Answer:
Circle Equation : x² + y² = 21
Step-by-step explanation:
So we know that this circle goes through the point ( - 4, √5 ), with a center being the origin. Therefore, this makes the circle equation a bit simpler.
The first step in determining the circle equation is the length of the radius. Applying the distance formula, the radius would be the length between the given points. Another approach would be creating a right triangle such that the radius is the hypotenuse. Knowing the length of the legs as √5 and 4, we can calculate the radius,
( √5 )² + ( 4 )² = r²,
5 + 16 = r²,
r = √21
In general, a circle equation is represented by the formula ( x - a )² + ( y - b )² = r², with radius r centered at point ( a, b ). Therefore our circle equation will be represented by the following -
( x - 0 )² + ( y - 0 )² = (√21 )²
Circle Equation : x² + y² = 21
Which ordered pair is a solution to the following linear system? y = x y = –x
Answer:
(2,2) (-1,-1)
Step-by-step explanation
i think this is there answer im sorry if im wrong
This table shows a linear relationship.
The slope of the line is ?
Answer:
2
Step-by-step explanation:
2,8 to 4,12 has a rise of 4 and a run of 2.
4/2 = 2
The slope is 2.
Remember rise/run!
Answer:
2
Step-by-step explanation:
We take take two points and use the slope formula
m = (y2-y1)/(x2-x1)
m = (12-8)/(4-2)
= 4/2
= 2
the function y= -16t^2 + 248, models the hight y in feet of a stone t seconds after it dropped from the edge of a vertical cliff. How long will it take the stone to hit the ground?
Answer:
[tex]t \: = 3.92 \: sec[/tex]
Step-by-step explanation:
When (t =0)
Height of cliff = 248 feet = 75.5m
Using Newton's equations of motion:
[tex]s = ut + \frac{1}{2} a {t}^{2} [/tex]
75.5 = 0 * t + 4.9 * t^2
Solving further :
[tex]t \: = 3.92 \: sec[/tex]
Can your help me please?
Answer:
(-5, 0) and (0,4)
Step-by-step explanation:
Given equation: -4x + 5y = 20
Sub. in the values
When x = -5 and y = 0 (-5,0),
[tex] - 4( - 5) + 5(0) = 20 [/tex]
When x = 0 and y = 4 (0,4),
[tex] - 4(0) + 5(4) = 20[/tex]
That's how I would do it, not sure if your school has another method. Hope this helps :)
Answer: x = -5 and y = 4
Step-by-step explanation: its the first option do you need me to exlain how cuz its multiple choice
The average age of a part-time seasonal employee at a Vail Resorts ski mountain has historically been 37 years. A random sample of 50 part-time seasonal employees in 2010 had a mean of 38.5 years with a standard deviation of 16 years. Required:a. At the 5 percent level of significance, does this sample show that the average age was different in 2010? b. Which is the right hypotheses to test the statement?c. What are the test statistic and critical value?
Answer:
No the sample does not show that the average age was different in 2010
Step-by-step explanation:
From the question we are told that
The sample size is n = 50
The sample mean is [tex]\= x = 38.5[/tex]
The population mean is [tex]\mu = 37[/tex]
The standard deviation is [tex]\sigma = 16[/tex]
The level of significance is [tex]\alpha = 5 \% = 0.05[/tex]
The null hypothesis is [tex]H_o : \mu = 37[/tex]
The alternative hypothesis is [tex]H_a : \mu \ne 37[/tex]
The critical value of the level of significance obtained from the normal distribution table is ([tex]Z_{\alpha } = 1.645[/tex] )
Generally the test statistics is mathematically evaluated as
[tex]t = \frac{ \= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 38.5 - 37}{ \frac{16}{\sqrt{50} } }[/tex]
[tex]t = 0.663[/tex]
Now looking at the value t and [tex]Z_{\alpha }[/tex] we see that [tex]t < Z_{\alpha }[/tex] hence we fail to reject the null hypothesis.
