find it ...............​

Find It ...............

Answers

Answer 1

Answer:

9 N

Explanation:

Treat X and y as a single book with weight 9 N.

Draw a free body diagram of this book combination.  There are two forces: weight force 9 N pulling down, and normal force F pushing up.

Sum of forces in the y direction:

∑F = ma

F − 9 N = 0

F = 9 N


Related Questions

Coherent light that contains two wavelengths, 660 nm (red) and 470 nm (blue), passes through two narrow slits that are separated by 0.310 mm. Their interference pattern is observed on a screen 4.40 m from the slits. What is the disatnce on the screen between the first order bright fringe for each wavelength?

Answers

Answer:

0.002699 m or 2.699 mm

Explanation:

y = Fringe distance

d= Distance between slits = 0.310mm

L = Screen distance = 4.40m

λ= Wavelength

Given from question

λ₁= 660 nm = 6.6 x 10^-9 m

λ₂= 470 nm = 4.7 x 10^-9 m

d = 0.340 mm = 3.4 x 10^-3 m

L = 4.40 m

In the case of constructive interference, we use below formula

y/L = mλ/d

For first order wavelength

(y₁/4.40) =(1×660x10⁻⁹)/(0.310*10⁻³)

y₁= (0.310*10⁻³)×(4.40)/(0.310*10⁻³)

y₁=0.00937m

(y2/4.40) =(1×470x10⁻⁹)/(0.310*10⁻³)

y2= =(1×470x10⁻⁹)×(4.40)/(0.310*10⁻³)

y2=0.00667m

distance between the fringes is given by (y₁ -y2)

=0.00937-0.00667=0.002699m

Therefore, distance on the screen between the first-order bright fringes for the two wavelengths is 0.002699 m or 2.699 mm

the atomic number of a nucleus increases during which nuclear reactions

Answers

Answer:

Answer A : Fusion followed by beta decay (electron emission)

Explanation:

Notice that you want the Atomic number to increase, that is the number of protons in a nucleus. So if all four cases given experience the same fusion of nuclei, the only one that net increases the number of protons in the last stage, is the reaction that undergoes a beta decay (with emission of an electron) thus leaving a positive imbalance of positive charge (proton generated in the beta decay of a neutron).

Therefore, answer A is the correct one.

Answer:

A : Fusion followed by beta decay (electron emission)

Explanation:

Ap3x

Two identical rooms in a house are connected by an open doorway. The temperatures in the two rooms are maintained at different values. Which room contains more air

Answers

Answer:

The room with the lower temperature

Explanation:

Using

PV=nRT

Since both the rooms same volume and are connected, so they will have same pressure

PV=nRT=constant

nT=Constant/R=constant

If T is more n has to be less

Thus, lower the temperature, more the number molecules.

Give an example of hypothesis for an experiment and then identify its dependent and independent variables. Write all the steps of the scientific method. Explain why it is good to limit an experiment to test only one variable at a time whenever possible ?


Please somebody !!!!

Answers

An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”

Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”

Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”

Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.


Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)

Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?

You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.

Hope this helps!

You have three resistors: R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω in parallel. Find the equivalent resistance for the combination

Answers

Answer:

4 / 7

Explanation:

1/total resistance = 1/1 + 1/2 + 1/4

= 1¾

total resistance = 1 ÷ 1¾

= 4/7

A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

Explanation:

A) Vair = 1.3 L

B) Volume is not reasonable

Explanation:

A)

Assume

m to be total mass of the man

mp be the mass of the man that pulled out of the water

m1 be the mass above the water with the empty lung

m2 be the mass above the water with full lung

wp be the weight that the buoyant force opposes as a result of the air.

Va be the volume of air inside man's lungs

Fb be the buoyant force due to the air in the lung

given;

m = 78.5 kg

m1 = 3.2% × 78.5 = 2.5 kg

m2 = 4.85% × 78.5 = 3.8kg

But, mp = m2- m1

mp = 3.8 - 2.5

mp = 1.3kg

So using

Archimedes principle, the relation for formula for buoyant force as;

Fb = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

Fb = wp = 1.3× 9.81

Fb = 12.7N

But

Fb = (ρ_water × V_air × g)

So

Vair = Fb/(ρ_water × × g)

Vair = 12.7/(1000 × 9.81)

V_air = 1.3 × 10^(-3) m³

convert to litres

1 m³ = 1000 L

Thus;

V_air = 1.3× 10^(-3) × 1000

V_air = 1.3 L

But since the average lung capacity of an adult human being is about 6-7litres of air.

