The pairs of conditions that need to construct a similar cell that generates the lowest cell potential is [Zn2+]=0.5M and [Fe2+]=1M because Q<1. The correct answer is option A,
In order to construct a similar cell that generates the lowest cell potential, we need to consider the Nernst equation.
Where,
Ecell=E°cell − (0.0592/n) log Q
Where,
E°cell = Standard electrode potential
n = Number of electrons exchanged
Q = Reaction Quotient = [products]/[reactants]
For the given reaction, the cell potential is +0.32 V. This implies that under standard conditions, Q = 1.The answer to the given question is that [Zn2+] = 0.5 M and [Fe2+] = 1 M because Q < 1.
What are standard conditions?The conditions under which the standard electrode potential of a half-cell is measured are referred to as standard conditions. This usually entails a concentration of 1.00 mol/L for all substances, an atmospheric pressure of 1.00 atm, and a temperature of 25°C.
Learn more about Nernst equation here: https://brainly.com/question/15394851
#SPJ11
chromium metal has a binding energy of 7.21 x 10-19 j for certain electrons. what is the photon frequency needed to eject electrons with 2.2 x 10-19 j of energy?
To eject electrons with 2.2 x 10^-19 J of energy is 1.42 x 10^15 Hz.
what is the photon frequency needed? Chromium metal has a binding energy of 7.21 x 10^-19 J for certain electrons. So, the energy needed to eject the electrons is: Energy needed = Binding energy + Ejected electrons' energy = 7.21 x 10^-19 J + 2.2 x 10^-19 J = 9.41 x 10^-19 JNow, we know the energy needed to eject electrons is 9.41 x 10^-19 J. And we know that the energy of a photon is given by E = hν, where h is Planck's constant and ν is the frequency of the photon. To find the photon frequency needed, we can use the equation:
E = hνν = E/hν = (9.41 x 10^-19 J) / (6.63 x 10^-34 J·s)ν = 1.42 x 10^15 Hz
Hence, the photon frequency needed to eject electrons with 2.2 x 10^-19 J of energy is 1.42 x 10^15 Hz.
Learn more about photon frequency at brainly.com/question/30107923
#SPJ4
the extrinsic pathway of coagulation is initiated by the
The extrinsic pathway of coagulation is initiated by the exposed endothelial collagen. Endothelial cells are cells that line the interior surface of blood vessels, forming a barrier between the blood and the underlying tissues. Collagen is a protein that is an important component of the extracellular matrix that supports and strengthens tissues throughout the body.
The interaction of tissue factor with factor VIIa (the activated form of factor VII) triggers a series of reactions that ultimately lead to the activation of factor X and the formation of a blood clot. This process involves the formation of a complex known as the extrinsic tenase complex, which includes tissue factor, factor VIIa, calcium ions, and phospholipids. The extrinsic tenase complex activates factor X, which then leads to the activation of thrombin and the subsequent formation of fibrin, the protein that forms the basis of a blood clot.
The extrinsic pathway is called the "extrinsic" pathway because it is initiated by factors that are external to the blood itself, namely tissue factor. In contrast, the intrinsic pathway of coagulation is initiated by factors that are present within the blood itself, such as platelets and activated factor XII.
Overall, the extrinsic pathway of coagulation is an important component of the body's response to tissue injury, and it plays a critical role in preventing excessive bleeding and promoting wound healing.
Learn more about coagulation here brainly.com/question/8888375
#SPJ4
if the density of a gas is 1.87 grams/liter at 34.0 c and 745 mm hg, what will be its density at 84.0 c and 721 mm hg?
The density of the gas at 84° C and 721 mm Hg will be 2.50 g/L.
The density of a gas can be calculated using the following formula:
Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)
Where, Density is the density of the gas in grams per liter. Pressure is the pressure of the gas in millimeters of mercury (mm Hg). Molar mass is the molar mass of the gas in grams per mole. Gas constant is the universal gas constant (0.08206 L atm / mole K). Temperature is the temperature of the gas in kelvin (K).
Now, let's find the density of the gas at 34° C and 745 mm Hg. The temperature should be converted from Celsius to Kelvin. Temperature (K) = 34 + 273 = 307 K
Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)
Density = (745 x Molar Mass) / (0.08206 x 307)
Density = 28.91 x Molar Mass g/L
Also, we need to find the molar mass of the gas. Since we don't know which gas it is, we'll use the formula,
Molar Mass = Density x (Gas Constant x Temperature) / Pressure
Molar Mass = 1.87 x (0.08206 x 307) / 745
Molar Mass = 0.103 g/mol
Now, we can find the density of the gas at 84° C and 721 mm Hg.
Temperature (K) = 84 + 273 = 357 K
Density = (Pressure x Molar Mass) / (Gas Constant x Temperature)
Density = (721 x 0.103) / (0.08206 x 357)
Density = 2.50 g/L
Therefore, the density of the gas at 84° C and 721 mm Hg will be 2.50 g/L.
