We can seperate (3b³) into two different parts, the constant and the variable.
The constant (3) and the variable (b) can both be squared and multiplied to get the correct answer, so:
3² = 9
(b³)² = [tex]b^{6}[/tex]
So, [tex](3b^{3})^{2} = 9b^{6}[/tex]
Triangles P Q R and S T U are shown. Angles P R Q and T S U are right angles. The length of P Q is 20, the length of Q R is 16, and the length of P R is 12. The length of S T is 30, the length of T U is 34, and the length of S U is 16.
Using the side lengths of △PQR and △STU, which angle has a sine ratio of Four-fifths?
∠P
∠Q
∠T
∠U
Answer:
[tex]\angle P[/tex]
Step-by-step explanation:
Given
[tex]\triangle PRQ = \triangle TSU = 90^o[/tex]
[tex]PQ = 20[/tex] [tex]QR = 16[/tex] [tex]PR = 12[/tex]
[tex]ST = 30[/tex] [tex]TU = 34[/tex] [tex]SU = 16[/tex]
See attachment
Required
Which sine of angle is equivalent to [tex]\frac{4}{5}[/tex]
Considering [tex]\triangle PQR[/tex]
We have:
[tex]\sin(P) = \frac{QR}{PQ}[/tex] --- i.e. opposite/hypotenuse
So, we have:
[tex]\sin(P) = \frac{16}{20}[/tex]
Divide by 4
[tex]\sin(P) = \frac{4}{5}[/tex]
Hence:
[tex]\angle P[/tex] is correct
Answer:
A or <P
Step-by-step explanation:
on edge 2021
prove ||a+b|| ≤ ||a||+|b||
Step-by-step explanation:
|a+b|=✓(a²+b²)
|a|+|b|=a+b
||a+b|| ≤ ||a||+|b||
In this problem, y = 1/(1 + c1e−x) is a one-parameter family of solutions of the first-order DE y' = y − y2. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition. y(0)=-1/3
If y (0) = -1/3, then
-1/3 = 1 / (1 + C e ⁻⁰)
Solve for C :
-1/3 = 1 / (1 + C )
-3 = 1 + C
C = -4
So the particular solution to the DE that satisfies the given initial condition is
[tex]\boxed{y=\dfrac1{1-4e^{-x}}}[/tex]
Which inequality is shown in the graph?
I need help plz
Answer:
I am pretty sure it is B.
Step-by-step explanation:
This is a line with a positive slope, therefore we can discard c and d.
the sign < will mean that the shaded in area will be on your right side.
How
many solutions are there to the equation below?
4(x - 5) = 3x + 7
A. One solution
B. No solution
O C. Infinitely many solutions
SUB
Answer:
A one solution
Step-by-step explanation:
4(x - 5) = 3x + 7
Distribute
4x - 20 = 3x+7
Subtract 3x from each side
4x-3x-20 = 3x+7-3x
x -20 = 7
Add 20 to each side
x -20+20 = 7+20
x = 27
There is one solution
Answer:
Step-by-step explanation:
Let's simplify that before we make the decision, shall we? We'll get rid of the parenthesis by distribution and then combine like terms.
4x - 20 = 3x + 7 and combining like terms and getting everything on one side of the equals sign:
1x - 27 = 0. Since that x has a power of 1 on it (linear), that means we have only 1 solution. If that was an x², we would have 2 solutions; if that was an x³, we would have 3 solutions, etc.
To make concrete, the ratio of cement to sand is 1 : 3. If cement and sand are sold in bags of equal mass, how many bags of cement are required to make concrete using 15 bags of sand?
Answer:
5 bags of cement are required.
Step-by-step explanation:
Since to make concrete, the ratio of cement to sand is 1: 3, if cement and sand are sold in bags of equal mass, to determine how many bags of cement are required to make concrete using 15 bags of sand the following calculation must be done:
Cement = 1
Sand = 3
3 = 15
1 = X
15/3 = X
5 = X
Therefore, 5 bags of cement are required.
Solve the system using substitution. x+y=-2 and x-y=-8
Answer:
1) x+y=-2
x=-2-y
2) x-y=-8
substitude value of x
(-2-y)-y=-8
-2-2y=-8
-2y=-6
y=3
Substitute value of y in 1
x=-2-3
x=-5
Brainliest please~
Rationalize the denominator and simplify
Answer:
x² - √3x / x² - 3
Step-by-step explanation:
To Do :-
To rationalize the denominator .Solution :-
We need to rationalize ,
x/ x + √3Multiply numerator and denominator by x-√3 :-
x( x - √3 ) / ( x +√3)( x -√3) x² - √3x / (x)² - (√3)² x² - √3x / x² - 3Use differentials to approximate the change in cost corresponding to an increase in sales (or production) of one unit. Then compare this with the actual change in cost.
