Find the equation with the given slope through the given point. Write the equation in the given form AX+BY=C m=1/9 (-6,2)

Answers

Answer 1

Answer:

x - 3y = 12

Step-by-step explanation:

Find the point-slope form of this equation and then convert the point-slope form into standard form (ax + by = c):

y - k = m(x - h) becomes y - 2 = (1/9)(x + 6).

Multiplying all three terms by 9 removes the fraction:

3y - 6 = x + 6, or x - 3y = 12


Related Questions

If the item regularly cost d dollars and is discounted 12percent which of the following represents discount price dollar

Answers

Answer:

-12

Step-by-step explanation:

please this is easy show working out and please get correct

Answers

Answer:

$ 180,000

Step-by-step explanation:

All we are being asked to do in this question is take the simple interest, given a principle value of $100,000, with 8 percent interest each year over a course of 10 years. This is given the simple interest formula P( 1 + rt ).

Simple Interest : P( 1 + rt ),

P = $ 100,000 ; r = 8% ; t = 10 years,

100,000( 1 + 0.08( 10 ) ) = 100,000( 1 + 0.8 ) = 100,000( 1.8 ) = 180,000

Therefore you will have to pay back a total of $ 180,000

Angles One angle is 4º more than three times another. Find
the measure of each angle if

a. they are complements of each other.
b. they are supplements of each other.​

Answers

[tex] \Large{ \boxed{ \bf{ \color{purple}{Solution:}}}}[/tex]

Let the smaller angle be x

Then, Larger angle would be x + 4°

Case -1:

❍ They are complementary angles.

This means, they add upto 90°

So,

➙ x + x + 4° = 90°

➙ 2x + 4° = 90°

➙ 2x = 86°

➙ x = 86°/2 = 43°

Then, x + 4° = 47°

So, Our required answer:

Smaller angle = 43°Larger angle = 47°

Case -2:

❍ They are supplementary angles.

This means, they add upto 180°

So,

➙ x + x + 4° = 180°

➙ 2x + 4° = 180°

➙ 2x = 176°

➙ x = 176°/2 = 88°

Then, x + 4° = 92°

So, Our required answer:

Smaller angle = 88°Larger angle = 92°

✌️ Hence, solved !!

━━━━━━━━━━━━━━━━━━━━

A kites string is fastened to the ground. the string is 324ft long and makes an angle of 68 degrees with the ground. A model of this is shown below. use the law of sites (sin A/a=sin B/b) to determine how many feet the kite is above the ground (x). Enter the value, rounded to the nearest foot. (PLEASE)​

Answers

Answer:

x = 300 feet

Step-by-step explanation:

In the given right triangle,

Length of the string of the kite = 324 feet

Angle between the string and the ground = 68°

By applying law of Sines in the given right triangle,

[tex]\frac{\text{SinA}}{a}=\frac{\text{SinB}}{b}=\frac{\text{SinC}}{c}[/tex]

Now we substitute the values of angles and sides in the formula,

[tex]\frac{\text{Sin68}}{x}=\frac{\text{Sin90}}{324}[/tex]

[tex]\frac{\text{Sin68}}{x}=\frac{1}{324}[/tex]

x = 324 × Sin(68)°

x = 300.41 feet

x ≈ 300 feet

Therefore, measure of side x = 300 feet will be the answer.

Find the equation of the line passing through the point (–1, –2) and perpendicular to the line y = –1∕2x + 5. Question options: A) y = –1∕2x – 5∕2 B) y = 1∕2x – 5∕2 C) y = 2x D) y = –1∕2x

Answers

Answer:

The answer is option C

Step-by-step explanation:

Equation of a line is y = mx + c

where

m is the slope

c is the y intercept

From the question

y = - 1/2x + 5

Comparing with the general equation above

Slope / m = -1/2

Since the lines are perpendicular to each other the slope of the other line is the negative inverse of the original line

That's

Slope of the perpendicular line = 2

Equation of the line using point (–1, –2) and slope 2 is

y + 2 = 2( x + 1)

y + 2 = 2x + 2

y = 2x + 2 - 2

We have the final answer as

y = 2x

Hope this helps you

Answer:

C) y = 2x

Step-by-step explanation:

I got it right in the test !!

