Answer: 18π
okokok gg
Step-by-step explanation:
Here angle is given in degree.We have convert it into radian.
[tex] {1}^{\circ} =( { \frac{\pi}{180} } )^{c} \\ \therefore \: {80}^{\circ} = ( \frac{80\pi}{180} ) ^{c} = {( \frac{4\pi}{9} })^{c} \: = \theta ^{c} [/tex]
radius r = 9 cmArea of green shaded regions = A
[tex] \sf \: A = \frac{1}{2} { {r}^{2} }{ { \theta}^{ c} } \\ = \frac{1}{2} \times {9}^{2} \times \frac{4\pi}{9} \\ = 18\pi \: {cm}^{2} [/tex]
a. A contest entrant has a 0.002 probability of winning $12,165. If this is the only prize and the fee is $35, then find the expected value of winning the contest. b. The probability of winning a lottery is 0.125. What is the probability of winning AT LEAST ONCE in twelve trials?
Answer:
The right answer is:
(a) -10.67
(b) 0.7986
Step-by-step explanation:
(a)
According to the question,
X P(X) X.P(X) X2.P(X)
12130 0.002 24.26 294274
-35 0.998 -34.93 1222.55
Now,
[tex]\Sigma x.P(x) = -10.67[/tex]
or,
[tex]\Sigma x^2.P(x) = 295496.35[/tex]
hence,
The mean will be:
[tex]\Sigma x.P(x) = -10.67[/tex]
(b)
According to the question,
n = 12
p = 0.125
q = 1 - p
= 0.875
Now,
⇒ [tex]P(X=x) = \binom{n}{x} p^x q^{n-x}[/tex]
By substituting the values, we get
⇒ [tex]P(X \geq 1)=1-(\binom{12}{0} 0.125^0. 0.875^{12-0})[/tex]
⇒ [tex]=1-(1 (0.125^0) (0.875^{12}))[/tex]
⇒ [tex]=1-(1(1.0)(0.2014))[/tex]
⇒ [tex]=1-(0.2014)[/tex]
⇒ [tex]=0.7986[/tex]
2. The two equal sides of an isosceles triangle each have a length of 4x + y - 5. The perimeter of the triangle is
10x + 4y - 18. Determine the length of the third side. Explain how you found your answer. (4 marks)
9514 1404 393
Answer:
2x +2y -8
Step-by-step explanation:
If the equal sides are 'a' and the third side is 'b', then the perimeter is ...
P = a +a +b = 2a +b
The length of the third side is then ...
b = P -2a . . . . . . subtract 2a from both sides
Substituting the given expressions, we find ...
b = (10x +4y -18) -2(4x +y -5)
b = 10x +4y -18 -8x -2y +10
b = 2x +2y -8 . . . . the length of the third side
An appliance uses 120 W. If this appliance is on for 8 hours a day, how much CO2 will this produce in the month of April?
...
Calculate Energy Cost by Appliance
Multiply the device's wattage by the number of hours the appliance is used per day.Divide by 1000.Multiply by your kWh rate.hope it's helpful for you!!..pls give me brainlist !!....Find the length of AC
A. 377.19
B. 378.63
C. 2.89
D. 33.13
Answer:
AC = 377.19
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp /adj
tan 5 = 33/AC
AC tan 5 = 33
AC = 33/ tan 5
AC = 377.19
Dodi bicycles 14mph with no wind. Against the wind, Dodi bikes 10mi in the same time it takes to bike 20mi with the wind. What is the speed of the wind?
Answer:
4.67 mph
Step-by-step explanation:
Speed with no wind = 14 mph
Let wind speed = w mph
Thus;
Speed with wind = 14 + w
Speed against the wind = 14 - w
Now, we are told that against the wind he bikes 10 miles.
Thus, from; time = distance/speed, we have;
Time = 10/(14 - w)
Also, we are told he biked 20 miles with the wind. Thus;
Time = 20/(14 + w)
We are told the times he used in both cases are the same.
Thus;
10/(14 - w) = 20/(14 + w)
Divide both sides by 10 to get;
1/(14 - w) = 2/(14 + w)
Cross multiply to get:
1(14 + w) = 2(14 - w)
14 + w = 28 - 2w
w + 2w = 28 - 14
3w = 14
w = 14/3
w = 4.67 mph
leave your answer in simplified radical form.
Answer:
The .jpeg file is the answer. Others are formulas that I use to solve.
2(x-4) +3(2-x) +2x +7
Answer:
x+5
Step-by-step explanation:
Answer:
2x-8+6-3x +2x +7
= 2x -3x +2x -8+6+7
=4x-3x-8+13
= 1x+5
A savings and loan association needs information concerning the checking account balances of its local customers. A random sample of 14 accounts was checked and yielded a mean balance of $664.14 and a standard deviation of $279.29. Find a 99% confidence interval for the true mean checking account balance for local customers.
