Answer:
The inverse is 1/64 x^2 = y x ≥ 0
Step-by-step explanation:
f(x) = 8 sqrt(x)
y = 8 sqrt(x)
Exchange x and y
x = 8 sqrt (y)
Solve for y
Divide each side by 8
1/8 x = sqrt(y)
Square each side
(1/8 x)^2 = (sqrt(y))^2
1/64 x^2 = y
The inverse is 1/64 x^2 = y x ≥ 0
since x ≥0 in the original function
Answer:
[tex]\Huge \boxed{\mathrm{D}}[/tex]
Step-by-step explanation:
[tex]f(x)=8\sqrt{x}[/tex]
[tex]\sf Replace \ with \ y.[/tex]
[tex]y=8\sqrt{x}[/tex]
[tex]\sf Switch \ the \ variables.[/tex]
[tex]x= 8\sqrt{y}[/tex]
[tex]\sf Divide \ both \ sides \ of \ the \ equation \ by \ 8.[/tex]
[tex]\displaystyle \frac{x}{8} =\sqrt{y}[/tex]
[tex]\sf Square \ both \ sides \ of \ the \ equation.[/tex]
[tex]\displaystyle (\frac{x}{8} )^2 =y[/tex]
[tex]\displaystyle \frac{x^2 }{64} =y[/tex]
[tex]\displaystyle f^{-1}(x)=\frac{1}{64} x^2[/tex]
The average age of a part-time seasonal employee at a Vail Resorts ski mountain has historically been 37 years. A random sample of 50 part-time seasonal employees in 2010 had a mean of 38.5 years with a standard deviation of 16 years. Required:a. At the 5 percent level of significance, does this sample show that the average age was different in 2010? b. Which is the right hypotheses to test the statement?c. What are the test statistic and critical value?
Answer:
No the sample does not show that the average age was different in 2010
Step-by-step explanation:
From the question we are told that
The sample size is n = 50
The sample mean is [tex]\= x = 38.5[/tex]
The population mean is [tex]\mu = 37[/tex]
The standard deviation is [tex]\sigma = 16[/tex]
The level of significance is [tex]\alpha = 5 \% = 0.05[/tex]
The null hypothesis is [tex]H_o : \mu = 37[/tex]
The alternative hypothesis is [tex]H_a : \mu \ne 37[/tex]
The critical value of the level of significance obtained from the normal distribution table is ([tex]Z_{\alpha } = 1.645[/tex] )
Generally the test statistics is mathematically evaluated as
[tex]t = \frac{ \= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 38.5 - 37}{ \frac{16}{\sqrt{50} } }[/tex]
[tex]t = 0.663[/tex]
Now looking at the value t and [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis.
This mean that there is no sufficient evidence to state that the sample shows that the average age was different in 2010
the function y= -16t^2 + 248, models the hight y in feet of a stone t seconds after it dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground?
Answer:
[tex]t \: = 3.92 \: sec[/tex]
Step-by-step explanation:
When (t =0)
Height of cliff = 248 feet = 75.5m
Using Newton's equations of motion:
[tex]s = ut + \frac{1}{2} a {t}^{2} [/tex]
75.5 = 0 * t + 4.9 * t^2
Solving further :
[tex]t \: = 3.92 \: sec[/tex]
Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet?
Answer:
17,720 ft
Step-by-step explanation:
5.4 km * (1 mile)/(1.609 km) * (5280 ft)/(1 mile) = 17,720 ft
This table shows a linear relationship.
The slope of the line is ?
Answer:
2
Step-by-step explanation:
2,8 to 4,12 has a rise of 4 and a run of 2.
4/2 = 2
The slope is 2.
Remember rise/run!
Answer:
2
Step-by-step explanation:
We take take two points and use the slope formula
m = (y2-y1)/(x2-x1)
m = (12-8)/(4-2)
= 4/2
= 2
Using the insurance company's assumptions, calculate the probability that there are fewer than 3 tornadoes in a 14-year period. Round your answer to four decimal places.