Thus, the calculated lung volume is not reasonable

Explanation:

Changing the speed of a synchronous generator changes A) the frequency and amplitude of the output voltage. B) only the frequency of the output voltage. C) only the amplitude of the output voltage. D) only the phase of the output voltage.

Answers

Answer:

A) the frequency and amplitude of the output voltag

Explanation:

Changing the speed of a synchronous generator changes both the output voltage (amplitude of the wave) and frequency as they tend to increase.

Changing the speed regulator will change the engine throttle setting to maintain the speed.

While the power, torque, current, fuel flow rate and torque angle will have decreased.

We've seen that for thermal radiation, the energy is of the form AVT4, where A is a universal constant, V is volume, and T is temperature. 1) The heat capacity CV also is proportional to a power of T, Tx. What is x

Answers

Answer:

this raise the temperature is x = 3

Explanation:

Heat capacity is the relationship between heat and temperature change

          C = Q / ΔT

if the heat in the system is given by the change in energy and we carry this differential formulas

          [tex]c_{v}[/tex] = dE / dT

In this problem we are told that the energy of thermal radiation is

        E = A V T⁴

Let's look for the specific heat

        c_{v} = AV 4 T³

the power to which this raise the temperature is x = 3

Calculate the density of the following material.

1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³

Answers

Answer:

[tex]density \: = \frac{mass}{volume} [/tex]

1 / 5.587 is equal to 0.179 kg/m³

Hope it helps:)

Answer:

The answer is

0.179 kg/m³

Explanation:

Density of a substance is given by

[tex]Density \: = \frac{mass}{volume} [/tex]

From the

mass = 1 kg

volume = 5.583 m³

Substitute the values into the above formula

We have

[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]

We have the final answer as

Density = 0.179 kg/m³

Hope this helps you

In a front-end collision, a 1500 kg car with shock-absorbing bumpers can withstand a maximumforce of 80 000 N before damage occurs. If the maximum speed for a non-damaging collision is4.0 km/h, by how much must the bumper be able to move relative to the car

Answers

Answer:

The bumper will be able to move by 0.01155m.

Explanation:

The magnitude of deceleration of the car in the front end collision.

[tex]a = \frac{F_m}{m} \\[/tex]

[tex]a = \frac{80000}{1500} \\[/tex]

[tex]a = 53.33[/tex]

This is the deceleration of the car that is generated to stop due to a front end collision.

4 km/h = 1.11 m/s

Now, the initial speed of the bumper in the relation of car, Vi = 0

Now, the initial speed of the bumper in the relation of car, Vf = 1.11 m/s

Use the below equation:

[tex]s = \frac{(Intitial \ speed)^2 – (Final \ speed)^2}{2a} \\[/tex]

[tex]s = \frac{(1.11)^2 – (0)}{2 \times 53.33} \\[/tex]

[tex]s = 0.01155 \\[/tex]

Thus, the bumper can move relative to the car is 0.01155 m .

A fish appears to be 2.00 m below the surface of a pond when viewed almost directly above by a fisherman. What is the actual depth of the fish

Answers

Answer:

2,66

Explanation:

The refractive index= real depth/ apparent depth

real depth = refractive index * apparent depth

Let's assume index for water is 1.33

real depth = 2*1,33 = 2,66

A lens is made with a focal length of -40 cm using a material with index of refraction 1.50. A second lens is made with the SAME GEOMETRY as the first lens, but using a material having refractive index of 2.00. What is the focal length of the second lens

Answers

Answer:

 f = - 20 cm

Explanation:

This exercise asks us for the focal length, which for a lens in air is

                  1 / f = (n₂-n₁) (1 / R₁ - 1 / R₂)

where n₂ is the refractive index of the material, n₁ is the refractive index of the medium surrounding the lens, R₁ and R₂ are the radii of the two surfaces.

