
Step-by-step explanation:
Firstly, you should find the quantity of alcohol in the desired mixture.
675:100*90= 675*0.9= 607.5
Firstly, define all the 25 percents mixure as x, the pure alcohol weight is y.
1. x+y= 675 (because the first and the second liquid form a desired liquid).
Then find the equation for spirit
The first mixture contains 25 percents. It is x/100*25= 0.25x
When the second one consists of pure alcohol, it contains 100 percents of spirit, so it is x.
2. 0.25x+y=607.5
Then you have a system of equations ( 1.x+y= 675 and 2. 0.25x+y= 607.5)
try 2-1 to get rid of y
x+y- (0.25x+y)= 675-607.5
0.75x= 67.5
x= 90
y= 675-x= 675-90= 585
It means that you need90 ml of the 25percents mixture and 585 0f pure alcohol
how to work this fraction 4/11+5/22+3/44
Answer:
29/44
Step-by-step explanation:
[tex]\frac{4}{11} +\frac{5}{22} +\frac{3}{44} =\\[/tex]
-find the common denominator
[tex]\frac{4*4}{4*11} + \frac{2*5}{2*22} +\frac{3}{44} =[/tex]
[tex]\frac{16}{44} +\frac{10}{44} +\frac{3}{44} =[/tex]
-add the fractions and solve
[tex]\frac{16+10+3}{44} =[/tex]
[tex]\frac{29}{44}[/tex]
For the z test, the critical region for rejection of H0 _________. Group of answer choices depends on N is determined only by alpha and N allows us to accept the null hypothesis is determined only by alpha
Answer:
allows us to accept the null hypothesis
Explanation:
The z test(in a normal distribution) score for the critical region determines whether we reject the null hypothesis(H0) or accept the null hypothesis(reject or fail to reject the null hypothesis). If we fail to reject the null hypothesis, then we have accepted the alternative hypothesis (H1). The critical region rejection for z test is calculated using alpha and z score, if z score is greater or less than alpha(positive or negative), we reject the null hypothesis.
this is confusing ok so 1.if there r 2 boys in a class for every 3 girls what would be the ratio for it and 2.if Seth bought a 12-ounce jar of something that is $3.60 what is the unit price?
Evaluate the expression when x = 12/7
The value of the expression when x equals is ???
PLEASE HELP!!
Answer:
82
Step-by-step explanation:
1/3( x+9/7) + 3^4
Let x = 12/7
1/3( 12/7+9/7) + 3^4
PEMDAS says parentheses first
1/3( 21/7) + 3^4
1/3(3) +3^4
Then exponents
1/3(3)+81
Then multiply
1+81
82
F(x) = 3x+5 G(x)= 4x^2-2 H(x) = x^2-3x+1 Find f(x) +g(x) -h(x)
Answer:
Step-by-step explanation:
f(x) + g(x) = 3x + 5 + 4x^2 - 2
f(x) + g(x) = 4x^2 + 3x + 3
f(x) + g(x) - h(x) = 4x^2 + 3x + 3 - (x^2 - 3x + 1) Remove the brackets.
f(x) + g(x) - h(x) = 3x^2 +3x + 3 - x^2 + 3x - 1 Collect like terms
f(x)+g(x) - h(x) = 2x^2 + 6x + 2
Answer:
f(x)=3x^2+6x+2
Step-by-step explanation:
a/(b+ce^x) dx = ? Please solve this
Answer:
1/ab en (c/be^-x+c)
Step-by-step explanation:
Sure is a harsh question! Here's my Explanation
b+ce^x = t
ce^x an = dt
e^xan = dt/c
an = dt/ce^x = dt/c(t-b/c) = at/(t-b)
en = t-b/c
A/b+ce^x dx = a/t dt/t-b
a ∫1/t (t-b) dt = 1/a∫ (1/(t-b) - 1/t) dt
= 1/ab [∫1/(t-b) dt + ∫-1/t dt]
= 1/ab [en (t-b) - en(t)]
= 1/ab en ((t-b)/t)
t = b + ce^x
= 1/ab en (b+ce^x -b/b+ce^x)
=1/ab en (ce^x/b+ce^x)
= 1/ab en (c/be^-x+c)
Please answer ASAP!!!!