Answer: 19.2222
Step-by-step explanation:
given data;
no of tornadoes = 2,1,0 because it’s fewer than 3.
period = 14 years
probability of a tornado in a calendar year = 0.12
solution:
probability of exactly 2 tornadoes
= ( 0.12 )^2 * ( 0.88 )^11 * ( 14! / 2! * 11! )
= 0.0144 * 0.2451 * 1092
= 3.8541
probability of exac one tornado
= ( 0.12 )^1 * ( 0.88 )^12 * ( 14! / 1! * 12! )
= 0.12 * 0.2157 * 182
= 12.7109
probability of exactly 0 tornado
= ( 0.12 )^0 * ( 0.88 )^13 * ( 14! / 0! * 13! )
= 1 * 0.1898 * 14
= 2.6572
probability if fewer than 3 tornadoes
= 3.8541 + 12.7109 +2.6572
= 19.2222
Common ratio 2/3, -2, 6
Answer:
The common ratio is - 3Step-by-step explanation:
To find the common ratio between the terms of the sequence divide the previous term by the next term.
That's
[tex] - 2 \div \frac{2}{3} = - 2 \times \frac{3}{2} = - 3[/tex]Or
[tex] \frac{6}{ - 2} = - 3[/tex]Therefore the common ratio of the sequence is - 3
Hope this helps you
Answer:
-3
Step-by-step explanation:
Given the following diagram, find the required measures. Given: l | | m m 1 = 120° m 3 = 40° m 2 = 20 60 120
Step-by-step explanation:
your required answer is 60°.
Hello,
Here, in the figure;
angle 1= 120°
To find : m. of angle 2.
now,
angle 1 + angle 2= 180° { being linear pair}
or, 120° +angle 2 = 180°
or, angle 2= 180°-120°
Therefore, the measure of angle 2 is 60°.
Hope it helps you.....
Find the intersection point for the following liner function f(x)= 2x+3 g(x)=-4x-27
Answer:
( -5,-7)
Step-by-step explanation:
f(x)= 2x+3 g(x)=-4x-27
Set the two functions equal
2x+3 = -4x-27
Add 4x to each side
2x+3+4x = -4x-27+4x
6x+3 = -27
Subtract 3
6x+3 - 3 = -27-3
6x = -30
Divide each side by 6
6x/6 = -30/6
x =-5
Now we need to find the output
f(-5) = 2(-5) +3 = -10+3 = -7
Answer:
Step-by-step explanation:
big burgewr
A researcher reports a 98% confidence interval for the proportion of Drosophila in a population with mutation Adh-F to be [0.34, 0.38]. Therefore, there is a probability of 0.98 that the proportion of Drosophola with this mutation is between 0.34 and 0.38. True or False
Answer:
False
Step-by-step explanation:
The 98% is confidence interval its not a probability estimate. The probability will be different from the confidence interval. Confidence interval is about the population mean and is not calculated based on sample mean. Every confidence interval contains the sample mean. There is 98% confidence that the proportion of Drosophola with his mutation is between 0.34 and 0.38.
A study was conducted to assess the effects that occur when children are exposed to cocaine before birth. Children were tested at age 4 for object assembly skill, which was described as a task requiring visual spatial skills related to mathematical competence. The 190 children born to cocaine users had a mean of 7.3 and a standard deviation of 3.0 The 186 children not exposed to cocaine had a mean score of 8.2 with a standard deviation of 3.0 Use a 0.05 significance level to test the claim that prenatal cocaine exposure is associated with lower scores of four year old children on the test of object assembly.
What are null and alternative hypothesis? What is test statistics?
Answer:
We conclude that prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly.
Step-by-step explanation:
We are given that the 190 children born to cocaine users had a mean of 7.3 and a standard deviation of 3.0 The 186 children not exposed to cocaine had a mean score of 8.2 with a standard deviation of 3.0.
Let [tex]\mu_1[/tex] = population mean score for children born to cocaine users.
[tex]\mu_2[/tex] = population mean score for children not exposed to cocaine.
So, Null Hypothesis, : = 490 {means that the prenatal cocaine exposure is not associated with lower scores of four-year-old children on the test of object assembly}
Alternate Hypothesis, : 490 {means that the prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly}
The test statistics that will be used here is Two-sample t-test statistics because we don't know about population standard deviations;
T.S. = [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, [tex]\bar X_1[/tex] = sample mean score of children born to cocaine users = 7.3
[tex]\bar X_2[/tex] = sample mean score of children not exposed to cocaine = 8.2
[tex]s_1[/tex] = sample standard deviation for children born to cocaine users = 3
[tex]s_2[/tex] = sample standard deviation for children not exposed to cocaine = 3
[tex]n_1[/tex] = sample of children born to cocaine users = 190
[tex]n_2[/tex] = sample of children not exposed to cocaine = 186
Also, [tex]s_p=\sqrt{\frac{(n_1-1)\times s_1^{2}+(n_2-1)\times s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(190-1)\times 3^{2}+(186-1)\times 3^{2} }{190+186-2} }[/tex] = 3
So, the test statistics = ~
= -2.908
The value of t-test statistics is -2.908.