In this exercise the medium that surrounds the lens is air n₁ = 1 and the lens material has an index of refraction n₂ = n = 1.50, let's substitute in the expression

                 - 1/40 = (n-1) (1 / R₁ -1 / R₂)

                (1 / R₁ - 1 / R₂) = - 1/40 (n-1)

let's calculate

               (1 / R₁ -1 / R₂) = - 1/40 (1.50 -1)

               (1 / R₁ -1 / R₂) = -1/20

 Now we change the construction material for one with refractive index

n = 2, keeping the radii,

              1 / f = (n-1) (1 / R₁-1 / R₂)

              1 / f = (n-1) (-1/20)

               

let's calculate

             1 / f = (2.00-1) (-1/20)

              1 / f = -1/20

              f = - 20 cm

Which notation is better to use? (Choose between 4,000,000,000,000,000 m and 4.0 × 1015 m)

Answers

Answer:

4 x 10¹⁵

Explanation:

Four friends push on the same block in different directions. Allie pushes on the block to the north with a force of 18 N. Bill pushes on the block to the east with a force of 14 N. Chris pushes on the block to south with a force of 23 N. Debra pushes on the block to the west with a force of 20 N. Assuming it does not move vertically, in which directions will the block move? north and west south and east south and west north and east

Answers

Answer:

South and West

Explanation:

Those people are pushing the hardest. It will move south faster than it moves west.

A pair of narrow, parallel slits separated by 0.230 mm is illuminated by green light (λ = 546.1 nm). The interference pattern is observed on a screen 1.50 m away from the plane of the parallel slits.
A) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.
B) Calculate the distance between the first and second dark bands in the interference pattern.

Answers

Answer:

A) y = 3.56 mm

B) y = 3.56 mm

Explanation:

A) The distance from the central maximum to the first bright region can be found using Young's double-slit equation:

[tex] y = \frac{m\lambda L}{d} [/tex]

Where:

λ: is the wavelength = 546.1 nm

m: is first bright region = 1

L: is the distance between the screen and the plane of the parallel slits = 1.50 m

d: is the separation between the slits = 0.230 mm

[tex] y = \frac{m\lambda L}{d} = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]  

B) The distance between the first and second dark bands is:

[tex] \Delta y = \frac{\Delta m*\lambda L}{d} [/tex]

Where:

[tex] \Delta m = m_{2} - m_{1} = 2 - 1 = 1 [/tex]

[tex] \Delta y = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]      

I hope it helps you!

A laser emits photons having an energy of 3.74 × 10–19 J. What color would be expected for the light emitted by this laser? (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J ⋅ s)

Answers

Answer:

The wavelength of the emitted photons 532 nm, corresponds to a visible light having GREEN color.

Explanation:

Given;

energy of the emitted photons, E = 3.74 x 10⁻¹⁹ J

speed of light, c = 3 x 10⁸ m/s

Planck's constant, h = 6.63 x 10⁻³⁴ J.s

The wavelength of the emitted light will be calculated by applying energy of photons;

[tex]E = hf[/tex]

where;

E is the energy emitted light

h is Planck's constant

f is frequency of the emitted photon

But f = c / λ

where;

λ is the wavelength of the emitted photons

[tex]E = \frac{hc}{\lambda} \\\\\lambda = \frac{hc}{E} \\\\\lambda = \frac{6.63*10^{-34} *3*10^{8}}{3.74*10^{-19}} \\\\\lambda = 5.318 *10^{-7} \ m\\\\\lambda = 531.8 *10^{-9} \ m\\\\\lambda = 531.8 \ nm[/tex]

λ ≅ 532 nm

the wavelength of the emitted photons is 532 nm.

Therefore, the wavelength of the emitted photons 532 nm, corresponds to a visible light having GREEN color.

The actual depth of a shallow pool 1.00 m deep is not the same as the apparent depth seen when you look straight down at the pool from above. How deep (in cm) will it appear to be

Answers

Answer:

d' = 75.1 cm

Explanation:

It is given that,

The actual depth of a shallow pool is, d = 1 m

We need to find the apparent depth of the water in the pool. Let it is equal to d'.