Function x-Value
C=0.025x^2 + 3x + 4 x=10
dC= ___________
ΔC= __________
Answer:
dC=3.5
DC is between 3.475 and 3.525
Step-by-step explanation:
So let dx=1 since the change there is a change in 1 unit.
Find dC/dx by differentiating the expression named C.
dC/dx=0.05x+3
So dC=(0.05x+3) dx
Plug in x=10 and dx=1:
dC=(0.05×10+3)(1)
dC=(0.5+3)
dC=3.5
Let D be the change in cost-the triangle thing.
Since dx=1 we only want the change in unit to be within 1 in difference.
So this means we want it to be from x=9 to x=1] ot from x=10 to x=11.
Let's do from x=9 to x=10 first:
DC=C(10)-C(9)
DC=[0.025×10^2+3×10+4]-[0.025×9^2+3×9+4]
DC=[2.5+30+4]-[0.025×81+27+4]
DC=[36.5]-[2.025+31]
DC=[36.5]-[33.025]
DC=3.475
Now let's do from x=10 to x=11
DC=[0.025×11^2+3×11+4]-[0.025×10^2+3×10+4]
DC=[0.025×121+33+4]-[36.5]
DC=[3.025+37]-[36.5]
DC=[40.025]-[36.5]
DC=3.525
So DC, the change in cost where the change in unit is 1, is between 3.475 and 3.525.
This is a list of the heights ( each nearest cm ) of 12 children
150 134 136 139 131 141
132 134 136 137 150 146
Select the type of the data.
Discrete
Continuous
Categorical
Qualitative
choose one
NO FAKE ANSWERS
FIRST MARKED BRAINLIST
qualitative
Step-by-step explanation:
b cos the question is in quality format
Answer:
cutee!
SUP???
Hiii friend :]
cuteee~!
prettyyy
What is the answer to this question in the picture
9514 1404 393
Answer:
[tex]\displaystyle\sqrt{x+7}-\log{(x+2)}[/tex]
Step-by-step explanation:
It's pretty straightforward. You want ...
f(x) - g(x)
Substituting the given function definitions gives ...
[tex]\displaystyle\boxed{\sqrt{x+7}-\log{(x+2)}}[/tex]
Find the slope, if it exists, of the line containing the points (10,-3) and (10,-8).
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
m=
Answer:
The slope is undefined.
Step-by-step explanation:
The line must pass through the points (10,-3) and (10,-8), meaning that it must be vertical. The slope of a line is undefined if the line is vertical.
A half-century ago, the mean height of women in a particular country in their 20s was inches. Assume that the heights of today's women in their 20s are approximately normally distributed with a standard deviation of inches. If the mean height today is the same as that of a half-century ago, what percentage of all samples of of today's women in their 20s have mean heights of at least inches?
Answer:
0.26684
Step-by-step explanation:
Given that :
Mean, μ = 62.5
Standard deviation, σ = 1.96
P(Z ≥ 63.72)
The Zscore = (x - μ) / σ
P(Z ≥ (x - μ) / σ)
P(Z ≥ (63.72 - 62.5) / 1. 96) = P(Z ≥ 0.6224)
P(Z ≥ 0.6224) = 1 - P(Z < 0.6224)
1 - P(Z < 0.6224) = 1 - 0.73316 = 0.26684
Look at the numbers below. −9.8 −5.4 1.0 14.8 Which shows the best way to add these numbers using the Commutative and Associative Properties? A. (–9.8 + 1.0) + (–5.4 + 14.8) B. (–9.8 + 14.8) + (–5.4 + 1.0) C. (1.0 + 14.8) + (–9.8 + (–5.4)) D. (1.0 + (–9.8)) + (14.8 + (–5.4)
Answer:
B
Step-by-step explanation:
i did the test and it was correct, ur welcome
Which expression is equivalent to 7x , if b > 0?
Work Shown:
[tex]7x^2*\sqrt{2x^4}*6\sqrt{2x^{12}}\\\\7*6x^2*\sqrt{2x^4*2x^{12}}\\\\42x^2*\sqrt{4x^{4+12}}\\\\42x^2*\sqrt{4x^{16}}\\\\42x^2*\sqrt{(2x^8)^2}\\\\42x^2*(2x^8)\\\\42*2x^{2+8}\\\\84x^{10}\\\\[/tex]
So that's why the answer is choice C
The requirement that x is nonzero isn't technically necessary. The original expression simplifies to choice C even when x = 0 is the case. Also, we don't have issues such as division by zero errors that could arise. It's a bit curious why your teacher put in that condition.