Answer:
The 99% confidence interval for the true mean checking account balance for local customers is ($439.29, $888.99).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 14 - 1 = 13
99% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 13 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.99}{2} = 0.995[/tex]. So we have T = 3.0123
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 3.0123\frac{279.29}{\sqrt{14}} = 224.85[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 664.14 - 224.85 = $439.29
The upper end of the interval is the sample mean added to M. So it is 664.14 + 224.85 = $888.99.
The 99% confidence interval for the true mean checking account balance for local customers is ($439.29, $888.99).
I need help with this
Answer:
C
Step-by-step explanation:
In the graph given, we can expect the x axis to be horizontal and the y axis to be vertical. This means that the arm span represents y and the height represents x.
Therefore, if a girl on her team is 63 inches tall, we can say that y=x+2, and since height is x, y = 63 + 2 = 65
uppose cattle in a large herd have a mean weight of 1158lbs and a standard deviation of 92lbs. What is the probability that the mean weight of the sample of cows would differ from the population mean by less than 12lbs if 55 cows are sampled at random from the herd
Answer:
Hence the probability that the mean weight of the sample of 55 cows would differ from the population mean by less than 12 lbs is 0.66545.
Step-by-step explanation:
michael has an average of 68% in his 3 papers but that is below the pass mark of 70%. what must be his least score in the fouth paper to enable him pass?
Answer:
His least score for him in the fourth paper has to be 76.
Step-by-step explanation:
Given that Michael has an average of 68% in his 3 papers but that is below the pass mark of 70%, to determine what must be his least score in the fouth paper to enable him pass the following calculation must be performed:
(70 x 4) - (68 x 3) = X
280 - 204 = X
76 = X
Therefore, his least score for him in the fourth paper has to be 76.
Work out giving ur answer as a mixed number
Answer:
6 11/12
Step-by-step explanation:
4 1/6 + 2 3/4
Get a common denominator of 12
4 1/6 *2/2 + 2 3/4 *3/3
4 2/12 + 2 9/12
6 11/12
Work out the length x. 14 cm 7 cm Х
Answer:
If you want the area of something with the sides 14cm and 7cm then it would be 98 cm.
Step-by-step explanation:
Area = length * width
Area = 14 cm * 7 cm
Area = 98 cm
A test is divided into 4 sets of problems with the same number pf problems in each set. Alice correctly solves 35 problems. How many problems are on the test if Alice solved more than 60 percent of all the problems, but less than 65 percent of all problems? Give all possible answers.
Answer:
54, 55, 56, 57, 58
Step-by-step explanation:
Answer:
56 problems
Step-by-step explanation:
Set up an equation.
[tex]\frac{3}{5}x<35<\frac{13}{20}x[/tex]
Why do we do this? We are told that she solved MORE than 60%, or [tex]\frac{3}{5}[/tex], and LESS than 65%, or [tex]\frac{13}{20}[/tex]. Therefore, if we set the TOTAL number of problems to x, we have an equation we can solve.
[tex]\frac{3}{5}x<35<\frac{13}{20}x\\[/tex]
Multiply all parts of the inequality by 20 to get rid of the denominators.
[tex]20*\frac{3}{5}x<20*35<20*\frac{13}{20}x\\ \\12x<700<13x[/tex]
Now we can solve TWO individual inequalities to isolate the x variable.
[tex]12x<700\\x<\frac{700}{12}\\x < 175/3\\x<58[/tex]
We can approximate 175/3 to about 58 (rounding down). We will sometimes round down when we have to deal with whole numbers.
The second inequality is as follows.
[tex]13x>700\\x>700/13\\x>53[/tex]
Therefore, we can combine the two inequalities.
[tex]53<x<58[/tex]
There were in between 53 and 58 questions. Since the number of questions must be a whole number, there can be 54, 55, 56, 57, OR 58. Why does 58 also work? When you plug 58 back into the original equation, you get that it STILL works. This is due to the fact that inaccuracies in computations allow you to round UP.
However, the last thing to keep in mind is that there are four sections with an equal number of questions. Meaning, the final answer has to be a multiple of four. The only multiple of 4 is 56; therefore, the final answer is 56.
For a certain company, the cost for producing x items is 40x+300 and the revenue for selling x items is 80x−0.5x2. The profit that the company makes is how much it takes in (revenue) minus how much it spends (cost). In economic models, one typically assumes that a company wants to maximize its profit, or at least wants to make a profit!
Part a: Set up an expression for the profit from producing and selling x items. We assume that the company sells all of the items that it produces. (Hint: it is a quadratic polynomial.)
Part b: Find two values of x that will create a profit of $300.