We know that the refractive index is also defined as the ratio of real depth to the apparent depth. Let the refractive index of water is 1.33. So,

[tex]n=\dfrac{d}{d'}\\\\d'=\dfrac{d}{n}\\\\d'=\dfrac{1\ m}{1.33}\\\\d'=0.751\ m[/tex]

or

d' = 75.1 cm

So, the apparent depth is 75.1 cm.

Sammy is 5 feet and 5.3 inches tall.tall.what is sammy's height in metres?

Answers

Answer:

65.3

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

Answer:

It will be 》》》》1.664716m

If the x-position of a particle is measured with an uncertainty of 1.00×10-10 m, then what is the uncertainty of the momentum in this same direction? (Useful constant: h-bar = 1.05×10-34 Js.)

Answers

Answer:

The uncertainty in momentum is 5.25x 10^25Jsm

Explanation:

We know that

h bar = h/2π

So

1.05x 10^34=h/2pπ

h=1.05x 10^ 34(2π)=6.597x 10^-34Js

dp=(6.597x10^-34/4pπ)/(1x10^-10)

=5.25x10^-25 Jsm

Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.

Answers

Answer:

Answer:

A. Increasing the number of lines per length.

You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.11 mm and place your screen 8.63 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.71 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength lambda expressed in nanometers?

Answers

Answer:

 λ = 605.80 nm

Explanation:

These double-slit experiments the equation for constructive interference is

          d sin θ = m λ

where d is the distance between the slits, λ the wavelength of light and m an integer that determines the order of interference.

In this case, the distance between the slits is d = 1.11 mm = 1.11 10⁻³ m, the distance to the screen is L = 8.63 m, the range number m = 10 and ay = 4.71 cm

Let's use trigonometry to find the angle

         tan θ = y / L

as the angles are very small

          tan θ = sin θ / cos θ = sin θ

we substitute

         sin θ = y / L

we substitute in the first equation

         d y / L = m λ          

          λ = d y / m L

let's calculate

           λ = 1.11 10⁻³ 4.71 10⁻²/ (10 8.63)

           λ = 6.05805 10⁻⁷ m

let's reduce to nm

          λ = 6.05805 10⁻⁷ m (10⁹ nm / 1m)

          λ = 605.80 nm

A wire along the z axis carries a current of 4.9 A in the z direction Find the magnitude and direction of the force exerted on a 3.3 cm long length of this wire by a uniform magnetic field pointing in the x direction having a magnitude 0.43T

Answers

Answer:

0.069 N, in the X direction

Explanation:

According to Flemming's left hand rule, it sates that if the first three fingers of the left hand are held mutually at right angles to one another, the fore finger will point in the direction of magnetic field, the middle finger will point in direction of current, while the thumb will point to the direction of force.

Mathematically the law is stated as

F= BIL

given data

Magnetic field B=  0.43T

Current I= 4.9 A

length of conductor L= 3.3cm to meter , 3.3/100=  0.033 m

Applying the formula the force is calculated as

F= 0.43*4.9* 0.033= 0.069 N

According to Flemming's rule the direction of all parameters are mutually perpendicular to one another, then the Force is in the X direction

An inductor is connected to the terminals of a battery that has an emf of 12.0 VV and negligible internal resistance. The current is 4.96 mAmA at 0.800 msms after the connection is completed. After a long time the current is 6.60 mAmA. Part A What is the resistance RR of the inductor

Answers

i

CHECK COMPLETE QUESTION BELOW

inductor is connected to the terminals of a battery that has an emf of 12.0 VV and negligible internal resistance. The current is 4.96 mAmA at 0.800 msms after the connection is completed. After a long time the current is 6.60 mAmA.

Part A)What is the resistance RR of the inductor

PART B) what is inductance L of the conductor

Answer:

A)R=1818.18 ohms

B)L=1.0446H

Explanation:

We were given inductor L with resistance R , there is a connection between the battery and the inductor with Emf of 12V, we can see that the circuit is equivalent to a simple RL circuit.

There is current of 4.96mA at 0.8ms, at the end of the connection the current increase to 6.60mA,

.

a)A)What is the resistance RR of the inductor?