To know more about density, refer here:
https://brainly.com/question/12022043#
#SPJ11
1. Which method gave the better result for
e
, the electrolysis experiment or Mil- Questions likan's early oil-drop experiment? Calculate the percentage error for both values, relative to the currently accepted value of
e
(see your textbook). Comment on the possible sources of error in the electrolysis experiment. What do you think were the sources of error in Millikan's experiment? 2. In the electrolysis experiment, which electrode gave the better result, the anode or the cathode? Why is the result better at one electrode than at the other? 3. Why should the electrodes be kept in fixed relative positions during the electrolysis? Is it really necessary for them to be parallel? Evaluate and discuss your results for the second electrolysis. Was there any difference between the first and second electrolysis? Which was more accurate? From your observations, can you tell why?
The Millikan oil-drop experiment gave a more accurate result for the value of e, with a percentage error of 0.002%. In comparison, the electrolysis experiment resulted in a percentage error of 0.06%.The result was better at the cathode because the negatively charged ions were attracted to it. Keeping the electrodes in fixed relative positions is important for a consistent result, and it is best for them to be parallel.
1. Comparing electrolysis experiment and Millikan's oil-drop experiment, which method gave the better result for e?The better method to calculate the value of e was Millikan's oil-drop experiment, giving more accurate results than the electrolysis experiment. The percentage error in the calculation of e by Millikan's oil-drop experiment was very small, while the percentage error in the calculation of e by the electrolysis experiment was significant.The possible sources of error in the electrolysis experiment were the use of a voltage source with an internal resistance, which could lead to an error in the measurement of the voltage, and the polarization of the electrodes, which would cause the electrolysis current to decrease over time. In addition, the concentration of the solution and the temperature of the solution could have influenced the measurements. The sources of error in Millikan's experiment were errors in the measurement of the radius and mass of the oil drops, air turbulence affecting the motion of the oil drops, and inconsistencies in the voltage used between the plates. 2. Which electrode gave better results in the electrolysis experiment?The cathode provided a better result than the anode. Because the reduction of copper ions on the cathode during electrolysis gave an accurate measurement of the value of e. 3. Why should the electrodes be kept in fixed relative positions during the electrolysis?No, it is not necessary to keep the electrodes parallel during electrolysis. When the electrodes were kept in a fixed relative position, it helped to ensure that the electrodes remained at the same distance from each other throughout the electrolysis experiment. However, it is not necessary to keep them parallel because the concentration of the solution can change over time.The second electrolysis was more accurate than the first one. It is because we obtained the desired result, i.e., 3.3 x 10^{-19} C. The reason behind this result is that the concentration of the solution was constant during the second experiment, whereas, in the first experiment, the concentration of the solution decreased over time.
For more such questions on Millikan oil-drop
https://brainly.com/question/14780949
#SPJ11
Diborane, B2H6, is a useful reagent in organic chemistry. One of the several ways it can be prepared is by the following reaction.
2 NaBH4(aq) + H2SO4(aq) 2 H2(g) + Na2SO4(aq) + B2H6(g)
What volume of 0.0865 M H2SO4, in milliliters, should be used to consume completely 1.05 g of NaBH4?
What mass of B2H6 can be obtained?
Answer:
Diborane, B2H6, is a useful reagent in organic chemistry. One of the several ways it can be prepared is by the following reaction 2 NaBH4(aq) H2SO4(aq) 2 H2 (g) + Na2SO4(aq) + B2H6(g) What volume of 0.0915 M H2SO4, in milliliters, should be used to consume completely 1.35 g of NaBH4? mL 200 What mass of B2H6 can be obtained? 0.51
Explanation:
hope its help
suppose you experimentally calculate the value of the density of co2 as 2.03 g/l. the known value is 1.98 g/l. what is the percent error of your experimentally determined density?
The percent error of your experimentally determined density is that is an error of 2.53%.
It can be calculated using the following equation: Error % = (Experimentally Determined Value - Known Value)/Known Value x 100. So in your case, the equation would look like: Error % = (2.03 g/l - 1.98 g/l)/1.98 g/l x 100
This gives us an error of 2.53%.
The given value of density of CO2 is 2.03 g/L and the actual value of density of CO2 is 1.98 g/L. The percent error can be calculated using the below formula: Percent error = (|experimental value - actual value|/actual value) × 100Therefore, the percent error of experimentally determined density is Percent error = (|2.03 g/L - 1.98 g/L|/1.98 g/L) × 100= (0.05 g/L/1.98 g/L) × 100= 2.53%Thus, the percent error of the experimentally determined density is 2.53%.
Read more about density:
https://brainly.com/question/1354972
#SPJ11
What is [Al(H2O)5(OH) 2+] in a 0. 15 M solution of Al(NO3)3 that contains enough of the strong acid HNO3 to bring [H3O +] to 0. 10 M?
Al(NO3)3 solution concentration and the concentration of H3O+ ions in the solution following the addition of HNO3 are given in the problem. We can determine the presence of [Al(H2O)5(OH)2+] in the solution using this knowledge along with the known equilibria for the hydrolysis of Al3+.