This mean that there is no sufficient evidence to state that the sample shows that the average age was different in 2010
Using the insurance company's assumptions, calculate the probability that there are fewer than 3 tornadoes in a 14-year period. Round your answer to four decimal places.
Answer: 19.2222
Step-by-step explanation:
given data;
no of tornadoes = 2,1,0 because it’s fewer than 3.
period = 14 years
probability of a tornado in a calendar year = 0.12
solution:
probability of exactly 2 tornadoes
= ( 0.12 )^2 * ( 0.88 )^11 * ( 14! / 2! * 11! )
= 0.0144 * 0.2451 * 1092
= 3.8541
probability of exac one tornado
= ( 0.12 )^1 * ( 0.88 )^12 * ( 14! / 1! * 12! )
= 0.12 * 0.2157 * 182
= 12.7109
probability of exactly 0 tornado
= ( 0.12 )^0 * ( 0.88 )^13 * ( 14! / 0! * 13! )
= 1 * 0.1898 * 14
= 2.6572
probability if fewer than 3 tornadoes
= 3.8541 + 12.7109 +2.6572
= 19.2222
An empty swimming pool is to be filled to the top. The pool is shaped like a rectangular prism with length 10m, width 8m , and depth 4m. Suppose water is pumped into the pool at a rate of 16m cubed per hour. How many hours does it take to fill the empty pool?
Answer:
20 hours
Step-by-step explanation:
10*8*4=320 (volume of the pool)
320/16=20 hours
Answer:
20 hours
Step-by-step explanation:
10x8x4 = 320
320 / 16 = 20
it takes 20 hours to fill the empty pool
Given the following three points, find by the hand the quadratic function they represent (0,6, (2,16, (3,33)
Answer:
[tex] f(x) = 4x^2 - 3x + 6 [/tex]
Step-by-step explanation:
Quadratic function is given as [tex] f(x) = ax^2 + bx + c [/tex]
Let's find a, b and c:
Substituting (0, 6):
[tex] 6 = a(0)^2 + b(0) + c [/tex]
[tex] 6 = 0 + 0 + c [/tex]
[tex] c = 6 [/tex]
Now that we know the value of c, let's derive 2 system of equations we would use to solve for a and b simultaneously as follows.
Substituting (2, 16), and c = 6
[tex] f(x) = ax^2 + bx + c [/tex]
[tex] 16 = a(2)^2 + b(2) + 6 [/tex]
[tex] 16 = 4a + 2b + 6 [/tex]
[tex] 16 - 6 = 4a + 2b + 6 - 6 [/tex]
[tex] 10 = 4a + 2b [/tex]
[tex] 10 = 2(2a + b) [/tex]
[tex] \frac{10}{2} = \frac{2(2a + b)}{2} [/tex]
[tex] 5 = 2a + b [/tex]
[tex] 2a + b = 5 [/tex] => (Equation 1)
Substituting (3, 33), and c = 6
[tex] f(x) = ax^2 + bx + x [/tex]
[tex] 33 = a(3)^2 + b(3) + 6 [/tex]
[tex] 33 = 9a + 3b + 6 [/tex]
[tex] 33 - 6 = 9a + 3b + 6 - 6 [/tex]
[tex] 27 = 9a + 3b [/tex]
[tex] 27 = 3(3a + b) [/tex]
[tex] \frac{27}{3} = \frac{3(3a + b)}{3} [/tex]
[tex] 9 = 3a + b [/tex]
[tex] 3a + b = 9 [/tex] => (Equation 2)
Subtract equation 1 from equation 2 to solve simultaneously for a and b.
[tex] 3a + b = 9 [/tex]
[tex] 2a + b = 5 [/tex]
[tex] a = 4 [/tex]
Replace a with 4 in equation 2.