The current flowing into RL circuit can be calculated using below expresion

i=ε/R[1-e⁻(R/L)t]

at t=∞ there is maximum current

i(max)= ε/R

Where ε emf of the battery

R is the resistance

R=ε/i(max)

= 12V/(6.60*10⁻³A)

R=1818.18 ohms

Therefore, the resistance R=1818.18 ohms

b)what is inductance L of the conductor?

i(t=0.80ms and 4.96mA

RT/L = ⁻ln[1- 1/t(max)]

Making L subject of formula we have

L=-RT/ln[1-i/i(max)]

If we substitute the values into the above expresion we have

L= -(1818.18 )*(8.0*10⁻⁴)/ln[1-4.96/6.60)]

L=1.0446H

Therefore, the inductor L=1.0446H

At a rock concert, a dB meter registered 131 dB when placed 2.6 m in front of a loudspeaker on the stage. The intensity of the reference level required to determine the sound level is 1.0×10−12W/m2.
a) What was the power output of the speaker, assuming uniform spherical spreading of the sound and neglecting absorption in the air?
b) How far away would the sound level be 86 dB?

Answers

Answer:

Explanation:

A) 131 dB = 10*log(I / 1e-12W/m²)

where I is the intensity at 2.6 m away.

13.1 = log(I / 1e-12W/m²

1.25e13= I / 1e-12W/m²

I = 1.25 x10^1W/m²

power = intensity * area

P = I * A = 12.5W/m² * 4π(2.6m)² =1061 W ◄

B) 86 dB = 10*log(I / 1e-12W/m²)

8.6 = log(I / 1e-12W/m²)

3.98e8 = I / 1e-12W/m²

I = 3.98e-4 W/m²

area A = P / I = 1061W / 3.98e-4W/m² = 2.66e6 m²

A = 4πr²

2.66e6 m² = 4πr²

r = 14.5m ◄

An atom in the ground state has a collision with an electron, then emits a photon with a wavelength of 1240 nm. What conclusion can you draw about the initial kinetic energy of the electron

Answers

Answer:

attached below is the free body diagram of the missing  illustration

Initial kinetic energy of the electron = 3 eV

Explanation:

The conclusion that can be drawn about the kinetic energy of the electron is

[tex]E_{e} = E_{3} - E_{1}[/tex]

E[tex]_{e}[/tex] = initial kinetic energy of the electron

E[tex]_{1}[/tex] = -4 eV

E[tex]_{3}[/tex] = -1 eV

insert the values into the equation above

[tex]E_{e}[/tex] = -1 -(-4)  eV

   = -1 + 4 = 3 eV

A fireperson is 50 m from a burning building and directs a stream of water from a fire hose at an angle of 300 above the horizontal. If the initial speed of the stream is 40 m/s the height that the stream of water will strike the building is

Answers

Answer:

We can think the water stream as a solid object that is fired.

The distance between the fireperson and the building is 50m. (i consider that the position of the fireperson is our position = 0)

The angle is 30 above the horizontal. (yo wrote 300, but this has no sense because 300° implies that he is pointing to the ground).

The initial speed of the stream is 40m/s.

First, using the fact that:

x = R*cos(θ)

y = R*sin(θ)

in this case R = 40m/s and θ = 30°

We can use the above relation to find the components of the velocity:

Vx = 40m/s*cos(30°) = 34.64m/s

Vy = 20m/s.

First step:

We want to find the time needed to the stream to hit the buildin.

The horizontal speed is 34.64m/s and the distance to the wall is 50m

So we want that:

34.64m/s*t = 50m

t = 50m/(34.64m/s) = 1.44 seconds.

Now we need to calculate the height of the stream at t = 1.44s

Second step:

The only force acting on the water is the gravitational one, so the acceleration of the stream is:

a(t) = -g.

g = -9.8m/s^2

For the speed, we integrate over time and we get:

v(t) = -g*t + v0

where v0 is the initial speed: v0 = 20m/s.

The velocity equation is:

v(t) = -g*t + 20m/s.

For the position, we integrate again over time:

p(t) = -(1/2)*g*t^2 + 20m/s*t + p0

p0 is the initial height of the stream, this data is not known.

Now, the height at the time t = 1.44s is

p(1.44s) = -5.9m/s^2*(1.44s)^2 + 20m/s*1.44s + po

             = 16.57m + p0

So the height at wich the stream hits the building is 16.57 meters above the initial height of the fire hose.

A long solenoid of radius 3 cm has 1100 turns per meter. If the solenoid carries a current of 1.5 A, then calculate the magnetic field at the center of the solenoid.a. 2.1E^-3T b. 1.0E^-3 T c. 1.7E^-4T d. 7.0E^-2 T

Answers

Answer:

The magnetic field at the center of the solenoid is 2.1  × 10⁻³ T

Explanation:

The magnetic field B at the center of the solenoid is given by

B = μ₀ni where μ₀ = permeability of free space = 4π × 10⁻⁷H/m, n = number of turns per unit length of the solenoid = 1100 turns per meter and i = current in the solenoid = 1.5 A.

So B = μ₀ni

= 4π × 10⁻⁷H/m × 1100 × 1.5 A

= 4π × 10⁻⁷H/m × 1650 A-turns/m

= 20734.5 × 10⁻⁷T  

= 2.07345 × 10⁻³ T

≅ 2.1  × 10⁻³ T

So the magnetic field at the center of the solenoid is 2.1  × 10⁻³ T

What is the frequency of the fundamental mode of vibration of a steel piano wire stretched to a tension of 440 N? The wire is 0.630 m long and has a mass of 5.69 g.

Answers

Answer:

220.698Hz

Explanation:

The fundamental frequency f₀ is expressed as f₀ =V/2L where;

V is the speed of the string = [tex]\sqrt{\frac{T}{M} }[/tex]

m is the mass of the string

L is the length of the string

T is the tension in the string

f₀ = [tex]\frac{1}{2L} \sqrt{\frac{T}{m} }[/tex]

Given datas

m = 5.69g = 0.00569 kg

T = 440N

L = 0.630 m

Required

Fundamental frequency of the steel piano wire f₀

[tex]f_0 = \frac{1}{2(0.630)}\sqrt{\frac{440}{0.00569} } \\ \\f_0 = \frac{1}{1.26}\sqrt{77,328.65 } \\\\f_0 = \frac{1}{1.26} * 278.08\\\\f_0 = 220.698Hz[/tex]

Hence the frequency of the fundamental mode of vibration of the steel piano wire stretched to a tension of 440N is 220.698Hz

A light beam has a wavelength of 330 nm in a material of refractive index 1.50. In a material of refractive index 2.50, its wavelength will be In a material of refractive index 2.50, its wavelength will be:_________
a. 495 nm .
b. 330 nm .
c. 220 nm .
d. 198 nm .
e. 132 nm .

Answers

Answer:

The wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm

d. 198 mm

Explanation:

Refractive index is given by;

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}}[/tex]

where;

[tex]\lambda_{vacuum}[/tex] is the wavelength of the light beam in vacuum

[tex]\lambda_{medium}[/tex] is the wavelength of the beam in a material

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}} \\\\\lambda_{vacuum} = \mu *\lambda _{medium}\\\\\ the \ wavelength \ of \ the \ light \ beam \ is \ constant \ in \ a \ vacuum\\\\ \mu_1 *\lambda _{medium}_1 = \mu_2 *\lambda _{medium}_2\\\\\lambda _{medium}_2 = \frac{ \mu_1 *\lambda _{medium}_1 }{ \mu_2} \\\\\lambda _{medium}_2 =\frac{1.5*330}{2.5} \\\\\lambda _{medium}_2 = 198 \ mm[/tex]

Therefore, the wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm.