Answer:
C.
Step-by-step explanation:
7x²×sqrt(2x⁴)×6×sqrt(2x¹²)
we see right away that as constant multiplication factor we have 7×6 = 42.
and then we get from each sqrt expression a sqrt(2), which leads to sqrt²(2) = 2 and therefore 42×2=84.
the only answer option with 84 is C.
now, to be completely sure, and to get some practice, let's look at the other parts :
sqrt(2x⁴) = sqrt(2)×sqrt(x⁴) = sqrt(2)×x²
sqrt(2x¹²) = sqrt(2)×sqrt(x¹²) = sqrt(2)×x⁶
=>
7x²×sqrt(2)×x²×6×sqrt(2)×x⁶ =7×6×2×x²×x²×x⁶ = 84x¹⁰
perfect. C is confirmed.
if (a + b) = 73 and a b =65 find value of a²+ b²
Step-by-step explanation:
Here,
by formula a^2+b^2=(a+b)^2-2ab
so,
or,(a+b)^2-2ab
or,(73)^2-2×65
or,5329-126
=5203 is the answer
On her summer abroad in France, Jane bought a pair of shoes for 54.82 euros. The store owner only had francs to give her as change. She gave him 55 euros. How much did he give her back in francs
Answer:
0.19
Step-by-step explanation:
Jane bought a shoe for 54.82 euros
She gave the store owner 55 euros
= 55-54.82
= 0.18 euros to franc
= 0.18× 1.08222
= 0.19 franc
Solve the equation 10 + y√ = 14
9514 1404 393
Answer:
y = 16
Step-by-step explanation:
Perhaps you want to solve ...
10 +√y = 14
√y = 4 . . . . . . subtract 10
y = 4² = 16 . . . square both sides
The soil samples for the next field indicate that fertilizer coverage needs to be
greater. To achieve this, you need to increase flow rate. How would you achieve
this?
A. Increase speed to approximately 7.1 mph so that you cover the field more
quickly
B. Increase the engine speed to approximately 2,000 rpm
C. Decrease speed to approximately 6.0 mph so that you cover the field more
slowly
D. Shift to second gear so that the engine speed slows
Answer:
A. Increase speed to approximately 7.1 mph so that you cover the field more.
Step-by-step explanation:
The soil samples for the next field require more fertilizer coverage therefore there is need for more field coverage by the equipment. The speed of the tractor will be increase to 7.1 mph so that greater area can be covered in lesser time.
There is a rack of 15 billiard balls. Balls numbered 1 through 8 are solid-colored. Balsa numbered 9 through 15 contain stripes. If one ball is selected at random, determine the odds for it being striped.
If one ball is selected at random, the odds for it being striped are 7 out of 15, or 7/15.
What do we know?
We know that there are 15 billiard balls.
We also know that balls numbered 1 through 8 are solid-colored, so we have 8 solid-colored balls.
And the other 7 balls are striped.
Now we want to find the probability for a randomly selected ball to be a striped ball.
Because all the balls have the same probability of being randomly selected, the probability of randomly selecting a striped ball is equal to the quotient between the number of striped balls (7) and the total number of balls (15).
Then we have:
P = 7/15 = 0.467
That quotient is also what is called the "odds"
So if one ball is selected at random, the odds for it being striped are 7 out of 15, or 7/15.
If you want to learn more, you can read:
https://brainly.com/question/23044118
Find x and explain how you found x
Answer:
x=60
Step-by-step explanation:
There are different ways to find x but this is what I found easiest.
To solve first note that AOD and CFB are vertical angles; this means that they are congruent. AOD consists of two angles with the measurements of 90 and x. CFB consists of two angles with the measurements of 30 and 2x. So, to find x set add the adjacent angles and set them equal to the other pair of angles. The equation would be [tex]90+x=30+2x[/tex]. First, subtract x from both sides; this makes the equation [tex]90=30+x[/tex]. Then, subtract 30 from both sides. This gives the final answer, x=60.
12,963 rounded to the nearest hundredth
9514 1404 393
Answer:
12,963.00 (in the US)12,96 (some other places)Step-by-step explanation:
In the US, a decimal point is represented by a period. This value is interpreted as an integer with no fractional part, so the fractional part is zero:
12,963.00
__
Some other places, a comma is used to identify the beginning of the decimal fraction. In that form, this number has a fractional part that has 3 as its thousandths digit. The value of 3 is less than 5, so the number is simply truncated at the hundredths place.