[tex] 2a + b = 5 [/tex]
[tex] 2(4) + b = 5 [/tex]
[tex] 8 + b = 5 [/tex]
[tex] 8 + b - 8 = 5 - 8 [/tex]
[tex] b = -3 [/tex]
The quadratic function that represents the given 3 points would be as follows:
[tex] f(x) = ax^2 + bx + c [/tex]
[tex] f(x) = (4)x^2 + (-3)x + 6 [/tex]
[tex] f(x) = 4x^2 - 3x + 6 [/tex]
I need help badly best answer gets BRAINLIEST:)
Answer:
a = 55°, b = 65°, c = 65°, d = 60°, e = 120°, f = 60°
Step-by-step explanation:
Vertical angles are congruent. Since a and 55° are vertical angles, we know that a = 55°. Since b and 65° are vertical angles, we know that b = 65°. Alternate interior angles are congruent. Since b and c are alternate interior angles and b = 65°, we know that c = 65° as well. Since 60° and d are alternate interior angles, we know that d = 60°. Supplementary angles add up to 180°. Since d and e are supplementary and d = 60°, we know that e = 180 - 60 = 120°. Since vertical angles are congruent, we see that d and f are vertical angles and we know d = 60°, we also know that f = 60°.
|3(x–2)|=12 pls help i need assistance
Answer:
x1 = -4
x2 = 6
Step-by-step explanation:
The 2 vertical lines are "absolute values" meaning whatever they contain has to be positive
For Example
|-3| = 3
So we can ignore if the answer we get is positive or negative because it will forced to be a positive
|3 x 4| = 12
|x - 2| = 4
x1 = 6
x2 = -2
Give this problem a try and try to solve this
Answer:
No solution
Step-by-step explanation:
Given equation is,
[tex]\frac{x^{\frac{1}{2}}+x^{-\frac{1}{2}}}{1-x}+\frac{1-x^{-\frac{1}{2}}}{1+x^\frac{1}{2}}-\frac{(4+x)^\frac{1}{2}}{(1-x)^\frac{1}{2}}=0[/tex]
[tex]\frac{x^{\frac{1}{2}}+x^{-\frac{1}{2}}}{1-x}+\frac{1-x^{-\frac{1}{2}}}{1+x^\frac{1}{2}}=\frac{(4+x)^\frac{1}{2}}{(1-x)^\frac{1}{2}}[/tex]
[tex]\frac{(x+1)}{\sqrt{x}(1-x)}+\frac{(\sqrt{x}-1)}{\sqrt{x}(1+\sqrt{x})}=(\frac{4+x}{1-x})^{\frac{1}{2}}[/tex]
[tex]\frac{(\sqrt{x}+1)(x+1)+(\sqrt{x}-1)(1-x)}{\sqrt{x}(1-x)(1+\sqrt{x})}=(\frac{4+x}{1-x})^{\frac{1}{2}}[/tex]
[tex]\frac{x\sqrt{x}+x+\sqrt{x}+1+\sqrt{x}-1-x\sqrt{x}+x}{\sqrt{x}(1-x)(1+\sqrt{x})}=(\frac{4+x}{1-x})^\frac{1}{2}[/tex]
[tex]\frac{2x+2\sqrt{x}}{\sqrt{x}(1-x)(1+\sqrt{x})}=(\frac{4+x}{1-x})^\frac{1}{2}[/tex]
[tex]\frac{2(\sqrt{x}+1)}{(1-x)(1+\sqrt{x})}=(\frac{4+x}{1-x})^\frac{1}{2}[/tex]
[tex]\frac{2}{1-x}=(\frac{4+x}{1-x})^\frac{1}{2}[/tex] if x ≠ ±1
[tex](\frac{2}{1-x})^2=\frac{4+x}{1-x}[/tex] [Squaring on both the sides of the equation]
[tex]\frac{4}{(1-x)}=(4+x)[/tex]
4 = (1 - x)(4 + x)
4 = 4 - 4x + x - x²
0 = -3x - x²
x² + 3x = 0
x(x + 3) = 0
x = 0, -3
But both the solutions x = 0 and x = -3 are extraneous solutions, given equation has no solution.
