Answer:
17
26
35
44
53
62
71
80
Step-by-step explanation:
Let's solve the problem step by step.
Let's assume the two-digit number is represented as "AB," where A represents the tens digit and B represents the units digit. According to the problem, the difference between the number "AB" and the number "BA" is 54.
So, we have the equation:
(10A + B) - (10B + A) = 54
Simplifying the equation, we get:
9A - 9B = 54
Dividing both sides of the equation by 9, we have:
A - B = 6
Now, we need to find two-digit numbers where the difference between the tens digit and the units digit is 6. The possible combinations are:
(1, 7)
(2, 8)
(3, 9)
(4, 10) - But 10 is not a valid unit digit since it exceeds the range of a two-digit number.
So, the valid two-digit numbers that satisfy the given condition are:
17
26
35
44
53
62
71
80
Therefore, there are 8 two-digit numbers that have a difference of 54 when subtracted from the number formed by reversing their digits.
Jim is designing a seesaw for a children's park. The seesaw should make an angle of 30° with the ground, and the maximum height to which it should rise is 2 meters, as shown below:
A seesaw is shown with one end on the ground and the other in the air. The seesaw makes an angle of 30 degrees with the ground. The height of the seesaw from the ground, at the other end, is labeled 2 meters.
What is the maximum length of the seesaw?
3 meters
3.5 meter
4 meters
4.5 meters
You are giving the angle and opposite leg.
Using the law of sines:
Sin(angle) = opposite leg / hypotenuse
Sin(30) = 2/ hypotenuse
Hypotenuse = 2/sin(30)
Hypotenuse = 4 meters
The maximum length of the seesaw is : (C). 4 meters
Meaning of Maximum lengthMaximum length can be defined as the total distance between two point in consideration.
Maximum length can also be said to be the total sum of all the length along a distance.
In the case above, the hypotenuse side is the maximum length.
In conclusion, The maximum length of the seesaw is : 4 meters
Learn more about maximum length : https://brainly.com/question/16172081
#SPJ2
Write the equation of the line in fully simplified slope-intercept form.
From the graph, we can write that
The equatuon of line passes through (0,4) and
(-8,0) points.
So
[tex] \sf \: slope \: \: m = \frac{4 - 0}{0 - ( - 8)} = \frac{4}{8} = \frac{1}{2} \\ \therefore \green{\sf \: m = \frac{1}{2} }[/tex]
Intercept of Y-axis c = 4
So equation is :
[tex] \bf \: y = mx + c \\ \bf = > y = \frac{1}{2} x + 4 \\ \bf = > 2y = x + 4 \\ \bf= > \orange{ \boxed{ \bf \: x - 2y + 4 = 0}}[/tex]
A survey is conducted to determine the percentage of students at state universities who change their major at least once. In a study of 100 students 78% indicated that they graduated with a major different from the one with which they entered college. Determine a 90% confidence interval for the percentage of students who change their major.
Answer:
Step-by-step explanation:
Confidence Level - "P" values
90% 1.645
Confidence Interval - "P" values
(0.7119 , 0.8481 )
Please Help! I will give you the brainiest and a lot of points!
a.Use the information given by the graph to determine the truth value of the compound statement. Choose the correct answer below.
b. Write the compound statement's negation. Choose the correct answer below
c. Use the information in the graph to determine the truth value of the negation in part (b). (Is it True or False?)
Answer: TRUE
Step-by-step explanation: THE COMPOUD STATE MEN DETERMEND BY HE GRAPH IS THE SOLUTION AS SAID BY YOU IT IS TRUE BECAUSE THE READINGS ON THE GRAPH SHOW ITS TRUE
A store spends $10 for each pair of Brand X jeans and adds a 120% markup to the cost. What is the selling price of the jeans? (circle one)
Answer:
12
Step-by-step explanation:
120 divided by 100 =1.2 x 10
Find a 3 digit number with all these properties: all 3 digits are different, the 1st digit is the square of the second digit in the 3rd digit on one more than twice the second digit
Answer:
425 or 937
Step-by-step explanation:
First, I listed out all the possible numbers for the first digits, namely, the squares under 10.