Answer:
0
Step-by-step explanation:
0
[tex]\sqrt{25}[/tex]=?
[tex]Hello[/tex] [tex]There[/tex]
The answer is...
[tex]5.[/tex]
[tex]HopeThisHelps!![/tex]
[tex]AnimeVines[/tex]
What is 17,210,000,000 written in scientific notation?
Answer and Step-by-step explanation:
The answer is 1722.1 x [tex]10^8[/tex]
#teamtrees #PAW (Plant And Water)
Answer:
1.72x10^10
Step-by-step explanation:
POSITIVE EXPONENT: means a number is huge
NEGATIVE EXPONENT: indicates a number is teeny-tiny
Find the assessed value of a store with a market value of $ 163,000
if the rate for assessed value is 25% of market value.
9514 1404 393
Answer:
$40,750
Step-by-step explanation:
Leaving out the extra words, the question is asking you to find 25% of $163,000.
0.25 × $163,000 = $40,750
The assessed value is $40,750.
Given that,
→ Rate for assessed value = 25%
→ Market value = $ 163,000
We have to find,
→ 25% of $ 163,000
Then value of 25% is,
→ 25 ÷ 100
→ 0.25
Let's find the assessed value,
→ 25% × $ 163,000
→ 0.25 × 163,000
→ 40750
Thus, $ 40750 is assessed value.
complete the square to form a true equation;
x^2-2x+__=(x-__)^2
Answer:
see explanation
Step-by-step explanation:
To complete the square
add ( half the coefficient of the x- term )² to x² - 2x
x² + 2(- 1)x + 1
(x² - 2x + 1 = (x - 1)²
I need help figuring out this equation
270 degrees is at the bottom of the unit circle, and it splits the 3rd and 4th quadrants.
Its terminal point is (0, -1).
Hope this helps!
Answer:
A. (0, -1)
Step-by-step explanation:
This question requires a chart to answer. The chart is inserted in the answer.
270 degrees is all the way at the bottom, at South which shows that 270 degrees is at (0, -1).
Meaning, the answer is A, (0, -1).
Hope this helped.
A runner sprinted for 414 feet. How many yards is this?
Answer:
138 yards
Step-by-step explanation:
1 feet is (1/3) yard
414 feet is (1/3)*414=138 yards
Solve this inequality:
-9 > 3b + 6
Answer:
- 5 > b
Step-by-step explanation:
- 9 > 3b + 6
- 9 - 6 > 3b
- 15 > 3b
Divide 3 on both sides,
- 5 > b
Answer:
-5 >b
Step-by-step explanation:
-9 > 3b + 6
Subtract 6 from each side
-9-6 > 3b + 6-6
-15 > 3b
Divide each side by 3
-15/3 > 3b/3
-5 >b
solve 3x-4=√(2x^2-2x+2)
Answer:
Step-by-step explanation:
Begin the solution by squaring both sides of the given equation. We get:
(3x - 4)^2 = 2x^2 - 2x + 2, or:
9x^2 - 24x + 16 = 2x ^2 - 2x + 2
Combining like terms results in:
7x^2 - 22x + 14 = 0
and the coefficients are a = 7, b = -22, c = 14, so that the discriminant of the quadratic formula, b^2 - 4ac becomes (-22)^2 - 4(7)(14) = 92
According to the quadratic formula, the solutions are
-b ± √discriminant -(-22) ± √92 22 ± √92
x = ------------------------------- = ----------------------- = ------------------------
2a 14 14
1106.666667 To the nearest whole number
Answer:
1107.
You are rounding up because the number in the tenths slot is over 5.
Functions f and g are defined for all real
numbers. The function f has zeros at -2, 3, and 7:
and the function g has zeros at -3, -1, 4, and 7.
How many distinct zeros does the product
function f g have?
9514 1404 393
Answer:
6
Step-by-step explanation:
The number of distinct zeros in the product will be the union of the sets of zeros. Duplicated values are not distinct, so show in the union of sets only once.
F = {-2, 3, 7}
G = {-3, -1, 4, 7}
F∪G = {-3, -2, -1, 3, 4, 7} . . . . . . a 6-element set
The product has 6 distinct zeros.
_____
As you may notice in the graph, the duplicated zero has a multiplicity of 2 in the product.