Now, at a 0.05 level of significance, the t table gives a critical value of -1.645 at 374 degrees of freedom for the left-tailed test.
Since the value of our test statistics is less than the critical value of t as -2.908 < -1.645, so we have sufficient evidence to reject our null hypothesis as the test statistics will fall in the rejection region.
Therefore, we conclude that prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly.
In the null hypothesis, a test always forecasts no effect, while the alternate theory states the research expectation impact, and calculation as follows:
Null and alternative hypothesis:Calculating the pooled estimator of [tex]\sigma^2[/tex], denoted by [tex]S^2_p[/tex], is defined by
[tex]\to \bold{S^2_p= \frac{(n_1 - 1) S^2_1+ (n_2 - 1)S^2_2}{n_1 + n_2 - 2}}[/tex]
Null hypothesis:
[tex]\to H_0 : \mu_1 - \mu_2 = \Delta_0\\[/tex]
Test statistic:
[tex]\to T_0=\frac{\bar{X_1}- \bar{X_2} -\Delta_0}{S_p \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \\\\[/tex]
Alternative Hypothesis:
[tex]H_1 : \mu_1 -\mu_2 \neq \Delta_0\\\\ H_1 : \mu_1 -\mu_2 > \Delta_0\\\\H_1 : \mu_1 -\mu_2 < \Delta_0\\\\[/tex]
Rejection Criterion
[tex]t_0 > t_{\frac{\alpha}{2} , n_1+n_2 -2}\ \ \ or\ \ \ t_0 < - t_{\frac{\alpha}{2} , n_1+n_2 -2} \\\\t_o > t_{\alpha , n_1+n_2 -2} \\\\t_o > -t_{\alpha , n_1+n_2 -2}[/tex]
Given value:
[tex]\to S_p=9\\\\\to \Delta_0=0\\\\\to t_0=-\frac{0.9}{3(\sqrt{(\frac{1}{190}+\frac{1}{186})})}=-2.9\\\\\to t_{0.05,374}=1.645\\\\[/tex]
here
[tex]\to t_0 < -t_{0.05,374}[/tex]
hence rejecting the [tex]H_0[/tex]
Since there should be enough evidence that prenatal cocaine exposure is linked to inferior item assembly scores in 4-year-olds.
Find out more about the alternative hypothesis here:
brainly.com/question/18831983
|3(x–2)|=12 pls help i need assistance
Answer:
x1 = -4
x2 = 6
Step-by-step explanation:
The 2 vertical lines are "absolute values" meaning whatever they contain has to be positive
For Example
|-3| = 3
So we can ignore if the answer we get is positive or negative because it will forced to be a positive
|3 x 4| = 12
|x - 2| = 4
x1 = 6
x2 = -2
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25
Complete Question
What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25? The standard deviation in a pre-selected sample is 7.5
Answer:
The minimum sample size is [tex]n =97[/tex]
Step-by-step explanation:
From the question we are told that
The margin of error is [tex]E = 1.25[/tex]
The standard deviation is [tex]s = 7.5[/tex]
Given that the confidence level is 90% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha =10\%[/tex]
[tex]\alpha =0.10[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]
The minimum sample size is mathematically evaluated as
[tex]n = \frac{Z_{\frac{\alpha }{2} * s^2 }}{E^2 }[/tex]
=> [tex]n = \frac{1.645^2 * 7.5^2 }{1.25^2 }[/tex]
=> [tex]n =97[/tex]
A particular country has total states. If the areas states are added and the sum is divided by , the result is square kilometers. Determine whether this result is a statistic or a parameter.
Answer:
Some texts are missing from the question, I found a possible match, and here it is:
A particular country has total of 45 states. If the areas of 35 states are added and the sum is divided by 35, the result is 135,600 square kilometres. Determine whether this result is a statistic or a parameter.
Answer:
The result is a statistic because the data involved are samples.
Step-by-step explanation:
A Parameter is a numerical representation of an entire population. That is they are numbers summarizing data for an entire population. In this case, if all the 45 states were measured, the result would have been a parameter.
On the other hand, statistics are numbers that are subsets (representative portions) of an entire population. Since 35 states were chosen out of 45 states, the average area of the 35 states is a statistic and not a parameter.
How many solutions does the following equation have ?
−3x+9−2x=−12−5x
[tex]\text{Solve for x:}\\\\-3x+9-2x=-12-5x\\\\\text{Combine like terms}\\\\-5x+9=-12-5x\\\\\text{Add 5x to both sides}\\\\9=-12\\\\\text{Since that's not valid, there would be no solutions}\\\\\boxed{\text{No solutions}}[/tex]
Benjamin’s and David’s ages add up to 36 years. The sum of twice their respective ages also add up to 72 years. Find their ages
Answer:
It can be any two numbers that sum up to 36.
eg:18+18,30+6,15+21
Step-by-step explanation:
Given:
Let Benjamin's age be x and David's age y.
x+y=36
2x+2y=72
Solution:
As twice of 36=72, any two numbers that add up to 36 ,will give a sum of 72 after multiplying them with 2.Therefore ,Benjamin's and David's age can be any set of numbers that sum up to 36.
A jar contains 8 pennies, 5 nickels and 7 dimes. A child selects 2 coins at random without replacement from the jar. Let X represent the amount in cents of the selected coins. Be very precise with your answers.
a. Find the probability x = 2 cents.
b. Find the probability x = 6 cents.
c. Find the probability x = 10 cents.
d. Find the probability x = 11 cents.
e. Find the probability x = 15 cents.
f. Find the probability x = 20 cents.
g. Find the expected value of x.
Answer:
a. The probability x = 2 cents = 7/22
b. The probability x = 6 cents = 35/66
c. The probability x = 10 cents = 5/33
d. The probability x = 11 cents= 28/33
e. The probability x = 15 cents = 20/33
f. The probability x = 20 cents = 14/33
g. The expected value of x = 5.9
Step-by-step explanation:
This is a binomial probability distribution. The number of trials is known .
a. The probability x = 2 cents.
Probability ( X=2) P( selecting 2 dimes)= 7C2 / 12c2
= 21 / 66 = 7/22
b. The probability x = 6 cents.
Probability ( X=6) P( selecting a nickel and a dime)= 5C1 * 7C1/ 12c2
= 5*7 / 66 = 35/66
c. The probability x = 10 cents.
Probability ( X=10) P( selecting two nickels )= 5C2 / 12c2)
= 10/ 66 = 5/33
d. The probability x = 11 cents.
Probability ( X=11) P( selecting a penny and a dime)= 8C1 * 7C1/ 12c2)
= 8*7 / 66 = 56/66= 28/33
e. The probability x = 15 cents.
Probability ( X=15) P( selecting a penny and a nickel)= 8C1 * 5C1/ 12c2)
= 8*5 / 66 = 40/66= 20/33
f. The probability x = 20 cents.
Probability ( X=20) P( selecting 2 pennies )= 8C2 / 12c2)
= 28 / 66 = 14/33
g. The expected value of x.
E(X) = np
E(X) = 2 * (8C2+ 5C2+ 7C2)/(8+5+7) = 2( 28+10+21)/20
=2(59)/20= 5.9
Is 100 a good estimate for the difference of 712 and 589? If it is, explain why it is a good estimate. If it is not, explain why it is a bad estimate.
Maria operates a taco truck in her neighborhood. She has created a graph based on her business performance in the previous year. The price she currently sells tacos for is $2.30. Which two statements correctly interpret this graph? Revenue and Cost Functions 1)Maria’s business is incurring losses. 2)Maria’s costs are rising over time. 3)Maria is running a profitable business. 4)Maria’s total revenue exceeds her total profit. 5)Maria’s total profit exceeds her total revenue.
Answer:
3)Maria is running a profitable business.
4)Maria’s total revenue exceeds her total profit.
Step-by-step explanation:
The graph shows variation of revenue and cost with respect to price of product and not with respect to time .
The price of the product is 2.30 . From this graph , we see that at this price revenue exceeds total cost . So maria is running a profitable business .
Total profit can not exceed total revenue as
Total revenue - total cost = total profit .
So total profit will always be less than total revenue .
If there are 25 students in a class - 11 are guys and 14 are girls what is the probability that one of the students on the class is a guy?
Answer:
0.44
Step-by-step explanation:
11/25 = 0.44 = 44%
Answer:
11/25
Step-by-step explanation:
since there are 25 students, there will be 25 choices, and the 25 will be the denominator
and there are 11 guys so there will be 11 choices of guys and the 11 will go on top
An urn contains 9 red marbles, 6 white marbles, and 8 blue marbles marbles. A child randomly selects three (without replacement) from the urn. Find the probability all three marbles are the same color
Answer:
P(identical colours) = 160/1771 (0.0903 to four decimals)
Step-by-step explanation:
Given 9R, 6W and 8B marbles (total = 9+6+8 = 23)
Choose three without replacement.
Need probability three identical colours.
Use the multiplication rule.
P(RRR) = 9/23 * 8*22 * 7*21 = 12 / 253
P(WWW) = 6/23 * 5/22 * 4/21 = 20/1771
P(BBB) = 8/23 * 7/22 * 6/21 = 8/153
Probability of getting identical colours
= P(RRR)+P(WWW)+P(BBB)
= 160/1771 (0.0903 to four decimals)
Using the probability concept, it is found that there is a 0.0903 = 9.03% probability all three marbles are the same color.
-----------------
A probability is the number of desired outcomes divided by the number of total outcomes.The order in which the marbles are chosen is not important, and they are also chosen without replacement, which means that the combination formula is used to find the number of outcomes.-----------------
Combination formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
-----------------
The desired outcomes can be:
3 from a set of 9(all red).3 from a set of 6(all white).3 from a set of 8(all blue).Thus:
[tex]D = C_{9,3} + C_{6,3} + C_{8,3} = \frac{9!}{3!6!} + \frac{6!}{3!3!} + \frac{8!}{3!5!} = 160[/tex]
-----------------
The total outcomes are 3 from a set of 9 + 6 + 8 = 23. Thus:
[tex]T = C_{23,3} = \frac{23!}{3!20!} = 1771[/tex]
The probability is:
[tex]p = \frac{D}{T} = \frac{160}{1771} = 0.0903[/tex]
0.0903 = 9.03% probability all three marbles are the same color.
A similar problem is given at https://brainly.com/question/10896842
Question
Consider these functions.
f(x) = -9x + 14
g(x)=-3x2
Select the correct answer from each drop-down menu.i
If x = 6, then f(6)
If g(x) -48, then x =
and x =
Submit
Answer:
[tex]\large \boxed{-40, \ 4, \ -4}[/tex]
Step-by-step explanation:
[tex]f(x)=-9x+14[/tex]
[tex]\sf Put \ x \ as \ 6.[/tex]
[tex]f(6)=-9(6)+14[/tex]
[tex]f(6)=-54+14[/tex]
[tex]f(6)=-40[/tex]
[tex]g(x)=-3x^2[/tex]
[tex]\sf Put \ g(x) \ as \ -48.[/tex]
[tex]-48=-3x^2[/tex]
[tex]\displaystyle \frac{-48}{-3} =\frac{-3x^2 }{-3}[/tex]
[tex]16=x^2[/tex]
[tex]\sqrt{16} =\sqrt{x^2 }[/tex]
[tex]x= \pm 4[/tex]
Answer:
F(6) = -9(6) + 14 = -54 + 14. f(6) = -40
G(x) = -48 / g(x) = -3(16) / g(4) = -48
Step-by-step explanation:
For the first one the drop answer is -40
For the second one its 4 then 16
I think because that whats im seeing but these are the right answers :)
Which represents a measure of volume?
O 5 cm
O 5 square cm
05 cm
05 cm
Answer:
a) 5[tex]cm^{3}[/tex]
Step-by-step explanation:
Bodies have three dimensions (width, height and depth). Measuring volume is calculating the number of cubic units that can fit inside.
When raising to 3, these dimensions are included and therefore 5[tex]cm^{3}[/tex] is a measure of volume.
Answer:
5cm^3
Step-by-step explanation:
Volume for a form will always be in cubic units.
Area of a shape will always be in squared units.
Length will not be in cubic or squared units.
Hence, the first option is a measure for volume.
The second option is equal to 5cm^2 which represents a measure for area, as does the fourth option.
The third option represents a measurement of length, for example the length of a line segment or the height of a figure.
Solve the following equations
x-1=6/x
[tex]x-1=\dfrac{6}{x}\qquad(x\not=0)\\\\x^2-x=6\\x^2-x-6=0\\x^2+2x-3x-6=0\\x(x+2)-3(x+2)=0\\(x-3)(x+2)=0\\x=3 \vee x=-2[/tex]
Solve the following equation algebraically:
3x^2=12
a.+3
b. +2
C.+3.5
d. +1.5
Answer:
Step-by-step explanation:
answer is c just took test
The image of (-4,6) reflected along the y-axis is
a. (4, -6)
b. (-4,-6)
c. (4, 6)
d. (-4, 6)
Answer:
C(4,6)
Step-by-step explanation:
the x turns into its opposite when reflected across y same thing for y when reflected across x
Answer:
c. (4, 6)
Step-by-step explanation:
The rule of an reflection about the y-axis is: [tex]A(x,y)\rightarrow A'(-x,y)[/tex]
Apply the rule to point (-4, 6):
[tex]\frac{(-4,6)\rightarrow\boxed{(4,6)}}{(x,y)\rightarrow(-x,y)}[/tex]
Option C should be the correct answer.
Pablo rented a truck for one day. There was a base fee of $19.99, and there was an additional charge of 80 cents for each mile driven. Pablo had to pay
$221.59 when he returned the truck. For how many miles did he drive the truck?
Answer:
252 miles
Step-by-step explanation:
19.99 + .80x = 221.59
,80x = 201.60
x = 252
Find x.
A. 21(route)2
B. 7
C.21(route)3/2
D. 21(route)2/2
Answer:
Option (D)
Step-by-step explanation:
By applying Sine rule in the right ΔABD,
Sin(A) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]
Sin(60)° = [tex]\frac{\text{BD}}{\text{AB}}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{\text{BD}}{7\sqrt{3}}[/tex]
BD = [tex]7\sqrt{3}\times \frac{\sqrt{3} }{2}[/tex]
= [tex]\frac{21}{2}[/tex]
Now by applying Cosine rule in the right ΔBDC,
Cos(45)° = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]
[tex]\frac{1}{\sqrt{2}}=\frac{\frac{21}{2}}{x}[/tex]
x = [tex]\frac{21}{2}\times \sqrt{2}[/tex]
x = [tex]\frac{21\sqrt{2}}{2}[/tex]
Therefore, Option (D) is the correct option.
The average value of a function f(x, y, z) over a solid region E is defined to be fave = 1 V(E) E f(x, y, z) dV where V(E) is the volume of E. For instance, if rho is a density function, then rhoave is the average density of E. Find the average value of the function f(x, y, z) = 5x2z + 5y2z over the region enclosed by the paraboloid z = 9 − x2 − y2 and the plane z = 0.
Answer:
An aluminum bar 4 feet long weighs 24 pounds
Step-by-step explanation:
Let s1 = k and define sn+1 = √4sn − 1 for n ≥ 1. Determine for what values of k the sequence (sn) will be monotone increasing and for what values of k it will be monotone decreasing.
Answer:
The answer is "[tex]\bold{\frac{1}{4}<k\leq 2+\sqrt{3}}[/tex]"
Step-by-step explanation:
Given:
[tex]\ S_1 = k \\\\ S_{n+1} = \sqrt{4S_n -1}[/tex] [tex]_{where} \ \ n \geq 1[/tex]
In the above-given value, [tex]S_n[/tex] is required for the monotone decreasing so, [tex]S_2 :[/tex]
[tex]\to \sqrt{4k-1} \leq \ k=S_1\\\\[/tex]
square the above value:
[tex]\to k^2-4k+1 \leq 0\\\\\to k \leq 2+\sqrt{3} \ \ \ \ \ and \ \ 4k+1 >0\\\\[/tex]
[tex]\bold{\boxed{\frac{1}{4}<k\leq 2+\sqrt{3}}}[/tex]
the point p(-3,4) is reflected in the line x +2=0. find the coordinate of the image x
Answer:
(- 1, 4 )
Step-by-step explanation:
The line x + 2 = 0 can be expressed as
x + 2 = 0 ( subtract 2 from both sides )
x = - 2
This is the equation of a vertical line parallel to the y- axis and passing through all points with an x- coordinate of - 2
Thus (- 3, 4 ) is 1 unit to the left of - 2
Under a reflection in the line x = - 2
The x- coordinate will be the same distance from x = - 2 but on the other side while the y- coordinate remains unchanged.
Thus
(- 3, 4 ) → (- 1, 4 )