Answer:
Could you please help me Genius??????
In 2004, 50 out of every 100 drivers at the National Trucking Company passed their driver's license exam on their first try. In 2005, 62 of the drivers passed on their first attempt. What was the percent increase in the passing rate?
Answer:
I believe it's a 12 percent increase.
Step-by-step explanation:
50/100= 50%
62/100= 62%
62%-50%=12%
A person tosses a fair coin until a tail appears for the first time. If the tail appearson thenth flip, the person winsndollars. LetXdenote the player’s winnings.ComputeE(X).
Answer: The answer in a is No while the answer in b is Yes
Step-by-step explanation:
Find the explanation in the attached file.
A study was conducted to assess the effects that occur when children are exposed to cocaine before birth. Children were tested at age 4 for object assembly skill, which was described as a task requiring visual spatial skills related to mathematical competence. The 190 children born to cocaine users had a mean of 7.3 and a standard deviation of 3.0 The 186 children not exposed to cocaine had a mean score of 8.2 with a standard deviation of 3.0 Use a 0.05 significance level to test the claim that prenatal cocaine exposure is associated with lower scores of four year old children on the test of object assembly.
What are null and alternative hypothesis? What is test statistics?
Answer:
We conclude that prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly.
Step-by-step explanation:
We are given that the 190 children born to cocaine users had a mean of 7.3 and a standard deviation of 3.0 The 186 children not exposed to cocaine had a mean score of 8.2 with a standard deviation of 3.0.
Let [tex]\mu_1[/tex] = population mean score for children born to cocaine users.
[tex]\mu_2[/tex] = population mean score for children not exposed to cocaine.
So, Null Hypothesis, : = 490 {means that the prenatal cocaine exposure is not associated with lower scores of four-year-old children on the test of object assembly}
Alternate Hypothesis, : 490 {means that the prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly}
The test statistics that will be used here is Two-sample t-test statistics because we don't know about population standard deviations;
T.S. = [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, [tex]\bar X_1[/tex] = sample mean score of children born to cocaine users = 7.3
[tex]\bar X_2[/tex] = sample mean score of children not exposed to cocaine = 8.2
[tex]s_1[/tex] = sample standard deviation for children born to cocaine users = 3
[tex]s_2[/tex] = sample standard deviation for children not exposed to cocaine = 3
[tex]n_1[/tex] = sample of children born to cocaine users = 190
[tex]n_2[/tex] = sample of children not exposed to cocaine = 186
Also, [tex]s_p=\sqrt{\frac{(n_1-1)\times s_1^{2}+(n_2-1)\times s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(190-1)\times 3^{2}+(186-1)\times 3^{2} }{190+186-2} }[/tex] = 3
So, the test statistics = ~
= -2.908
The value of t-test statistics is -2.908.
Now, at a 0.05 level of significance, the t table gives a critical value of -1.645 at 374 degrees of freedom for the left-tailed test.
Since the value of our test statistics is less than the critical value of t as -2.908 < -1.645, so we have sufficient evidence to reject our null hypothesis as the test statistics will fall in the rejection region.
Therefore, we conclude that prenatal cocaine exposure is associated with lower scores of four-year-old children on the test of object assembly.