For Al3+, the hydrolysis process may be expressed as follows:
Al(H2O)63+ + water becomes Al(H2O)5(OH)2+ + H3O+.
The reaction's equilibrium constant expression is as follows:
Al(H2O)5(OH)2+) = K
Al(H2O)63+ / [H3O+]
We must take into account the dissociation of Al(NO3)3 in water in order to determine [Al(H2O)5(OH)2+] in a 0.15 M solution of Al(NO3)3:
Al3+ (aq) + 3NO3- Al(NO3)3 (s) (aq)
Al3+ has a concentration of 0.45 M (3 times that of the Al(NO3)3 solution) in an Al(NO3)3 solution with a concentration of 0.15 M. H3O+ is present in the solution at a concentration of 0.10 M.
learn more about Al(NO3)3 solution here:
https://brainly.com/question/14215622
#SPJ4
0. 302 grams of an antibiotic was dissolved in enough water at 23. 6°C to make 500. 0 mL of solution. The solution has an osmotic pressure of 8. 34 mm Hg. What is the molar mass of the antibiotic?
The molar mass of the antibiotic is 42,308 g/mol.
The osmotic pressure of a solution is given by the equation:
π = MRT
where π is the osmotic pressure, M is the molarity of the solution, R is the gas constant, and T is the temperature in Kelvin.
We can rearrange this equation to solve for the molarity of the solution:
M = π / RT
First, let's convert the temperature to Kelvin:
23.6°C + 273.15 = 296.75 K
Now we can plug in the values:
M = (8.34 mm Hg) / (62.3637 Ltorr/molK * 296.75 K)
M = 1.16 x [tex]10^{-5}[/tex] M
To find the molar mass of the antibiotic, we need to use the formula:
M = m / (n * MM)
where m is the mass of the antibiotic (in grams), n is the number of moles of the antibiotic, and MM is the molar mass of the antibiotic (in g/mol).
We can rearrange this equation to solve for MM:
MM = m / (n * M)
To find n, we can use the formula:
n = M * V
where V is the volume of the solution (in liters).
V = 500.0 mL / 1000 mL/L = 0.500 L
n = (1.16 x [tex]10^{-5}[/tex] M) * (0.500 L) = 5.8 x [tex]10^{-6}[/tex] moles
Now we can plug in the values to find MM:
MM = (0.302 g) / (5.8 x [tex]10^{-6}[/tex] moles * 1.16 x [tex]10^{-5}[/tex] M)
MM = 42,308 g/mol
Therefore, the molar mass of the antibiotic is 42,308 g/mol.
To know more about antibiotic click here:
brainly.com/question/10868637
#SPJ4
When a utensil is stored in water between uses, what are the requirements?A. Running water at any temperature, or a container of water at 70 F (21 C) or lower.B. Running water at any temperature, or a container of water at 135 F (57 C) or lower.C. Running water at 70 F (21 C) or lower, or a container of water at 70 F (21 C) or lower.D. Running water at 135 F (57 C) or lower, or a container of water at 135 F (57 C) or lower.
D. Running water at 135 F (57 C) or lower, or a container of water at 135 F (57 C) or lower.
What is the type of mixture whose components are evenly distributed throughout?
The type of mixture whose components are evenly distributed throughout is a homogeneous mixture.
A homogeneous mixture is a mixture in which the components are uniformly distributed throughout. The mixture appears to be the same throughout, and it has the same physical and chemical properties throughout. The composition of the components of a homogeneous mixture is uniform. An example of a homogeneous mixture is a solution of sugar and water. Sugar dissolves in water to form a homogeneous mixture. Another example is salt and water. Salt dissolves in water to form a homogeneous mixture.
However, These are the kinds of combinations where the ingredients are evenly dispersed throughout. In other words, "they are consistent throughout. In a homogenous mixture, we can only see one phase of the substance and components are evenly distributed throughout .
To know more about Homogenous mixture please visit:
https://brainly.com/question/20956879
#SPJ11
Ideal Gas Lab
Data:
Complete the table to organize the data collected in this lab. Don’t forget to record measurements with the correct number of significant figures.
(Table attached below)
Data Analysis:
Create a separate graph of temperature vs. volume for each of the gas samples. You are encouraged to use graphing software or online tools to create the graphs; be sure to take screenshots of the graphs that also include your data.
Make sure to include the following on your graphs:
• Title
• Labels for axes and appropriate scales
• Clearly plotted data points
• A straight line of best fit
The x-intercept of the volume vs. temperature relationship, where the best fit line crosses the x-axis, is called absolute zero. Use the best fit line to extrapolate to the temperature at which the volume would be 0 mL. Record this value. It is your experimental value of absolute zero.
Example Graph:
This sample graph shows temperature data plotted along the x-axis and volume plotted on the y-axis. The best fit line for the data is extrapolated and crosses the x-axis just short of the absolute zero mark.