1*1=1
2*2=4
3*3=9
Since all the digits have to be different, the first digit cannot be 1 because 1 squared is 1. So that leaves us 4 and 9 to work with, which I tried out one at a time.
Starting with 4:
2 squared is 4.
42
2 times 2 plus 1 equals 5.
425
Starting with 9:
3 squared is 9.
93
2 times 3 plus 1 equals 7.
937
So here we have two numbers that both work and meet the requirements (unless I understood the problem wrong at the part where it says "...the second digit in the 3rd digit on one more than twice the second digit")!
I hope this helped! :D
State if the scenario involves a permutation or a combination. Then find the number of possibilities.
The batting order for nine players on a 12 person team.
Permutation/Combination:
Answer:
Step-by-step explanation:
combination
is answer of this question
write down the length of the diameter of the circle
Answer:
Diameter = 2 × Radius
Step-by-step explanation:
Answer:
Step-by-step explanation:
The diameter of a circle is the length of the line through the center and touching two points on its edge. In the figure above, drag the orange dots around and see that the diameter never changes. The diameter is also a chord.
In the figure, triangles ABC and DEF are congruent.
Find the measure of DF.
a. 13m
b. 13m
c. 7m
d. 13.928m
Please show work to help me understand.
since the two triangles are congruent..
AB=ED
AC=FD(side opposite to the right angle)
FD=AC
•°•FD=13m
Find the length of the segment indicated.
A. 16.4
B. 11.4
C. 12.1
D. 13.3
using Pythagorean triplet
[tex]\\ \sf\longmapsto P^2=H^2-B^2[/tex]
[tex]\\ \sf\longmapsto x^2=19.6^2-15.4^2[/tex]
[tex]\\ \sf\longmapsto x^2=384.16-237.16[/tex]
[tex]\\ \sf\longmapsto x^2=147[/tex]
[tex]\\ \sf\longmapsto x=\sqrt{147}[/tex]
[tex]\\ \sf\longmapsto x=12.1[/tex]
Answer:
C.) 12.1
Step-by-step explanation:
I got it correct on founders edtell
sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
Recall the angle sum identity for cosine:
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
==> sin(x) sin(y) = 1/2 (cos(x - y) - cos(x + y))
Then rewrite the equation as
sin(4x) sin(5x) + sin(4x) sin(3x) - sin(2x) sin(x) = 0
1/2 (cos(-x) - cos(9x)) + 1/2 (cos(x) - cos(7x)) - 1/2 (cos(x) - cos(3x)) = 0
1/2 (cos(9x) - cos(x)) + 1/2 (cos(7x) - cos(3x)) = 0
sin(5x) sin(-4x) + sin(5x) sin(-2x) = 0
-sin(5x) (sin(4x) + sin(2x)) = 0
sin(5x) (sin(4x) + sin(2x)) = 0
Recall the double angle identity for sine:
sin(2x) = 2 sin(x) cos(x)
Rewrite the equation again as
sin(5x) (2 sin(2x) cos(2x) + sin(2x)) = 0
sin(5x) sin(2x) (2 cos(2x) + 1) = 0
sin(5x) = 0 or sin(2x) = 0 or 2 cos(2x) + 1 = 0
sin(5x) = 0 or sin(2x) = 0 or cos(2x) = -1/2
sin(5x) = 0 ==> 5x = arcsin(0) + 2nπ or 5x = arcsin(0) + π + 2nπ
… … … … … ==> 5x = 2nπ or 5x = (2n + 1)π
… … … … … ==> x = 2nπ/5 or x = (2n + 1)π/5
sin(2x) = 0 ==> 2x = arcsin(0) + 2nπ or 2x = arcsin(0) + π + 2nπ
… … … … … ==> 2x = 2nπ or 2x = (2n + 1)π
… … … … … ==> x = nπ or x = (2n + 1)π/2
cos(2x) = -1/2 ==> 2x = arccos(-1/2) + 2nπ or 2x = -arccos(-1/2) + 2nπ
… … … … … … ==> 2x = 2π/3 + 2nπ or 2x = -2π/3 + 2nπ
… … … … … … ==> x = π/3 + nπ or x = -π/3 + nπ
(where n is any integer)
Need help please due in 1 hour and 30 mins
Answer:
the answer of that is number C
Mai is kayaking on a river that has a current of 2 miles per hour. If r represents her rate in calm water, then (r + 2) represents her rate with the current, and (r – 2) represents her rate against the current. Mai kayaks 2 miles downstream and then back to her starting point. Use the formula for time,
t
=
d
r
t=
r
d
, where d is the distance, to write a simplified expression for the total time it takes Mai to complete the trip.
4
(
r
+
2
)
(
r
−
2
)
h
o
u
r
s
(r+2)(r−2)
4
hours
4
r
(
r
+
2
)
h
o
u
r
s
(r+2)
4r
hours
4
r
(
r
+
2
)
(
r
−
2
)
h
o
u
r
s
(r+2)(r−2)
4r
hours
4
(
r
−
2
)
h
o
u
r
s
(r−2)
4
hours
Answer:
Plese explain your answer properly
Step-by-step explanation:
Answer:what is the answer
Step-by-step explanation:
Help meee I’ll give 10 pts and brainliest!!!
Step-by-step explanation:
i) [tex]\overline{AB} = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}[/tex]
[tex]\:\:\:\:\:\:\:=\sqrt{(2)^2 + (12)^2} = 12.3[/tex]
ii) [tex]m = \dfrac{y_A - y_B}{x_A - x_B} = \dfrac{-12}{2} = -6[/tex]
iii) [tex](\overline{x},\:\overline{y}) = \left(\dfrac{x_A + x_B}{2},\:\dfrac{y_A + y_B}{2}\right)[/tex]
[tex]\:\:\:\:\:\:\:=(3,\:-2)[/tex]
a test for diabetes results in a positive test in 95% of the cases where the disease is present and a negative test in 07% of the cases where the disease is absent. if 10% of the population has diabetes, what is the probability that a randomly selected person has diabetes, given that his test is positive
Answer:
0.9378 = 93.78% probability that a randomly selected person has diabetes, given that his test is positive.
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Positive test
Event B: Person has diabetes.
Probability of a positive test:
0.95 out of 0.1(person has diabetes).
0.007 out of 1 - 0.1 = 0.9(person does not has diabetes). So
[tex]P(A) = 0.95*0.1 + 0.007*0.9 = 0.1013[/tex]
Probability of a positive test and having diabetes:
0.95 out of 0.1. So
[tex]P(A \cap B) = 0.95*0.1 = 0.095[/tex]
What is the probability that a randomly selected person has diabetes, given that his test is positive?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.095}{0.1013} = 0.9378[/tex]
0.9378 = 93.78% probability that a randomly selected person has diabetes, given that his test is positive.
Using the identity (a + b) (a - b) = a - b², evaluate 49 × 51.
[tex]\\ \sf\longmapsto 49\times 51[/tex]
[tex]\\ \sf\longmapsto (50-1)(50+1)[/tex]
[tex]\\ \sf\longmapsto (50)^2-(1)^2[/tex]
[tex]\\ \sf\longmapsto 2500-1[/tex]
[tex]\\ \sf\longmapsto 2499[/tex]
49 × 51
Using Identity(a + b) (a - b) = a - b²Solution⇛(50 + 1) (50 - 1)
⇛(50)² - (1)²
⇛2500 - 1
⇛2499
Given the recursive formula shown, what are the first 4 terms of the sequence?
Answer:
5,20,80,320
Step-by-step explanation:
a1 = 5
an = 4 an-1
Let n = 2
a2 = 4 * a1 = 4*5 = 20
Let n = 3
a3 = 4 * a2 = 4*20 = 80
Let n = 4
a4 = 4 * a3 = 4*80 = 320
Need the help thanks guys
Answer:
x=−5+√29 or x=−5−√29
Step
Let's solve your equation step-by-step.
x2+10x+10=14
Step 1: Subtract 14 from both sides.
x2+10x+10−14=14−14
x2+10x−4=0
For this equation: a=1, b=10, c=-4
1x2+10x+−4=0
Step 2: Use quadratic formula with a=1, b=10, c=-4.
x=
−b±√b2−4ac
2a
x=
−(10)±√(10)2−4(1)(−4)
2(1)
x=
−10±√116
2
x=−5+√29 or x=−5−√29
Help 50 point question
Answer:
1/3
Step-by-step explanation:
.444444444(repeating)- .111111111111(repeating)
.44444444......
-.11111111........
--------------------
.33333333........
Let x = .3333333.....
10x = 3.3333333.....
Subtract the first equation from the second
10x = 3.33333.....
-x = .33333.....
--------------------------
9x = 3
x = 3/9
x = 1/3
---------------------------
find out the area of the following composite figures
find the probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10, all of the same suit. What is the probability of being dealt this hand is
Answer: 20/52 x 4/51 x 3/50 x 2/49 x 1/48 = .00000153908
Step-by-step explanation:
The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10 of the same suit is 0.00000153908
What is Probability?
The probability that an event will occur is measured by the ratio of favorable examples to the total number of situations possible
The value of probability lies between 0 and 1
Given data ,
Let the number of cards in deck be = 52 cards
Total number of cards selected = 5
The number of ways of choosing 5 cards = ⁵²C₅
The cards selected are of the same suit
So , there are 4 ways to select them , Hearts , Clubs , Spades and Diamonds = ⁴C₁
And there is only one way to select the cards 6 , 7 , 8 , 9 , 10 = 1
Now , we use combination to select the cards in a deck,
So,
The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10, all of the same suit is calculated by,
P ( x ) = 1 / ⁵²C₅ x ⁴C₁ x 1
P ( x ) = 1 / 52! / ( 47! x 5! ) x 4! / 3! x 1
P ( x ) = 1 / ( 52 x 51 x 50 x 49 x 48 ) / ( 2 x 3 x 4 x 5 ) x 4
P ( x ) = 1 / ( 2598966 ) x 4
P ( x ) = 4 / 2598966
P ( x ) = 0.00000153908
Hence , The probability of being dealt 5 cards from a standard 52 card deck, and the cards are 6,7,8,9, and 10 of the same suit is 0.00000153908
To learn more about probability click :
https://brainly.com/question/17089724
#SPJ2
This answer was confusing for sure
Explanation:
Normally, y = cos(x) has a period of 2pi. This means that every 2pi horizontal units, the graph repeats itself. However, we can see that the period here is pi units instead.
One way to see this is to start at (0,1). This is a local max point. Move to its neighboring local max at (pi,1). We have moved pi units along the x axis and the cycle is finished, after which point the cycle repeats itself.
Since T = pi is the period, we then can say B = 2pi/T = 2pi/pi = 2
This is then plugged into y = A*cos(B(x-C))+D where
A = 1
C = 0
D = 0
That leads us to y = cos(2x)
Since the period is often connected to time values, it might help to think of this wave's oscillations occurring twice as often compared to y = cos(x). So that might help see why we replace the x with 2x.
To collect data on the signal strengths in a neighborhood, Briana must drive from house to house and take readings. She has a graduate student, Henry, to assist her. Briana figures it would take her 12 hours to complete the task working alone, and that it would take Henry 18 hours if he completed the task by himself. How long will it take Briana and Henry to complete the task together?
a. 6.7 hours
b. 7.2 hours
c. 5.6 hours
Answer:
The correct answer is B. It will take them 7.2 hours.
Step-by-step explanation:
Given that to collect data on the signal strengths in a neighborhood, Briana must drive from house to house and take readings, and she has a graduate student, Henry, to assist her, and Briana figures it would take her 12 hours to complete the task working alone, and that it would take Henry 18 hours if he completed the task by himself, to determine how long will it take Briana and Henry to complete the task together the following calculation must be performed:
1/12 + 1/18 = X
18 / (12 x 18) + 12 / (18 x 12) = X
30/216 = X
5/36 = X
36/5 = 7.2
Therefore, they will be able to finish the task in 7.2 hours.
How many times greater is
3.8 X 10^5 than
1.9 X 10^2
2
20
200
2000
Answer:
2 * 10^3 = 2000.
Step-by-step explanation:
3.8/1.9 * 10^5/10^2
= 2 * 10^3
The length of a rectangle is (x+1) cm, and its width is 5 cm less than its length.
a) Express the area of the rectangle, A cm^2 , in terms of x.
b) The area of the rectangle is 24 cm^2. Calculate the length and width of the rectangle.