In the null hypothesis, a test always forecasts no effect, while the alternate theory states the research expectation impact, and calculation as follows:
Null and alternative hypothesis:Calculating the pooled estimator of [tex]\sigma^2[/tex], denoted by [tex]S^2_p[/tex], is defined by
[tex]\to \bold{S^2_p= \frac{(n_1 - 1) S^2_1+ (n_2 - 1)S^2_2}{n_1 + n_2 - 2}}[/tex]
Null hypothesis:
[tex]\to H_0 : \mu_1 - \mu_2 = \Delta_0\\[/tex]
Test statistic:
[tex]\to T_0=\frac{\bar{X_1}- \bar{X_2} -\Delta_0}{S_p \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \\\\[/tex]
Alternative Hypothesis:
[tex]H_1 : \mu_1 -\mu_2 \neq \Delta_0\\\\ H_1 : \mu_1 -\mu_2 > \Delta_0\\\\H_1 : \mu_1 -\mu_2 < \Delta_0\\\\[/tex]
Rejection Criterion
[tex]t_0 > t_{\frac{\alpha}{2} , n_1+n_2 -2}\ \ \ or\ \ \ t_0 < - t_{\frac{\alpha}{2} , n_1+n_2 -2} \\\\t_o > t_{\alpha , n_1+n_2 -2} \\\\t_o > -t_{\alpha , n_1+n_2 -2}[/tex]
Given value:
[tex]\to S_p=9\\\\\to \Delta_0=0\\\\\to t_0=-\frac{0.9}{3(\sqrt{(\frac{1}{190}+\frac{1}{186})})}=-2.9\\\\\to t_{0.05,374}=1.645\\\\[/tex]
here
[tex]\to t_0 < -t_{0.05,374}[/tex]
hence rejecting the [tex]H_0[/tex]
Since there should be enough evidence that prenatal cocaine exposure is linked to inferior item assembly scores in 4-year-olds.
Find out more about the alternative hypothesis here:
brainly.com/question/18831983
Subtract 5p + 8q from the sum of 5p + 4q and – 9p + 69.
Answer:
-9p -4q + 69
Step-by-step explanation:
5p +4q + (-9p +69)
=> 5p + 4q -9p +69
=> -4p +4q +69
Now, we need to subtract 5p +8q from -4p + 4q +69
=> -4p +4q +69 - (5p +8q)
=> -4p + 4q +69 - 5p -8q
=> -9p -4q + 69
If x =y, then x-a=y-a represents the blank property of equality. A-addition B-symmetric C-subtraction D.transitive
Answer:
Subtraction property
Step-by-step explanation:
Answer:
Subtraction
Step-by-step explanation:I took the test
Help please anyone. Thank You
Answer:
A) 144 yd²
Step-by-step explanation:
Base= 8x8=64
Side = 1/2*8*5=20
64+20+20+20+20=144 yd²
Answer:
168 sq yds
Step-by-step explanation:
5x8/2x2=40
8x8/2x2=64
8x8=64
40+64+64=168
Solve the following equations
x-1=6/x
[tex]x-1=\dfrac{6}{x}\qquad(x\not=0)\\\\x^2-x=6\\x^2-x-6=0\\x^2+2x-3x-6=0\\x(x+2)-3(x+2)=0\\(x-3)(x+2)=0\\x=3 \vee x=-2[/tex]
PLEASE ANSWER! Which expression is equal to the length of the hypotenuse of a right triangle, formed inside the unit circle, with a radius of 1?
A: sin 0/ cos 0
B: sin^2 0 + tan^2 0
C: sin 0 + cos 0
D: sin^2 0 + cos^2 0
Answer:
b
Step-by-step explanation:
b: sin^2 0 + tan^2 0 this is just a gut feelings its been awhile since i done this kind of think i hope i could help
The expression equal to the length of the hypotenuse of a right triangle formed inside the unit circle with a radius of 1 is Option (D) [tex]sin^{2}[/tex]θ+[tex]cos^{2}[/tex]θ
What is Right triangle?A right-angled triangle is a type of triangle that has one of its angles equal to 90 degrees.
What is Hypotenuse?A hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle.
Here,
The length of the hypotenuse of a right triangle, formed inside the unit circle, with a radius of 1 is 1 unit.
We know that,
[tex]sin^{2}[/tex]θ+[tex]cos^{2}[/tex]θ=1
Hence, The expression equal to the length of the hypotenuse of a right triangle formed inside the unit circle with a radius of 1 is Option (D) [tex]sin^{2}[/tex]θ+[tex]cos^{2}[/tex]θ
Learn more about Right triangle and Hypotenuse here
https://brainly.com/question/2869318
#SPJ2
Evaluate the expression for q = -2. 8q=
Answer:
-16
Step-by-step explanation:
8q
Let q = -2
8*-2
-16
The average of 4 numbers is 15 , the sum of 3 numbers is 14 what is the fourth number
Answer:
46
Step-by-step explanation:
(14+x)/4 = 15
14 + x = 60
x = 46
Answer:
46
Step-by-step explanation:
Let a to d be number 1 to 4 respectively.