Calculations:
1. The actual value for absolute zero in degrees Celsius is −273.15. Use the formula below to determine your percent error for both gas samples.
|experimental value – actual value| x 100
actual value
2. If the atmospheric pressure in the laboratory is 1.2 atm, how many moles of gas were in each syringe? (Hint: Choose one volume and temperature pair from your data table to use in your ideal gas law calculation.)
Conclusion:
Write a conclusion statement that addresses the following questions:
How did your experimental absolute zero value compare to the accepted value?
Does your data support or fail to support your hypothesis (include examples)?
· Discuss any possible sources of error that could have impacted the results of this lab.
How do you think the investigation can be explored further?
Post-Lab Reflection Questions
Answer the reflection questions using what you have learned from the lesson and your experimental data. It will be helpful to refer to your chemistry journal notes. Answer questions in complete sentences.
1. Why was the line of best fit method used to determine the experimental value of absolute zero?
2. Which gas law is this experiment investigating? How does your graph represent the gas law under investigation?
3. Using your knowledge of the kinetic molecular theory of gases, describe the relationship between volume and temperature of an ideal gas. Explain how this is reflected in your lab data.
4. Pressure and number of moles remained constant during this experiment. If you wanted to test one of these variables in a future experiment, how would you use your knowledge of gas laws to set up the investigation?
The actual absolute zero temperature in degrees Celsius is 273.15.
Experimental Value of Absolute Zero for Sample 1: -283.6°C
Percent Error for Sample 1: |(-283.6 - (-273.15)) / (-273.15)| x 100 = 3.8%
Experimental Value of Absolute Zero for Sample 2: -288.7°C
Percent Error for Sample 2: |(-288.7 - (-273.15)) / (-273.15)| x 100 = 5.7%
How many moles of gas were in each syringe if the atmospheric pressure in the laboratory is 1.2 atm?Using Sample 1:
P = 1.2 atm
V = 22.0 mL
n = (P * V) / (R * T)
n = (1.2 * 0.0220) / (0.0821 * (12+273))
n = 0.00075 mol
Using Sample 2:
P = 1.2 atm
V = 20.0 mL
n = (P * V) / (R * T)
n = (1.2 * 0.0200) / (0.0821 * (12+273))
n = 0.00069 mol
Conclusion:
The experimental absolute zero value for Sample 1 was -283.6°C with a percent error of 3.8% and for Sample 2 was -288.7°C with a percent error of 5.7%. The experimental absolute zero values were close to the accepted value of -273.15°C, with Sample 1 being closer than Sample 2. Therefore, the data supports the hypothesis that the relationship between volume and temperature of an ideal gas can be used to determine absolute zero.
Possible sources of error that could have impacted the results of this lab include experimental error in measuring the volume and temperature, as well as deviations from ideal gas behavior due to factors such as intermolecular forces.
The investigation can be explored further by testing the effects of changes in pressure and number of moles on the relationship between volume and temperature in ideal gases.
To know more about intermolecular forces, visit:
https://brainly.com/question/9007693
#SPJ1
an ionic salt contains a co4 ion. based on this information, which statement is true? group of answer choices the salt produces an acidic solution. the salt produces an basic solution. the salt produces a neutral solution.
The ionic salt that contains a CO₄ ion would produce a neutral solution. Hence, option C is correct.
Salts are ionic compounds that completely disintegrate into ions when they are dissolved in water. They are created when acids and bases react, and they are always made up of either metal cations or cations made from ammonium (NH₄⁺).
The pH of a salt depends on the basicity or acidity of its anion and cation. The salt of a strong acid and a strong base creates a neutral solution because it does not create any H+ or OH-. Likewise, if the salt comes from a weak acid and a strong base, the resulting solution will be basic because the conjugate base of a weak acid is a strong base.
Therefore, the given ionic salt with a CO₄ ion is neutral.
Learn more about iconic net here: https://brainly.com/question/30376517
#SPJ4
ion channels that open and close in response to a change in membrane potential are called _____.
Ion channels that open and close in response to a change in membrane potential are called voltage-gated ion channels.
What is Voltage-gated ion channels?Voltage-gated ion channels are a specialized type of membrane protein that are embedded in the lipid bilayer of excitable cells. They have a pore that allows ions to flow through, and they can be selective for different types of ions, such as sodium (Na+), potassium (K+), or calcium (Ca2+).
The opening and closing of the channel's pore is controlled by changes in the membrane potential, which is the difference in electrical charge across the cell membrane.
These channels are crucial for the generation and propagation of electrical signals in excitable cells, such as neurons and muscle cells. Voltage-gated ion channels are capable of detecting small changes in membrane potential and responding by opening or closing their pore, allowing ions to flow across the membrane and alter the electrical state of the cell.
Learn more about ion channels here: https://brainly.com/question/12578279
#SPJ1
Calculate the root mean square (rms) average speed of the atoms in a sample of neon gas at 0.17atm and −52.°C . Round your answer to 3 significant digits.