12,96
If the thousandths digit were 5 or greater, then 1 hundredth would be added to the truncated number.
What is the area of the shaded part of the figure?
Answer:
14cm²
Step-by-step explanation:
3x2=6,
3x2=6,
2x1=2,
6+6+2=14 cm^2
Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume z is positive.
√z ∗ √30z^2 ∗ √35z^3
Answer:
Step-by-step explanation:
You need to put parentheses around the radicands.
√z · √(30z²) · √(35z³) = √(z·30z²·35z³)
= √(1050z⁶)
= √(5²·42z⁶)
= √5²√z⁶√42
= 25z³√42
The obtained expression would be 25z³√42 which is determined by the multiplication of the terms of expression.
What is Perfect Square?A perfect Square is defined as an integer multiplied by itself to generate a perfect square, which is a positive integer. Perfect squares are just numbers that are the products of integers multiplied by themselves.
What are Arithmetic operations?Arithmetic operations can also be specified by adding, subtracting, dividing, and multiplying built-in functions. The operator that performs the arithmetic operations is called the arithmetic operator.
* Multiplication operation: Multiplies values on either side of the operator
For example 4*2 = 8
We have been the expression as:
⇒ √z · √(30z²) · √(35z³)
Multiply and remove all perfect squares from inside the square roots
⇒ √(z·30z²·35z³)
⇒ √(1050z⁶)
⇒ √(5²·42z⁶)
Assume z is positive.
⇒ √5²√z⁶√42
⇒ 25z³√42
Therefore, the obtained expression would be 25z³√42.
Learn more about Arithmetic operations here:
brainly.com/question/25834626
#SPJ2
Any help would be very appreciated
Answer:
21
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 60 = x / 7 sqrt(3)
7 sqrt(3) tan 60 = x
7 sqrt(3) sqrt(3) = x
7*3 = x
21 = x
My flvs teacher said that she was asked to hold off on grading my assignment. She will give me a call back when when gets more information. Anyone have the same problem?
Answer:
yeah, teachers kinda suck
Find the intersection of the parabola y=-2x^2-4x+2 and the line -6x+y=14
Answer:
(-2,2) and (-3,-4)
Step-by-step explanation:
by graphing the line and parabola, you should get this graph
Evaluate −a2+c2 when c=−4.
Answer:
[tex]a = 4, -4[/tex]
Step-by-step explanation:
Step 1: Plug in -4 for c
[tex]-a^{2} + c^{2}[/tex]
[tex]-a^{2} + (-4)^{2}[/tex]
[tex]-a^{2} + 16[/tex]
Step 2: Solve for a
[tex]-a^{2}+16-16=0-16[/tex]
[tex]-a^{2}/-1 = -16/-1[/tex]
[tex]a^{2} = 16[/tex]
[tex]\sqrt{a^{2}} = \sqrt{16}[/tex]
[tex]a = 4, -4[/tex]
Answer: [tex]a = 4, -4[/tex]
Use the t-distribution to find a confidence interval for a mean mu given the relevant sample results. Give the best point estimate for mu, the margin of error, and the confidence interval. Assume the results come from a random sample from a population that is approximately normally distributed. A 95% confidence interval for mu using the sample results x-bar equals 76.4, s = 8.6, and n = 42.
Point estimate = ?
Margin of error = ?
Answer:
Point estimate = 76.4
Margin of Error = 2.680
Step-by-step explanation:
Given that distribution is approximately normal;
The point estimate = sample mean, xbar = 76.4
The margin of error = Zcritical * s/√n
Tcritical at 95%, df = 42 - 1 = 41
Tcritical(0.05, 41) = 2.0195
Margin of Error = 2.0195 * (8.6/√42)
Margin of Error = 2.0195 * 1.327
Margin of Error = 2.67989
Margin of Error = 2.680
establish this identity
Answer:
see explanation
Step-by-step explanation:
Using the identities
tan x = [tex]\frac{sinx}{cosx}[/tex] , sin²x = 1 - cos²x
sin2x = 2sinxcosx
Consider left side
cosθ × sin2θ
= [tex]\frac{sin0}{cos0}[/tex] × 2sinθcosθ ( cancel cosθ )
= 2sin²θ
= 2(1 - cos²θ)
= 2 - 2cos²θ
= right side , then established