15 = (a + b + c + d) / 4
(a + b + c + d) = 60 ------> total sum of the 4 numbers
Since the sum of 3 numbers (assuming a to c) is 14,
Fourth number (d) = 60 - 14
= 46
That's how I would do it, hope this helps :)
The number of values of xx in the interval [0,5π][0,5π] satisfying the equation 3sin2x−7sinx+2=03sin2x-7sinx+2=0 is/are
Answer:
6
Step-by-step explanation:
Given, 3sin2x−7sinx+2=03sin2x-7sinx+2=0
⇒(3sinx−1)(sinx−2)=0⇒3sinx-1sinx-2=0
⇒sinx=13 or 2⇒sinx=13 or 2
⇒sinx=13 [∵sinx≠2]⇒sinx=13 [∵sinx≠2]
Let sinα=13,0<α<π2,sinα=13,0<α<π2, then sinx=sinαsinx=sinα
now x=nπ+(−1)nα(n∈I)x=nπ+(−1)nα(n∈I)
⇒x=α,π−α,2π+α,3π−α,4π+α,5π−α⇒x=α,π−α,2π+α,3π−α,4π+α,5π−α Are the solution in [0,5π][0,5π]
Hence, required number of solutions are 6
36 minus 20 minus 32 times 1/4
Answer:
6
Step-by-step explanation:
36 - 20 - 32 x 1/4
=> 36 - 20 - 32/4
=> 36 - 20 - 8
=> 36 - 28
=> 6
a) which function has the graph with the greatest slope?
b) which functions have graphs with y intercepts greater than 3?
c)which function has the graph with a y intercept closest to 0
Answer:
a). Function (4)
b). Function (2)
c). Function (3)
Step-by-step explanation:
Characteristics of the functions given,
Function (1),
Form the given graph,
Slope = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]
= [tex]-\frac{4}{1}[/tex]
= -4
Y- intercept of the given function = 2
Function (2),
From he given table,
Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
= [tex]\frac{5-3}{0+1}[/tex]
= 2
y-intercept = 5 [Value of y for x = 0]
Function (3),
y = -x - 1
By comparing this equation with y = mx + b
Where 'm' = slope
and b = y-intercept
Slope = (-1)
y-intercept = (-1)
Function (4),
Slope = 5
y-intercept = (-4)
(a). Greatest slope of the function → Function (4)
(b). y-intercept greater than 3 → Function (2)
(c). Function with y-intercept closest to 0 → Function (3)
(01.01 MC) Monica earned $60 from a bonus plus $8.50 per hour (h) she worked this week. Which of the following expressions best represents Monica's income for the week? 8.50h + 60 8.50 + 60 8.50 + 60h 8.50 + h + 60
Answer:
Option (1)
Step-by-step explanation:
Monica earned a bonus = $60
Per hour earning in addition to bonus = $8.50
Let she worked for 'h' hours this week.
Then total earning from the hourly rate = $8.50h
Total earning for the week = Earning of 'h' hours + Bonus earned
= $(8.50h + 60)
Therefore, Option (1) will represent Monica's earnings for the week.
Answer:
8.50h + 60
Step-by-step explanation:
Given the following diagram, find the required measures. Given: l | | m m 1 = 120° m 3 = 40° m 2 = 20 60 120
Step-by-step explanation:
your required answer is 60°.
Hello,
Here, in the figure;
angle 1= 120°
To find : m. of angle 2.
now,
angle 1 + angle 2= 180° { being linear pair}
or, 120° +angle 2 = 180°
or, angle 2= 180°-120°
Therefore, the measure of angle 2 is 60°.
Hope it helps you.....
32. Identify all real and non-real zeros of the function f(x) = x^3 + 5x^2 + 3x + 15.
options:
A. x = 0, −5, 1.7i, −1.7i
B. x = 0,−5, 1.7i
C. x = −5, 1.7i, −1.7i
D. x = 0,−3, −5
Answer:
x = -5 or x = i sqrt(3) or x = -i sqrt(3)
Step-by-step explanation:
Solve for x:
x^3 + 5 x^2 + 3 x + 15 = 0
The left hand side factors into a product with two terms:
(x + 5) (x^2 + 3) = 0
Split into two equations:
x + 5 = 0 or x^2 + 3 = 0
Subtract 5 from both sides:
x = -5 or x^2 + 3 = 0
x = (0 ± sqrt(0^2 - 4×3))/2 = ( ± sqrt(-12))/2:
x = -5 or x = sqrt(-12)/2 or x = (-sqrt(-12))/2
sqrt(-12) = sqrt(-1) sqrt(12) = i sqrt(12):
x = -5 or x = (i sqrt(12))/2 or x = (-i sqrt(12))/2
sqrt(12) = sqrt(4×3) = sqrt(2^2×3) = 2sqrt(3):
x = -5 or x = (i×2 sqrt(3))/2 or x = (-i×2 sqrt(3))/2
(2 i sqrt(3))/2 = i sqrt(3):
x = -5 or x = i sqrt(3) or x = (-2 i sqrt(3))/2
(2 (-i sqrt(3)))/2 = -i sqrt(3):
Answer: x = -5 or x = i sqrt(3) or x = -i sqrt(3)
Answer:
C. x = −5, 1.7i, −1.7i
Step-by-step explanation:
Quick answer:
C. x = −5, 1.7i, −1.7i
explanation:
C. is the only answer option that does NOT have 0 as a root, which is impossible, because there is a constant term, which means that all roots are non-zero. In other words, we cannot extract x as a factor.
Complete answer:
All odd degree polynomials have at least one real root.
By the real roots theorem, we know that
if there is a real root, it must be of the form [tex]\pm[/tex]p/q where q is any of the factors of the leading coefficient (1 in this case) and p is any factor of the constant term d (15 in this case).
Values of [tex]\pm[/tex]p/q are
On trial and error, using the factor theorem, we see that
f(-5) = 0, therefore -5 is a real root. By long division, we have a quotient of x^2+3 = 0, which gives readily the remaining (complex) roots of +/- sqrt(5) i
The answer is {-5, +/- sqrt(5) i}, or again,
C. x = −5, 1.7i, −1.7i
PLEASE HELP QUICK!!!!!!! Find the length of a rectangle that has one side of length 8 and area 32
Answer:
4
Step-by-step explanation:
Length of one side=8
Area=32
Length of another side=x
8 into x = 32
X=32/8
=4
Which represents a measure of volume?
O 5 cm
O 5 square cm
05 cm
05 cm
Answer:
a) 5[tex]cm^{3}[/tex]
Step-by-step explanation:
Bodies have three dimensions (width, height and depth). Measuring volume is calculating the number of cubic units that can fit inside.
When raising to 3, these dimensions are included and therefore 5[tex]cm^{3}[/tex] is a measure of volume.
Answer:
5cm^3
Step-by-step explanation:
Volume for a form will always be in cubic units.
Area of a shape will always be in squared units.
Length will not be in cubic or squared units.
Hence, the first option is a measure for volume.
The second option is equal to 5cm^2 which represents a measure for area, as does the fourth option.
The third option represents a measurement of length, for example the length of a line segment or the height of a figure.
Look at parallelogram below d1 and d3 Are both 35 degrees what is the measurement of d2
Answer:
145 degrees
Step-by-step explanation:
Adjacent angles in a parallelogram are supplementary.
d2 = 180° -d1 = 180° -35°
d2 = 145°