Root mean square (RMS) average speed of the atoms in a sample of neon gas at 0.17atm and −52.°C is 2.233 × 10⁻⁴m/s.
The root mean square (rms) average speed of the atoms in a sample of neon gas at 0.17atm and −52.°C can be calculated as follows:
Given data: Pressure, P = 0.17atm Temperature, T = -52°C = 221 K
Atomic weight of Neon, m = 20.18 g/mol = 20.18 × 10^-3 kg/molR = 8.314 J/mol KKB = R/NA = 1.38 × 10^-23 J/K (Boltzmann constant).
The root mean square (rms) velocity of gas is given by the equation:rms velocity, vrms = [3KB T/m]^1/2where, m = molar mass of gas, T = temperature, and KB = Boltzmann constant.
Substituting the given data, we get:v(rms) = [3KB T/m]^(1/2)v(rms) = [3KB T/m]^(1/2)v(rms) = [3 × (1.38 × 10^-23 J/K) × 221 K / (20.18 × 10^-3 kg/mol)]^(1/2)v(rms) = [4.981 × 10^-20 m^2/s^2]^(1/2) = 2.233 × 10⁻⁴ m/s.
Therefore, the RMS average speed of the atoms in a sample of neon gas at 0.17atm and −52.°C is 2.233 × 10⁻⁴ m/s (rounded off to 3 significant digits).
For more information about RMS average speed refer here
https://brainly.com/question/13095222?
#SPJ11
how many chirality centers are there in an aldohexose?a. 3b. 4c. 5d. 6
There are 4 chirality centers in an aldohexose. The correct answer is option b.
Aldohexoses are six-carbon monosaccharides with a carbonyl functional group (aldehyde group) and five other carbon atoms, each of which is associated with an alcohol functional group in their straight-chain form. The carbonyl carbon, which is referred to as the anomeric carbon, determines the stereochemistry and the cyclic form of aldohexoses.
Chirality centers are carbon atoms that have four distinct substituents bonded to them, resulting in the ability to exist as stereoisomers. These stereoisomers are mirror images of each other and cannot be superimposed upon each other.Therefore, it is important to count the number of chirality centers present in the aldohexose structure.
There are four chirality centers in aldohexose, which are present at carbon atoms 2, 3, 4, and 5.
For more such questions on chirality centers, click on:
https://brainly.com/question/9522537
#SPJ11
any groups present on a benzene ring can impact the success and regioselectivity of an electrophilic aromatic substitution. determine which group from the list best fits each activation and directing description. moderately deactivating meta- director choose... strongly activating ortho-/para- director choose... weakly activating ortho-/para- director choose... strongly deactivating meta- director choose... weakly deactivating ortho-/para- director choose...
The groups present on a benzene ring can impact the success and regioselectivity of an electrophilic aromatic substitution
. The activation and directing effects of various groups present on a benzene ring are as follows: Moderately deactivating meta- director: Nitro (-NO2), Sulfonyl (-SO3H)Strongly activating ortho-/para- director: Amino (-NH2), Hydroxyl (-OH), Alkoxy (-OR), Aryl (-Ar), Alkyl (-R), Dialkylamino (-N (R) 2), Carboxyl (-COOH)Weakly activating ortho-/para- director: Chloro (-Cl), Bromo (-Br), Iodo (-I)Strongly deactivating meta- director: Carbonyl (-C (O) R), Cyano (-CN)Weakly deactivating ortho-/para- director: Methyl (-CH3), Ethyl (-C2H5), Phenyl (-C6H5)Therefore, the groups that best fit each activation and directing description are as follows: Moderately deactivating meta- director: Nitro (-NO2)Strongly activating ortho-/para- director: Amino (-NH2)Weakly activating ortho-/para- director: Chloro (-Cl)Strongly deactivating meta- director: Carbonyl (-C (O) R)Weakly deactivating ortho-/para- director: Methyl (-CH3)
Learn more about benzene ring at brainly.com/question/19260725
#SPJ11
the diagram represents the reaction of hydrogen gas and oxygen gas to produce water. which statement best describes the reaction? (1 point) responses more energy is needed to break the bonds of the reactants than is released in the formation of the products, so the reaction is exothermic. more energy is needed to break the bonds of the reactants than is released in the formation of the products, so the reaction is exothermic. more energy is released in the formation of the products than is needed to break the bonds of the reactants, so the reaction is endothermic. more energy is released in the formation of the products than is needed to break the bonds of the reactants, so the reaction is endothermic. more energy is needed to break the bonds of the reactants than is released in the formation of the products, so the reaction is endothermic. more energy is needed to break the bonds of the reactants than is released in the formation of the products, so the reaction is endothermic. more energy is released in the formation of the products than is needed to break the bonds of the reactants, so the reaction is exothermic. more energy is released in the formation of the products than is needed to break the bonds of the reactants, so the reaction is exothermic. skip to navigation
The reaction of hydrogen gas and oxygen gas to produce water is an exothermic reaction because more energy is released in the formation of the products than is needed to break the bonds of the reactants.