The field below accepts a list of numbers or formulas separated by semicolons (e.g. 2;4;6 or x+1;x−1). The order of the list does not matter. To enter a−−√, type sqrt(a).
Part c: Is it possible for the company to make a profit of $15,000?
Answer:
The profit is maximum when x = 40.
Step-by-step explanation:
Cost function, C = 40 x + 300
Revenue function, R = 80 x - 0.5 x^2
The profit function is
[tex]P = R - C\\\\P = 80 x - 0.5 x^2 - 40 x - 300\\\\P = - 0.5 x^2 + 40 x - 300\\\\\frac{dP}{dx} = - x + 40\\\\So, \frac{dP}{dx} = 0\\\\-x + 40 = 0 \\\\x = 40[/tex]
So, the profit is maximum when x = 40 .
How to divide 6,558 by 4 in long division
This is the solution to your question.
Nicole was shopping at a local department store and had a budget of $60. She was
buying shorts (s) priced at $10 and t-shirts (t) priced at $8. She was heading to the
checkout stand when she saw a sign that said all t-shirts are 40% off. Write and simplify
an equation that Nicole could use to find the possible combinations of shorts and t-shirts
she could buy for $60.
Answe YEAH BOIIIIII!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Evaluate the expression 3√64
Answer:
4
Step-by-step explanation:
We want the cubed root of 64
(64)^(1/3)
(4*4*4) ^ (1/3)
4
Unless this is 3 * sqrt(64)
then it would be
3 sqrt(8*8)
3 (8)
24
1. Suppose you have a variable X~N(8, 1.5). What is the probability that you have values between (6.5, 9.5)
Answer:
0.6826 = 68.26% probability that you have values in this interval.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
X~N(8, 1.5)
This means that [tex]\mu = 8, \sigma = 1.5[/tex]
What is the probability that you have values between (6.5, 9.5)?
This is the p-value of Z when X = 9.5 subtracted by the p-value of Z when X = 6.5. So
X = 9.5
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{9.5 - 8}{1.5}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.8413.
X = 6.5
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{6.5 - 8}{1.5}[/tex]
[tex]Z = -1[/tex]
[tex]Z = -1[/tex] has a p-value of 0.1587
0.8413 - 0.1587 = 0.6826
0.6826 = 68.26% probability that you have values in this interval.
Leo is running in a 5-kilometer race along a straight path. If he is at the midpoint of the path, how many kilometers does he have left to run?
Answer:
2.5 km left
The midpoint is half of 5, which is 2.5, so he'll still have 2.5 km left to complete
the following 3 shapes are made up of square, circles, and semi circles. Find the Area and perimeter of the shaded area. Write your answer as a completely simplified exact value in terms of pi
Answer:
Perimeter = 18 + 9pi
Area = 81 - 20.25*pi
Step-by-step explanation:
Perimeter = 9 + 9 + 2(2 pi r)/2 The twos cancel out.
Perimeter = 18 + 9*pi
Area of the square = 9 * 9 = 81 cm^2
Area of the 2 semicircles = 2 * pi * r^2/2
r = d/2
d = 9
r = 9/2 = 4.5
Area of the 2 semicircles = 2 (pi * 4.5^2)/2
Area of the 2 semicircles = 20.25 pi
Area of the blue figure = 81 - 20.25 pi
Write out the first 5 terms of the following sequence:
9514 1404 393
Answer:
2, 1, -1/2, -1/4, 1/8
Step-by-step explanation:
Use n = 1 through 4:
[tex]a_{1+1}=\dfrac{(-1)^{1+1}\cdot a_1}{2}\ \Rightarrow\ a_2=\dfrac{1\cdot2}{2}=1\\\\a_3=\dfrac{(-1)^3\cdot 1}{2}=-\dfrac{1}{2}\\\\a_4=\dfrac{(-1)^4\cdot(-\dfrac{1}{2})}{2}=-\dfrac{1}{4}\\\\a_5=\dfrac{(-1)^5\cdot(-\dfrac{1}{4})}{2}=\dfrac{1}{8}[/tex]
The first 5 terms are ...
2, 1, -1/2, -1/4, 1/8
Verify if : (-30) x ( 13.+ (-3)] =[(-30) x 13] + [(-30) (-3)]
Which of the following could be the equation of the graph shown below?
Answer:
According to the proposed interrogate, as well as the graph provided, the correct answers to such are identified as B. Y = -2x + 5 and C. 2x + y = 4.
Step-by-step explanation:
To evaluate such, a comprehension of linear Cartesian data is required:
Slope = rise/run. If there is a negative rise, the direction of the line is proportional to the left-hand side as it exponentially grows or augments in units.
Y-intercept: The peculiar point in which the linear data observed intersects the y-axis.
X-intercept: The peculiar point in which the linear data observed intersects the x-axis.