d. 198 mm

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Other Questions
Assignment: Counting Investigation Dakota and Karen noticed that there were a bunch of combinations available in their school cafeteria. Think about a meal at your school, or maybe a favorite restaurant. How many combinations of choices do you have? Create a tree diagram listing the possible combinations, and count the results. 1. For what will you find the number of combinations? ______________________________________________________________________________________________________________________ 2. List at least three categories to consider. ______________________________________________________________________________________________________________________ 3. List the choices within each category. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 4. Assign each choice a symbol. Ex. juice = (diamond shape) ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 5. Create a tree diagram to determine the number of combinations available. 6. List all possible combinations and count the total number of possibilities. ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 15 x = -27 + 6x cul es la respuesta de la ecuacin, me ayudan? gracias! A share of stock is now selling for $110. It will pay a dividend of $8 per share at the end of the year. Its beta is 1. What do investors expect the stock to sell for at the end of the year? Assume the risk-free rate is 4% and the expected rate of return on the market is 15%. (Round your answer to 2 decimal places.) Expected selling price $ In what order should you evaluate problems? As referred to in the NSMIA, the term "covered security" would apply topreferred stock in the XYZ Corporation whose common stock is listed on the NYSEcommon stock in ABCD, Inc., a stock traded in the Pink SheetsSpringfield, Illinois, municipal bonds sold to a resident of Springfield, IllinoisSpringfield, Illinois, municipal bonds sold to a resident of Springfield, MissouriA) II and IIIB) III and IVC) I and IVD) I and II 25. Use the prompt in parentheses to answer the following question. Your answer should be a complete sentence in the preterite tense. What time did you arrive at school today? (7 in the morning) Along with most ancient Greek philosophers, Ptolemy believed that the earth was at the center of the universe. Against this ancient and long-lasting tradition, Copernicus asserted the notion that the sun was at the center of the solar system. Thomas Kuhn would call this an example of:_________.A) a paradigm shift,as it challenged the existing paradigm of the day.B) how normative science triumphs over biased science.C) a normal scientific discovery,because it gathered new and useful information.D) the power of facts to correct errors. Help me ASAP for this picture The image below shows plant cells.plant cellsWhat feature of cell theory is best demonstrated in the image?A. Cells are formed from other cells.B. Cells are the basic units of structure and make up tissues.C. Organisms are made up of a few similar cells.D. Organisms have cells with different shapes and functions. (PLEASE PLEASE HELP) Read the following passage and answer the questions below.Crunch Rocks Cereal AdvertisementHey kids! I want to tell you about a new cereal straight from the rock piles of Georgia called Crunch Rocks. This cereal is crushed by the greasy care of sweaty, sledge-hammering Georgia miners. Each solid stone is carefully selected by the best-behaving criminals in the state and then pulverized into tiny kernels of gravel-like goodness to fill your cereal bowl.With Crunch Rocks, you dont have to worry about cavities because you wont have any teeth! The rock pebbles of Crunch of Rocks will destroy them so you have nothing left in your mouth but bleeding gums. You wont have to waste your time morning and night brushing and flossing, or ever smile for the camera again.Crunch of Rocks is filled with tasty, hard center of delicious fiber and iron. Its multi-mineral composition will rough up your esophagus and then tear through your intestines. While Georgia isnt the Sunshine State, the rocks in Crunch Rocks have spent centuries baking in the sunlight and are a great source of Vitamin D.Be sure to place Crunch Rocks at the bottom of your grocery bad so it doesnt smash your eggs and bread. Crunch Rocks can also be sued to line your fishbowl or fill potholes in your driveway.The words its multi-mineral composition will rough up your esophagus and then tear through your intestines creates an image of:Group of answer choicesa. A well-rounded breakfastb. A painful eating experiencec. A healthy, nutritious meald. A bowl full of tiny stones According to the mean-variance criterion, portfolio A is better than portfolio B for a risk-averse investor whenever _____. What is the length of AC A company has net income of $925,000; its weighted-average common shares outstanding are 185,000. Its dividend per share is $0.70, its market price per share is $93, and its book value per share is $83.50. Its price-earnings ratio equals: A reaction mechanism has the following proposed elementary steps:Step 1: A B + CStep 2: A + B DStep 3: 2 A + D C + EIf Step 2 is the rate-limiting step, what would the proposed rate law for this mechanism be? What is credit?an arrangement in which you receive money, goods, or services now in exchange for the promise of payment lateran arrangement in which you receive goods or services in exchange for other goods and servicesan arrangement in which you receive money now and pay it bulk later with fees? (20 POINTS) Explain two problems the U.s. Government faced because of the Articles of confederation. Then describe how the u.s constitution addressed these problems The amount of clay students used for their last art project is weighed. The line plot displays the amounts of clay. How much more clay did the students who used of a pound use than the students who used of a pound? Place the correct punctuation for I like to read several things newspapers magazines books and poetry. Three-fourths (x minus 8) = 12 Quotes should take up no more thanpercent of your paper.O A. 50OB. 80O C. 10O D. 25