In other words, more energy is released when the hydrogen and oxygen molecules combine to form water molecules than is needed to break the bonds between the hydrogen and oxygen molecules.
Exothermic reaction- It is a type of reaction in which the two atoms react with each other to form a stable compound and release energy in the process of doing so.
To learn more about "reaction", visit: https://brainly.com/question/11231920
#SPJ11
The pH of a 0.74 M solution of alloxanic acid (HC4H3N2O5) is measured to be 3.39.
Calculate the acid dissociation constant Ka of alloxanic acid.
Be sure your answer has the correct number of significant digits.
The correct answer for Acid dissociation constant of alloxanic acid is 1.09 × 10⁻.
The formula for alloxanic acid is HC4H3N2O5. Its pH, when it is in a 0.74 M solution, is 3.39.
We need to determine the acid dissociation constant of alloxanic acid. We can use the following formula for this purpose:
Ka = [H+][A-] / [HA] Where [H+] is the concentration of hydrogen ions, [A-] is the concentration of the conjugate base, and [HA] is the concentration of the acid.
We need to find out the concentration of hydrogen ions and the concentration of the acid. The pH of a solution is equal to the negative log of the hydrogen ion concentration.
We can use this formula to determine the concentration of hydrogen ions: pH = -log[H+] We can rearrange this equation to get [H+]: [H+] = 10-pH.
The concentration of hydrogen ions is: [H+] = 10-3.39 = 4.45 × 10⁻⁴M The concentration of the acid is 0.74 M. The concentration of the conjugate base can be determined by the following formula: [A-] = [H+] × (Ka / [HA]).
We can rearrange this equation to get Ka: Ka = ([H+] × [HA]) / [A-]
Substituting the values, we get: [A-] = [H+] × (Ka / [HA]) [A-] = (4.45 × 10-4) × (Ka / 0.74) [A-] = 3.01 × 10⁻⁶Ka
We can substitute this value of [A-] in the above formula for Ka:Ka = ([H+] × [HA]) / [A-]Ka = (4.45 × 10⁻⁴) × 0.74 / 3.01 × 10⁻⁶Ka = 1.09 × 10⁻⁵.
For more information about acid dissociation constant refer here
https://brainly.com/question/15012972?
#SPJ11
(c)
Ammonia is a weak base.
Describe how you would measure the pH of an aqueous solution of a weak base using Universal
Indicator.
You need to know the hydronium ion concentration in moles per litre to determine the pH of the an aqueous solution (molarity). The equation pH Equals - log [H3O+] is then used to determine the pH.
Why is an all-purpose indicator so helpful for determining pH?An universal indicator is indeed a pH indicator made of the a solution of many compounds which exhibits several continuous colour changes more than a wide range pH levels to indicate the alkaline or acidic nature of solutions.
What are the two techniques you can use to determine a solution's pH?There are two ways to measure pH: colorimetrically with indicator fluids or sheets and electrochemically with electrodes as well as a millivoltmeter for greater accuracy (pH meter).
To know more about hydronium visit:
https://brainly.com/question/29286376
#SPJ1
When the following two solutions are mixed:
K2CO3(aq)+Fe(NO3)3(aq)
the mixture contains the ions listed below. Sort these species into spectator ions and ions that react.
Drag the appropriate items to their respective bins.
NO3-)aq), Fe3+ , CO3 2-, K+
Part B
What is the correct net ionic equation, including all coefficients, charges, and phases, for the following set of reactants? Assume that the contribution of protons from H2SO4 is near 100 %.
Ba(OH)2(aq)+H2SO4(aq)?
The net ionic equation for the reaction between [tex]Ba(OH)_2(aq) and H_2SO_^4 (aq) is :2Ba^2^+(aq) + SO_4^2^-(aq) + 2H^+(aq) ⇒ 2Ba^2^+(aq) + 2H_2O[/tex]
When the following two solutions are mixed:
[tex]K_2CO_3(aq) + Fe(NO_3)_3(aq)[/tex], the mixture contains the following ions:
[tex]NO_3- (aq), Fe^3+, CO_3^ 2-, K^+[/tex]. The spectator ions are NO3- (aq) and K+, and the ions that react are Fe3+ and CO3 2-.
Hence , The correct net ionic equation, including all coefficients, charges, and phases, for the reactants [tex]Ba(OH)_2(aq) + H_2SO_4(aq) [/tex] is 2Ba^2^+(aq) + SO_4^2^-(aq) + 2H^+(aq) ⇒ 2Ba^2^+(aq) + 2H_2O[/tex] .
To know more about Ionic equation refer here :
https://brainly.com/question/11510759
#SPJ11
Which of the following will increase the pH of an H2CO3/HCO+3 buffer solution? Removing carbonic acid Adding sodium bicarbonate None of these Both Iand Il II only Ionly
According to the given options, option "II only" will increase the pH of an H2CO3/HCO+3 buffer solution.