Since this is a negative linear, all negative slopes apply.
The interrogate states, “Check all that apply.” Thus, there may be more than one correct answer, shall such be disseminated.
A. Cannot be the answer as the line should have been a horizontal line contained within quadrants I and II on the Cartesian Plane.
B. Contains a negative slope, thus is disclosed as a correct answer.
C. This configuration is denoted in “Standard Form” or “General Form”. To convert this to “Slope-Intercept Form” the following must be executed mathematically:
2x + y = 4
Y = -2x + 4 <== Slope-Intercept Form (Contains a negative slope, thus considered a correct answer.
D. Likewise, this configuration is denoted in “Standard Form” or “General Form”. To convert this to “Slope-Intercept Form” the following must be executed mathematically:
X - y = 9
-y = -x + 9
Y = x - 9 <== Slope-Intercept Form (Cannot be considered as the correct answer, given the positive slope configuration, thus is marked out).
Thus far, as evaluated, the correct answers to the proposed interrogate, as according to the linear data provided in the Cartesian Plane is acknowledged, and henceforth disseminated, as B. Y = -2x + 5 and C. 2x + y = 4.
*I hope this helps.
A pizza is to be cut into fifths. Each of these fifths is to be cut into thirds. What fraction of the pizza is each of the final pieces?
Expand -11(5-p) can someone answer that please
Answer:
-55 +11p
Step-by-step explanation:
-11(5-p)
Distribute
-11*5 -11*(-p)
-55 +11p
An experiment consists of tossing a pair of balanced, six-sided dice. (a) Use the combinatorial theorems to determine the number of sample points in the sample space S. 36 Correct: Your answer is correct. sample points (b) Find the probability that the sum of the numbers appearing on the dice is equal to 6. (Round your answer to four decimal places.)
Answer:
Sample space = 36
P(sum of 6) = 5/36
Step-by-step explanation:
Number of faces on a dice = 6
The sample space, for a toss of 2 dice ; (Number of faces)^number of dice
Sample space = 6^2 = 6*6 = 36
Sum of numbers appearing on the dice = 6
The sum of 6 from the roll of two dice has 5 different outcomes ; Hence, required outcome = 5
Total possible outcomes = sample space = 36
Probability, P = required outcome / Total possible outcomes
P = 5 / 36
Probabilities are used to determine the chances of events
The given parameters are:
[tex]n=6[/tex] --- the faces of a six-sided die
[tex]r = 2[/tex] -- the number of dice
(a) The number of sample points
This is calculated as:
[tex]Sample = n^r[/tex]
So, we have:
[tex]Sample = 6^2[/tex]
Evaluate the exponent
[tex]Sample = 36[/tex]
Hence, the number of sample points is 36
(b) The probability that the sum of 6
See attachment for the sample space of the sum of two dice.
From the sample space, there are 5 outcomes where the sum is 6.
So, the probability is:
[tex]Pr = \frac{5}{36}[/tex] --- where 36 represents the number of sample points
Divide 5 by 36
[tex]Pr = 0.1389[/tex]
Hence, the probability that the sum of the numbers appearing on the dice is equal to 6 is 0.1389
Read more about probabilities at:
https://brainly.com/question/10707698
A study by researchers at a university addressed the question of whether the mean body temperature of an animal is 98 6°F Among other data, the researchers obtained the body temperatures of 109 healthy animals. Suppose you want to use those data to decide whether the mean body temperature of healthy animals is less than 98.6°F.
Required:
a. Determine the null hypothesis
b. Determine the alternative hypothesis
Answer:
H0 : μ ≥ 98.6
H1 : μ < 98.6
Step-by-step explanation:
The population mean temperature, μ = 98.6
The null hypothesis takes up the value of the population mean temperature as the initial truth ;
The alternative hypothesis on the other hand is aimed at using a sample size of 109 to establish if the mean temperature is less than the population mean temperature.
The hypothesis ;
Null hypothesis, H0 : μ ≥ 98.6
Alternative hypothesis ; H1 : μ < 98.6
The strength of the association rule is known as _____ and is calculated as the ratio of the confidence of an association rule to the benchmark confidence.
Answer:
Lift
Step-by-step explanation:
Finding patterned and relationship between large sets of data can be obtained using the association rule as it finds insights, relationships and trends within sets of data variables. Lift is a parmater of interest whichbus used when performing analysis on association between variables in datasets. The Lift is literally the ratio of confidence to expected confidence. Where, the confidence of association is divided by the expected confidence (benchmark confidence).
If f(x) = x³ - 2, find f(3)
Answer:
25
Step-by-step explanation:
Assuming the equation is f(x) = x³ - 2
Plug in 3 for x
f(3) = 3³-2
= 27-2
=25
Answer:
25!
I hope it's helpful