Answer:
a) x^2-3x-4(you also can express it as (x+1)(x-4))
b)The length is 8 cm, the width is 3 cm
Step-by-step explanation:
a) The length is x+1
The width is (x+1-5)= x-4
The area is the product of the length and the width
(x+1)(x-4)= x^2-3x-4
b) The formula for counting the area is x^2-3x-4
It is equal to 24
S0 x^2-3x-4=24
x^2-3x-28=0
a=1 b=-3 c=-28
D= b^2-4ac= 3^2-4*(-28)= 9+112= 121
sqrtD= 11
x1= (-b-sqrtD)/2a=(3-11)/2=-4 The length is -4+1=-3<0, but the length must be positive, this root isn't suitable.
x2= (-b+sqrtD)/2a=(3+11)/2=7 The length is 7+1=8 (it is suitable)
8-5=3 - The width
which of the following are ordered pairs for the given function f(x)=1+x.? (1,2) (3,3) (0,2) (1,0) (0,1)
Answer:
no,
(
1
,
0
)
is not an ordered pair of the function
f
(
x
)
=
1
+
x
.
Step-by-step explanation:
Ordered pairs are usually written in the form
(
x
,
y
)
by tradition.
so usingthe function,
f
(
x
)
=
1
+
x
we can rewrite it as,
y
=
1
+
x
any pair of x and y that satisfy this equation are solutions to the equation.
so subbing in
(
1
,
0
)
,
0
=
1
+
(
1
)
0
=
2
which is not true so the point does not make the function true.
It might be easier to see graphically,
graph{1+x [-10, 10, -5, 5]}
any combination of x and y on this line make the equation true and as such are an ordered pair of the function.
Answer:
Step-by-step explanation:
A scientist has two solutions, which she has labeled Solution A and Solution B. Each contains salt. She knows that Solution A is 55% salt and Solution B is 70% salt. She wants to obtain 30 ounces of a mixture that is 60% salt. How many ounces of each solution should she use?
Answer:
Let x = the number of ounces of Solution A
Let y = the number of ounces of Solution B
x + y = 180 y = 180 - x
.60x + .85y = .75(180)
.60x + .85y = 135 Multiply both sides of the equation by 100 to remove the decimal points.
60x + 85y = 13500
60x + 85(180 - x) = 13500
60x + 15300 - 85x = 13500
-25x = -1800
x = 72ounces
y = 180 - 72
y = 108 ounces
Step-by-step explanation:
Wyzant (ask an expert) solution on their website.
a grocery store cashier packed 2 carts of groceries equally into 12 paper bags. what fraction of a cart is in each bag?
Answer:
Step-by-step explanation:
(2 carts)/(12 bags) = (⅙ cart)/bag
30 points!!!!!!
There are 6 red marbles, 9 blue marbles, and 10 green marbles in a bag.
What is the theoretical probability of randomly drawing a red marble and then a green marble?
10%
9.6%
64%
16%
Answer:
A or B depending on whether replacement takes place
Step-by-step explanation:
Without replacementprobability of getting a red marble=6/25
probability of getting a green marble (considering no replacement of marble drawn has taken place)=10/24
probability of randomly drawing a red marble and then a green marble=(6/25)*(10/24)=0.1=10%
With replacementprobability of getting a red marble=6/25
probability of getting a green marble (considering replacement of marble drawn has taken place)=10/25
probability of randomly drawing a red marble and then a green marble=(6/25)*(10/25)=0.096=9.6%
The table shows a linear function.
Which equation represents the function?
x f(x)
-6 -1
-3 4
0 9
3 14
A. f(x)= -5/3x+9
B. f(x)= -5/3x-9
C. f(x)= 9x+5/3
D. f(x)= 5/3x+9
Answer:
D.
Step-by-step explanation:
Try A:
x = -6, f(x) = -1:-
f(-6) = -5/3(-6) + 9
= 10 + 9 = 19 NOT A.
Try B:
f(-3) = -5/3(-3) - 9
= 5 - 9 = -4 NOT B
Try C:
9(0) + 5/3 = 5/4 NOT C
Try D:
f(3) = 5 + 9 = 14
f(0) = 9, f(-6) = -1 and f(-3) = 4