Buffer solution- A buffer solution is a solution that resists changes in pH when small amounts of an acid or a base are added to it.
H2CO3/HCO+3 buffer- A buffer that consists of a weak acid and its conjugate base is known as an acid-buffer or a weak acid-buffer. For example, carbonic acid (H2CO3) and bicarbonate (HCO3−) are combined in a buffer solution that has a weak acid (H2CO3) and its conjugate base (HCO3−). Carbonic acid (H2CO3) and bicarbonate (HCO3−) are combined in a buffer solution that has a weak acid (H2CO3) and its conjugate base (HCO3−).
The chemical equation for the carbonic acid-bicarbonate buffer is:
H2CO3 ⇌ H+ + HCO3−
This reaction shows that the buffer solution contains both carbonic acid (H2CO3) and bicarbonate (HCO3−) ions. H+ and HCO3− ions are formed when carbonic acid (H2CO3) dissociates in water (H2O).
Increasing the pH of a buffer solution- The pH of a buffer solution can be increased by adding a strong base, which would react with the buffer's weak acid to form its conjugate base. In this scenario, sodium bicarbonate (NaHCO3) is a strong base.
Therefore, option "II only" is the correct answer.
To learn more about "buffer solution", visit: https://brainly.com/question/8676275
#SPJ11
the nickel anode in an electrolytic cell decreases in mass by 1.20 g in 35.5 min. the oxidation half-reaction converts nickel atoms to nickel(ii) ions. what is the constant current
The constant current is 0.0406 A for the nickel anode in an electrolytic cell decreases in mass by 1.20 g in 35.5 min. the oxidation half-reaction converts nickel atoms to nickel(ii) ions.
What is the constant current?In an electrolytic cell, the oxidation half-reaction converts nickel atoms to nickel (II) ions, and the nickel anode in an electrolytic cell decreases in mass by 1.20 g in 35.5 min.
To determine the constant current, we can use Faraday's laws. Faraday's laws were established by Michael Faraday, a British scientist, in the early 19th century. His laws explain how much mass will be lost or gained at an electrode during electrolysis and how much electrical energy is required. Faraday's first law states that the mass of a substance deposited during electrolysis is proportional to the number of electrons that pass through the electrolyte.
The following formula can be used to calculate the constant current:
I = (nF / t) × (m / M)
where, I = Constant Current (in amperes), n = number of moles of electrons transferred, F = Faraday constant (96500 C/mol), t = Time taken, m = mass of substance (in grams), M = Molar mass of the substance (in grams/mol)
The Faraday constant is the amount of charge that must pass through an electrode to deposit or liberate 1 mole of any substance. For nickel, the molar mass is 58.69 g/mol, and the oxidation state is +2, which means that two electrons are lost per nickel atom. Thus, n = 2.
To calculate the current, we must first find the number of moles of nickel atoms lost during electrolysis. The formula for the number of moles is:
n = m / M
n = 1.20 g / 58.69 g/mol
n = 0.0204 mol.
Now we can use the formula above to calculate the current:
I = (nF / t) × (m / M)
I = (2 × 96500 C/mol / 2130 seconds) × (1.20 g / 58.69 g/mol)
I = 0.0406 A
I = 40.6 mA or 0.0406 A.
Therefore, the constant current is 40.6 mA or 0.0406 A.
Read more about current here:
https://brainly.com/question/12815553
#SPJ11
what is the formula for chlorine
a process in which the solution containing alcohol is heated and the vapors are collected and then condensed into liquid form again. Steam vapors rise and collected much alcohol contentFermentationDistillation
The process of distillation involves heating the alcohol-containing solution, gathering the vapours, and then condensing them back into liquid form.
According to their boiling points, liquids are separated and purified using the distillation process. When it comes to alcohol, the solution is heated until the alcohol evaporates into a vapour, which is then collected and condensed back into a liquid state. A highly concentrated alcohol solution is produced as a result of this procedure, which enables the separation of the alcohol from other elements in the solution.
Alcoholic drinks including whisky, vodka, gin, and rum are made by distillation.
In the chemical industry, distillation is used to separate and purify various compounds and solvents.
In the process of refining petroleum, distillation is used to separate crude oil into several products, including gasoline, diesel, and kerosene.
Learn more about Distillation here:
brainly.com/question/29037176
#SPJ4
Cattails in swamps are used to absorb chemical pollutants. what method of reducing pollutant concentration is this
Phytoremediation is a cost-effective and environmentally friendly method of reducing pollutant concentrations and restoring contaminated ecosystems.
What is Pollutants?
Pollutants are substances or agents that contaminate the environment and have harmful effects on living organisms, natural resources, or the climate. Pollutants can be released into the air, water, or soil from natural sources or human activities such as industrial processes, transportation, agriculture, and waste disposal. Some common examples of pollutants include greenhouse gases, particulate matter, ozone, nitrogen oxides, sulfur dioxide, lead, mercury, pesticides, and plastic waste.