Find the area of the shaded regions:

Answers

Answer: 125.6 in^2

Step-by-step explanation:

First, we have that the radius of this circle is r = 10in

Now, we know that the area of a circle is:

A = pi*r^2

Now, if we got only a section of the circle, defined by an angle x, then the area of that region is:

A = (x/360°)*pi*r^2

Notice that if x = 360°, then the area is the same as the area of the full circle, as expected.

Then each shaded area has an angle of 72°.

A = (72°/360°)*3.14*(10in)^2 = 62.8 in^2

And we have two of those, both of them with the same angle, so the total shaded area is:

2*A = 2*62.8 in^2 = 125.6 in^2

Hospitals typically require backup generators to provide electricity in the event of a power outage. Assume that emergency backup generators fail 18​% of the times when they are needed. A hospital has two backup generators so that power is available if one of them fails during a power outage. Required:a. Find the probability that both generators fail during a power outage.b. Find the probability of having a working generator in the event of a power outage. Is that probability high enough for the hospital?c. Is that probability high enough for the hospital?

Answers

Answer:

a. 0.36

b. 0.1296

c. No.

Step-by-step explanation:

1. Note the probability of emergency backup generators to fail when they are needed = 18% or 0.18. Thus,

a. Probability of both emergency backup generators failing = P (G1 and G2 fails) where G represents the generators.

= P (G1 falls) x P ( G2 fails)

= 0.18 x 0.18

= 0.36

b. The probability of having a working generator in the event of a power outage = G1 fails x G2 works + G2 works x G2 fails

= 0.36 x 0.18 + 0.18 x 0.36

= 0.1296

c. Looking at the probability of any of the generators working, it is not meeting safety standards as lives could be lost if the backup generators needed to perform an emergency surgery operation fails.

A graph is shown below: A graph is shown. The values on the x axis are 0, 2, 4, 6, 8, and 10. The values on the y axis are 0, 4, 8, 12, 16, and 20. Points are shown on ordered pairs 0, 16 and 2, 12 and 4, 8 and 6, 4 and 8, 0. These points are connected by a line. What is the equation of the line in slope-intercept form?

Answers

Answer:

Graph is image, and equation is from the work result below:

Step-by-step explanation:

Take two points find the slope and y-intercept:

Slope = -2

Y-intercept = (0,16)

Equation =

y  =  − 2 x  +  16

check work for one point (to make sure equation works):

(2,12)

y = -2x + 16

12 = -2(2) + 16

12 = -4 + 16

12 = 12

The equation is correct: y  =  − 2 x  +  16

Image below are the points given:

Which statement about this function is true?
O A.
The value of a is positive, so the vertex is a minimum.
OB.
The value of a is negative, so the vertex is a minimum.
OC.
The value of a is negative, so the vertex is a maximum.
OD
The value of a is positive, so the vertex is a maximum.

Answers

Answer:

b

Step-by-step explanation:

The value of a is negative, so the vertex is a minimum.

B the value of a is negative, so the vertex is a minimum

A. f(x) = -x^2 - x - 4

B. f(x) = -x^2 + 4

C. f(x) = x^2 + 3x + 4

D. f(x) = x^2 + 4

Answers

Answer:

B: -x^2 + 4

Step-by-step explanation:

If the equation was [tex]f(x)=x^2[/tex], then the vertex would be at 0, and the "U" would be facing straight up. Here, the "U" is upside down, so that means the "x^2" would have to be a negative number ([tex]-x^2[/tex]) to get the upside-down "U". Then, we could see that the vertex is at positive 4, so that means that the parabola moved up 4 units, so the equation should end in +4.

Our answer is:

B: -x^2 + 4

Hey! i've been working on these questions but I have no idea how to solve this one, could anybody help me? Thanks in advance!

Answers

Answer:

1) [tex]\boxed{p(x) = x^3-x^2+x-1}[/tex]

2) [tex]\boxed{p(x) = x^2+x-2}[/tex]

3) [tex]\boxed{p(x) =- 2x^2+2x+4}[/tex]

4) [tex]\boxed{p(x) = 2x^2+x-4}[/tex]

Step-by-step explanation:

Part (1)

[tex]p(x) = x^3-x^2+x-1[/tex]

As we have to determine it by ourselves, this is the polynomial having a degree of 3. p(x) with a degree of 3 means that the highest degree/exponent of x should be 3.

Part (2)

[tex]p(x) = x^2+x-2[/tex]

This can be the polynomial having the factor x-1 because if we put:

x - 1 = 0 =>  x = 1 in the above polynomial, it gives us a result of zero which shows us that (x-1) "is" a factor of the polynomial.

Part (3)

[tex]p(x) = -2x^2+2x+4[/tex]

This can be the polynomial for which p(0) = 4 and p(-1) = 0

Let's check:

[tex]p(0) =- 2(0)^2+2(0)+4\\p(0) = 0 + 0+4\\p(0) = 4[/tex]

[tex]p(-1)= -2(-1)^2+2(-1)+4\\p(-1) = -2(1)-2+4\\p(-1) = -2-2+4\\p(-1) = 0[/tex]

So, this is the required polynomial determined by "myself".

Part (4):

[tex]p(x) = 2x^2+x-4[/tex]

This is the polynomial having a remainder 6 when divided by (x-2)

Let's check:

Let x - 2 = 0 => x = 2

Putting in the above polynomial

[tex]p(x) = 2(2)^2+(2)-4\\Given \ that \ Remainder = 6\\6 = 2(4) +2-4\\6 = 8+2-4\\6 = 10-4\\6 = 6[/tex]

So, Proved that it has a remainder of 6 when divided by (x-2)

Simplify (x + 4)(x2 − 6x + 3). x3 − 14x2 + 3x + 12 x3 − 6x2 − 17x + 12 x3 − 10x2 − 27x + 12 x3 − 2x2 − 21x + 12

Answers

Answer:

36 x^3 - 32 x^2 + (x + 4) (x^2 - 6 x + 3).x^3 - 62 x + 12

Step-by-step explanation:

Answer:

x^6-2x^5-21x^4+48x^3-32x^2-62x+12

Step-by-step explanation:

Mark me as brainliest!!!!

A function y = g(x) is graphed below. What is the solution to the equation g(x) = 3?

Answers

Answer:

See below.

Step-by-step explanation:

From the graph, we can see that g(x)=3 is true only when x is between 3 and 5. However, note that when x=3, the point is a closed circle. When x=5, the point is an open circle. Therefore, the solution is between 3 and 5, and it includes 3 but not 5.

In set-builder notation, this is:

[tex]\{x|x\in \mathbb{R}, 3\leq x<5\}[/tex]

In interval notation, this is:

[tex][3,5)[/tex]

Essentially, these answers are saying: The solution set for g(x)=3 is all numbers between 3 and 5 including 3 and not including 5.

Design a nonlinear system that has at least two solutions. One solution must be the ordered pair: (-2, 5). Tell how you came up with your system and give the entire solution set for the system.

Answers

Answer:

[tex] \begin{cases} (x - 2)^2 + (y - 2)^2 = 25 \\ y = 5 \end{cases} [/tex]

Solutions: x = 6, y = 5   or   x = -2, y = 5

Step-by-step explanation:

Use a graph.

Plot point (-2, 5). That will be a point on a circle with radius 5.

From point (-2, 5), go right 4 and down 3 to point (2, 2). (2, 2) is the center of the circle.

You now need the equation of a circle with center (2, 2) and radius 5.

Use the standard equation of a circle:

[tex] (x - h)^2 + (y - k)^2 = r^2 [/tex]

where (h, k) is the center and 5 is the radius.

The circle has equation:

[tex] (x - 2)^2 + (y - 2)^2 = 25 [/tex]

To have a single solution, you need the equation of the line tangent to the circle at (-2, 5), but since you want more than one solution, you need the equation of a secant to the circle. For example, use the equation of the horizontal line through point (2, 5) which is y = 5.

System:

[tex] \begin{cases} (x - 2)^2 + (y - 2)^2 = 25 \\ y = 5 \end{cases} [/tex]

To solve, let y = 5 in the equation of the circle.

(x - 2)^2 + (5 - 2)^2 = 25

(x - 2)^2 + 9 = 25

(x - 2)^2 = 16

x - 2 = 4  or x - 2 = -4

x = 6 or x = -2

Solutions: x = 6, y = 5   or   x = -2, y = 5

An example of a nonlinear system that has at least two solutions, one of which is (-2,5) are,

⇒ x² + y² = 29

⇒ 3x + 4y = -2

What is an expression?

Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

Now, This system by starting with the equation of a circle centered at the origin with radius sqrt(29), which is,

⇒ x² + y² = 29.

Then, Added a linear equation that intersects the circle at (-2,5) to create a system with two solutions.

The entire solution set for this system is: (-2, 5) and (7/5, -19/10)

Thus, An example of a nonlinear system that has at least two solutions, one of which is (-2,5) are,

⇒ x² + y² = 29

⇒ 3x + 4y = -2

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ3

Salaries of 42 college graduates who took a statistics course in college have a​ mean, ​, of . Assuming a standard​ deviation, ​, of ​$​, construct a ​% confidence interval for estimating the population mean .

Answers

Answer:

The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Step-by-step explanation:

The complete question is:

Salaries of 42 college graduates who took a statistics course in college have a​ mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard​ deviation, σ of ​$10​,016 construct a ​99% confidence interval for estimating the population mean μ.

Solution:

The (1 - α)% confidence interval for estimating the population mean μ is:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

The critical value of z for 99% confidence interval is:

[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]

Compute the 99% confidence interval for estimating the population mean μ as follows:

[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]

     [tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]

Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).

Chapter: Simple linear equations Answer in steps

Answers

Answer:

6x-3=21

6x=24

x=4

........

6x+27=39

6x=39-27

6x=12

x=2

........

8x-10=14

8x=24

x=3

.........

6+6x=22

6x=22-6

x=3

......

12x-2=28

12x=26

x=3

.....

8-4x=16

-4x=8

x=-2

.....

4x-24=3x-3

4x-3x=24-3

x=21

....

9x+6=6x+12

9x-6x=12-6

3x=6

x=2

Answer:

Step-by-step explanation:

1. 3(2x - 1) = 21

 = 6x - 3 = 21

 = 6x = 24

 = x = 24/6 = 4

------------------------------

2. 3(2x+9) = 39

   = 6x + 27 = 39

   = 6x = 39 - 27

   = 6x = 12

   = x = 12/6 = 2

--------------------------------

3. 2(4x - 5) = 14

  = 8x - 10 = 14

  = 8x = 14+10

 = x = 3

-------------------------------

AB||CD. Find the measure of

Answers

Answer:

135 degrees

Step-by-step explanation:

3x+15 = 5x - 5 because of the alternate interior angles theorem.

20 = 2x

x = 10

3(10) + 15 = 30+15 = 45

Remember that a line has a measure of 180 degrees. So we can just subtract the angle we found from 180 degrees to get BFG.

180-45 = 135.

Robert is putting new roofing shingles on his house. Each shingle is 1 2/3 feet long. The north part of the house has a roof line that is 60 feet across. How many shingles can be placed (side by side) on the north part of the house?

Answers

Answer: 36 shingles can be placed on the north part of the house.

Step-by-step explanation:

Given: Length of each shingle = [tex]1\dfrac23[/tex] feet = [tex]\dfrac53[/tex] feet.

The north part of the house has a roof line that is 60 feet across.

Then, the number of  shingles can be placed  on the north part of the house = (Length of roof line in north part) ÷ (Length of each shingle)

[tex]=60\div \dfrac{5}{3}\\\\=60\times\dfrac{3}{5}\\\\=12\times3=36[/tex]

Hence, 36 shingles can be placed on the north part of the house.

The data represent the membership of a group of politicians. If we randomly select one​ politician, what is the probability of getting given that a was​ selected?

Answers

Complete Question

The data represent the membership of a group of politicians. If we randomly select one politician, what is the probability of getting a Republican given that a male was selected?    

 

        Republican      Democrat           Independent

Male           11                  6                                   0

Female       70                  17                                  7

The probability is approximately_____?

Answer:

The  probability is  [tex]P(k) = 0.647[/tex]

Step-by-step explanation:  

From the question we are told that

   The  sample size of male is  [tex]n_m = 11 + 6 =17[/tex]

     The  number of male Republican is  [tex]k = 11[/tex]  

Generally the probability of getting a Republican given that a male was selected is

            [tex]P(k) = \frac{k}{n_m}[/tex]

substituting values

          [tex]P(k) = \frac{ 11}{17}[/tex]

          [tex]P(k) = 0.647[/tex]

The ball bearing have volumes of 1.6cm cube and 5.4cm cube . Find the ratio of their surface area.

Answers

Answer:

64 : 729

Step-by-step explanation:

Ratio of surface area

= (ratio of linear dimensions) ^2

= 1.6^2 : 5.4^2

= 256 : 2916

= 64 : 729

simplify the expression 10 divided by 5 times 3

Answers

Answer:

= 2/3

Step-by-step explanation:

10 / (5*3)

= 10/15

= 2/3

Write the phrase "the product of 19 and a number" as a mathematical expression.
A 19 + x
B) 19/x
C) 19 x
(D) 19 -x​

Answers

Answer:

19x

Step-by-step explanation:

product means multiply

19*x

19x

Answer:

The answer is C.

Step-by-step explanation:

if a number and a variable are next to each other, it is assumed they will be multiplied.

nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?

Answers

okookkkkkhshshshhahahahhahhehwjjrbrhrjeiejrjfhfhfjrjei

if a flight to europe takes about 13 hours and you make one round trip flight per month how many total days do you travel in a year

Answers

Answer:

13 days

Step-by-step explanation:

Given that a one-way flight to europe will take 13 hours

A round trip will take = 13 hrs x 2 = 26 hours

Also given that we make one round trip per months for 12 months (1 year)

We will take a total of 12 round trips per year

Number of hours taken for 12 round trips

= 26 hours per round trip x 12 round trips

= 26 x 12

= 312 hours

Recall that there are 24 hours in a day, hence to convert 312 hours into days, we have to divide this by 24.

Number of days = number of hours ÷ 24

= 312 ÷ 24

= 13 days

Explain why within any set of ten integers chosen from 2 through 24, there are at least two integers with a common divisor greater than 1 g

Answers

Step-by-step explanation:

Here are some examples of ten integers (in this case prime numbers) chosen from 2 to 24;

2, 3, 5, 7, 9, 15, 17, 19, 21, 23

Lets take for example the integers 15 and 21, they have a common divisor 3 which is greater than 1. Which implies that the number 3 can divide through 15 and 21 without a remainder, that is, 21 ÷ 3 = 7, 15 ÷ 3 = 5. Also note that 3 is a divisor of 9.

Therefore, we could right say that within any set of ten integers chosen from 2 through 24, there are at least two integers with a common divisor greater than 1.

where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50. (Round your answer to two decimal places.)

Answers

THIS IS THE COMPLETE QUESTION BELOW

The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.

Answer

$168.27

Step by step Explanation

Given p=90000/400+3x

With the limits of 40 to 50

Then we need the integral in the form below to find the average price

1/(g-d)∫ⁿₐf(x)dx

Where n= 40 and a= 50, then if we substitute p and the limits then we integrate

1/(50-40)∫⁵⁰₄₀(90000/400+3x)

1/10∫⁵⁰₄₀(90000/400+3x)

If we perform some factorization we have

90000/(10)(3)∫3dx/(400+3x)

3000[ln400+3x]₄₀⁵⁰

Then let substitute the upper and lower limits we have

3000[ln400+3(50)]-ln[400+3(40]

30000[ln550-ln520]

3000[6.3099×6.254]

3000[0.056]

=168.27

the average price p on the interval 40 ≤ x ≤ 50 is

=$168.27

A car dealer recommends that transmissions be serviced at 30,000 miles. To see whether her customers are adhering to this recommendation, the dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles. By finding the P-­value, determine whether the owners are having their transmissions serviced at 30,000 miles. Use α = 0.10. Are the owners having their transmissions serviced at 30,000 miles?

Answers

Answer:

No, the owners are not having their transmissions serviced at 30,000 miles.

Step-by-step explanation:

We are given that a car dealer recommends that transmissions be serviced at 30,000 miles.

The car dealer selects a random sample of 40 customers and finds that the average mileage of the automobiles serviced is 30,456. The standard deviation of the population is 1684 miles.

Let [tex]\mu[/tex] = true average mileage of the automobiles serviced.

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu[/tex] = 30,000 miles      {means that the owners are having their transmissions serviced at 30,000 miles}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu\neq[/tex] 30,000 miles      {means that the owners are having their transmissions serviced at different than 30,000 miles}

The test statistics that will be used here is One-sample z-test statistics because we know about population standard deviation;

                             T.S.  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~  N(0,1)

where, [tex]\bar X[/tex] = sample average mileage serviced = 30,456 miles  

            [tex]\sigma[/tex] = population standard deviation = 1684 miles

            n = sample of customers = 40

So, the test statistics =  [tex]\frac{30,456-30,000}{\frac{1684}{\sqrt{40} } }[/tex]  

                                     =  1.71

The value of z-statistics is 1.71.

Also, the P-value of the test statistics is given by;

                    P-value = P(Z > 1.71) = 1 - P(Z [tex]\leq[/tex] 1.71)

                                  = 1 - 0.9564 = 0.0436

For the two-tailed test, the P-value is calculated as = 2 [tex]\times[/tex] 0.0436 = 0.0872.

Since the P-value of our test statistics is less than the level of significance as 0.0872 < 0.10, so we have sufficient evidence to reject our null hypothesis as the test statistics will fall in the rejection region.

Therefore, we conclude that the owners are having their transmissions serviced at different than 30,000 miles.

What’s the largest fraction: 7/8, 5/8, 7/13, and 11/19

Answers

Answer:

7/8

Step-by-step explanation:

7/8 = 0.875

5/8 = 0.625

7/13 = 0.538

11/19 = 0.579

So 7/8 is the largest

Pregnancy length in horses. Bigger mammals tend to carry their young longer before giving birth. The length of horse pregnancies from conception to birth varies according to a roughly Normal distribution, with mean 336 days and standard deviation 3 days. Use the 68–95–99.7 rule to answer the following questions.Required:What percent of horse pregnancies are longer than 339 days?

Answers

Answer:

  16%

Step-by-step explanation:

The difference between the time of interest (339 days) and the mean (336 days) is 3 days, which is exactly 1 standard deviation.

The 68-95-99.7 rule tells you that 68% of pregnancies will be within 1 standard deviation. The remaining 32% will be evenly split between pregnancies that are longer than 339 days and ones that are shorter than 333 days. So, half of 32%, or 16%, will be longer than 339 days.

Assume that when adults with smartphones are randomly​ selected, ​57% use them in meetings or classes. If 8 adult smartphone users are randomly​ selected, find the probability that exactly 4 of them use their smartphones in meetings or classes. The probability is

Answers

Answer:

≈ 0.2526

Step-by-step explanation:

The number of combinations of 4 out of 8:

8C4 = 8!/(4!(8-4)!)= 8*7*6*5/(1*2*3*4)= 70

Success factor is:

57% = 0.57

and failure factor is:

(100 - 57)%= 43%= 0.43

Probability:

0.57⁴*0.43⁴*70 ≈ 0.2526
Other Questions
Read the following sentence, and then select the group of words that consists of only nouns. His work in the 1930s consisted primarily of laboratory experiments in learning, using pigeons as subjects. A. work, primarily, laboratory, subjects B. his, work, experiments, learning C. his, the, consisted, pigeons D. work, experiments, pigeons, subjects a project will produce cash inflows of 5400 a year for 3 years with a final cash inflow of 2400 in year 4. The projects initial cost is 13400. what is the net present value if the required rate of return is 14.2 percent? 1. If I have 3 identical books that all have a length of 25cm, awidth of 15cm, and are 11cm tall, what would be the volume ofall 3 books? Which of the following is classified as investment? I. existing homes II. business spending on new equipment III. purchase of corporate stock IV. taking out a loan to build an office building Help please on question 61!! You are an assistant director of the alumni association at a local university. You attend a presentation given by the universitys research director and one of the topics discussed is what undergraduates do after they matriculate. More specifically, you learn that in the year 2018, a random sample of 216 undergraduates was surveyed and 54 of them (25%) decided to continue school to pursue another degree, and that was up two percentage points from the prior year. The Dean of the College of Business asks the research director if that is a statistically significant increase. The research director says she isnt sure, but she will have her analyst follow up. You notice in the footnotes of the presentation the sample size in the year of 2017 was 200 undergraduates, and that 46 of them continued their education to pursue another degree. There is a short break in the meeting. Take this opportunity to answer the deans question using a confidence interval for the difference between the proportions of students who continued their education in 2018 and 2017. (Use 95% confidence level and note that the university has about 10,000 undergraduate students). X=3816371/(2763) solve for x which of these contributed to the union victory in the civil war Midpoint City operates its own municipal public drinking water system for which the Environmental Protection Agency has set maximum levels of pollutants. The city does not use any equipment to meet these standards. With regard to any contamination of the water, under the Safe Drinking Water Act, this is most likely Give two examples of a large databases that might be used to help members of the public The Herfindahl-Hirschman Index (HHI) is a mathematical approach to understanding market concentration that provides a single concentration indicator. What is the HHI for an industry characterized by the below noted data?Firm 1 has a market share of 40%Firm 2 has a market share of 20%Firm 3 has a market share of 15%Firm 4 has a market share of 15%Firm 5 has a market share of 10%HHI=___ Sabita is a mother in Nepal. She lives in poverty in the Western part of the country with her two children. Everyone in her family has some degree of malnutrition or nutrient deficiency. Match each of the following deficiency diseases with its corresponding nutrient.a. Sabita is blind from a diet devoid of fortified milk, animal products, or dark yellow and orange fruits and vegetables.b. Sabita has an enlarged thyroid gland due to a dependence on unfortified salt.Nutrient:1. Iron2. Vitamin A3. Vitamin D4. Iodine if the diameter is 20 cm what is the area based on pi 1. Given thatA={1,2,3,4,5} and B={3,5,10,11,12} and such that U= AUB. I) list down the elements of U,A' and A'UB'. ii) how many subsets do set A have? A farmer has 6 buckets of blueberries and wants to sell them at a market stall. The farmer will charge $1.50 per pint. If each bucket can hold half a bushel of blueberries, how much will the farmer make in selling all of the blueberries? 1. A 0.430kg baseball comes off a bar and goes straight up in the air. At a height of 10.0m, the baseball has a speed of 25.3m/s. Determine the mechanical energy at the height. Show all your work. 2. What is the baseball's mechanical energy when it is at a height of 8.0m? Explain? Calculate the molar solubility of CaF2 at 25C in a solution that is 0.010 M in Ca(NO3)2. The Ksp for CaF2 is 3.9 x 10-11. Which expression is NOT equivalent to 438? A. 4(318) B.(43)18 C. (418)3 D. (43)(418) Watch the video Teen Stress. Now, imagine that a friend confides in you that he is going to the doctor because he feels that stress might be affecting his blood pressure. He wants you to help him develop a list of questions to ask the doctor. Come up with five questions for your friend to ask about stress and blood pressure. A triangle has a base that is increasing at a rate of 18 mm per minute with the height being held constant. What is the rate of change of the area of the triangle if the height is 7 mm