The method of using cattails in swamps to absorb chemical pollutants is called phytoremediation. Phytoremediation is a type of bioremediation that uses plants to remove, detoxify, or sequester contaminants from soil, water, or air. In this process, plants absorb contaminants through their roots or take them up from the air and store them in their tissues or metabolize them into less harmful forms. Cattails are particularly effective at removing organic pollutants such as pesticides, herbicides, and petroleum products, as well as heavy metals like lead, cadmium, and arsenic.
Learn more about Pollutants from given link
https://brainly.com/question/24704410
#SPJ1
For charged particles, how does the strength of the interaction vary in each of the following cases? (Increase or decrease) a. The distance between the charges increases. b. The size of the charge decreases.
In each of the following situations, the intensity of the interaction differs for charged particles.
a. The distance between the charges increases. (decreases)
b. The size of the charge decreases. (increases)
a. The strength of the interaction between charged particles decreases as the distance between them increases. This is because the force between charged particles follows an inverse square law, which means that the force decreases with the square of the distance between the charges. Therefore, as the distance between the charges increases, the force between them decreases and the strength of the interaction decreases.
b. The strength of the interaction between charged particles increases as the size of the charge decreases. This is because the force between charged particles is directly proportional to the magnitude of the charge. Therefore, as the size of the charge decreases the force between the charged particles decreases and the strength of the interaction decreases.
Learn more about intensity of the interaction:
https://brainly.com/question/21272586
#SPJ11
Complete the statements about the different types of lipids. ______ are the building blocks for many lipids and generally contain an even number of carbon atoms and an unbranched hydrocarbon chain.______ are lipid compounds that contain a fused ring system. These compounds contain three six-membered rings and one five-membered ring, and some of these compounds are found in biological membranes. ______ are formed when a carbohydrate is glycosidically linked to a hydroxyl group of a lipid. These compounds are also found in biological membranes and include gangliosides and cerebrosides. ______ are the storage form of lipids that accumulate in adipose tissue and can be used as metabolic fuel. These compounds have a polar head, made of three ester groups, and a nonpolar fatty acid tail. ______ are made up of a long-chain amino alcohol joined to a fatty acid by either a glycosidic or phosphodiester linkage. These compounds, which are commonly found in the nervous system, do not contain glycerol. ______ are formed when glycerol is esterified to two fatty acids and a phosphoric acid molecule. These compounds are also found in biological membranes.
Answer:
Fatty acids
Steroids
Glycolipids
Triacylglycerols
Sphingolipids
Phospholipids
where is the equilibrium shifts when the concentration of h2(gas) is increased by adding more hydrogen gas to the container at constant temperature?
The equilibrium shift when the concentration of H2 (gas) is increased by adding more hydrogen gas to the container at constant temperature is towards the right side of the reaction equation.
Let us understand how the reaction shifts with the help of the following chemical reaction equation. N2(g) + 3H2(g) ⇌ 2NH3(g).
Adding more H2 gas to the container at constant temperature will increase the concentration of H2 gas.
The reaction will shift towards the product side (right side of the reaction equation) to balance the reaction equation.
The concentration of NH3 gas will increase, and the concentration of N2 gas and H2 gas will decrease.
The reaction quotient (Qc) is used to predict the direction of the reaction.
If Qc is greater than Kc, the reaction shifts towards the left side of the reaction equation.
If Qc is less than Kc, the reaction shifts towards the right side of the reaction equation.
.f Qc is equal to Kc, the reaction is at equilibrium state with no shift in the reaction.
For more information about equilibrium shift refer here
https://brainly.com/question/15164034?
#SPJ11
Use these two constants for the question that follows:
e = 1.6 × 10^−19 C
k = 8.99 × 10^9 N m^2/C^2
A positive charge and a negative charge are 10^−15 m away from each other. Using Coulomb's law, which of the following is the electrical force between these two particles?
230 N
−230 N
120 N
−120 N
Answer: -230 N
Explanation:
The electrical force between two point charges q1 and q2 separated by a distance r is given by Coulomb's law:
F = k * (q1 * q2) / r^2
where k is the Coulomb constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.
In this case, we have a positive charge and a negative charge, which means that q1 and q2 have opposite signs. Let's assume that the positive charge has a magnitude of q and the negative charge has a magnitude of -q. Then, the electrical force between them can be calculated as:
F = k * (q * (-q)) / r^2 = -k * q^2 / r^2
Substituting the given values of e and k, we get:
F = - (8.99 × 10^9 N m^2/C^2) * (1.6 × 10^-19 C)^2 / (10^-15 m)^2 ≈ -230 N
Note that the negative sign indicates that the force is attractive, which is expected for opposite charges. Therefore, the correct answer is:
-230 N.
Scenario 1: The magnets are equal strength. Predict: How would the overall kinetic energy in the system change? Why?
Answer:
Magnetized objects move in the direction that reduces their magnetic potential energy. This is no different than the skate park.
Explanation: