Express the product of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]

Express The Product Of Z1 And Z2 In Standard Form Given That [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi

Answers

Answer 1

Answer:

Solution : 6 + 6i

Step-by-step explanation:

[tex]-3\left[\cos \left(\frac{-\pi }{4})\right+i\sin \left(\frac{-\pi }{4}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi }{2}\right)\right][/tex]

This is the expression we have to solve for. Now normally we could directly apply trivial identities and convert this into standard complex form, but as the expression is too large, it would be easier to convert into trigonometric form first ----- ( 1 )

( Multiply both expressions )

[tex]-6\sqrt{2}\left[\cos \left(\frac{-\pi }{4}+\frac{-\pi \:\:\:}{2}\right)+i\sin \left(\frac{-\pi \:}{4}+\frac{-\pi \:\:}{2}\right)\right][/tex]

( Simplify [tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] for both [tex]\cos \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] and [tex]i\sin \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] )

[tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] = [tex]\left(-\frac{3\pi }{4}\right)[/tex]

( Substitute )

[tex]-6\sqrt{2}\left(\cos \left(-\frac{3\pi }{4}\right)+i\sin \left(-\frac{3\pi }{4}\right)\right)[/tex]

Now that we have this in trigonometric form, let's convert into standard form by applying the following identities ----- ( 2 )

sin(π / 4) = √2 / 2 = cos(π / 4)

( Substitute )

[tex]-6\sqrt{2}\left(-\sqrt{2} / 2 -i\sqrt{2} / 2 )[/tex]

= [tex]-6\sqrt{2}\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] = [tex]-\frac{\left(-\sqrt{2}-\sqrt{2}i\right)\cdot \:6\sqrt{2}}{2}[/tex]

= [tex]-3\sqrt{2}\left(-\sqrt{2}-\sqrt{2}i\right)[/tex] = [tex]-3\sqrt{2}\left(-\sqrt{2}\right)-\left(-3\sqrt{2}\right)\sqrt{2}i[/tex]

= [tex]3\sqrt{2}\sqrt{2}+3\sqrt{2}\sqrt{2}i:\quad 6+6i[/tex] - Therefore our solution is option a.


Related Questions

Find the sum. 31.25 + 9.38

Answers

Answer:

40.63

Step-by-step explanation:

31.25+9.38= 40.63

Hope this helps

Answer: 40.63

Look at the image for shown work.

What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution

Answers

Answer:

±7 sqrt(2) = x

Step-by-step explanation:

98 - x^2 = 0

Add x^2 to each side

98 =x^2

Take the square root of each side

±sqrt(98) = sqrt(x^2)

±sqrt(49*2) = x

±7 sqrt(2) = x

Answer:

[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]

Step-by-step explanation:

[tex]98-x^2 =0[/tex]

[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]

[tex]98=x^2[/tex]

[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]

[tex]\pm \sqrt{98} =x[/tex]

[tex]\sf Simplify \ radical.[/tex]

[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]

[tex]\pm 7\sqrt{2} =x[/tex]

[tex]\sf Switch \ sides.[/tex]

[tex]x= \pm 7\sqrt{2}[/tex]

Consider the given function and the given interval.

f(x) = 8 sin x - 4 sin 2x, [0,pi]

(a) Find the average value f ave of f on the given interval.

(b) Find c such that f ave = f(c).

Answers

(a) The average value of f(x) on the closed interval [0, π] is

[tex]\displaystyle\frac1{\pi-0}\int_0^\pi f(x)\,\mathrm dx = \frac1\pi\int_0^\pi(8\sin(x)-4\sin(2x))\,\mathrm dx = \boxed{\frac{16}\pi}[/tex]

(b) By the mean value theorem, there is some c in the open interval (0, π) such that f(c) = 16/π. Solve for c :

8 sin(c) - 4 sin(2c) = 16/π

8 sin(c) - 8 sin(c) cos(c) = 16/π

sin(c) - sin(c) cos(c) = 2/π

Use a calculator to solve this. You should get two solutions, c ≈ 1.2382 and c ≈ 2.8081.

A computer store sells new computers for $500 and refurbished computers for
$200. In March, the store sold 20 computers for $6,400, meaning they sold ?
refurbished computers.

Answers

Answer:

no of new computers sold : 8

no. of refurbished computer sold : 12

Step-by-step explanation:

Let the no. of new computers sold be x

let the no. of refurbished computers sold be y

Given

In March, the store sold 20 computers

x + y = 20

y = 20-x ----- equation 2

selling price of new computer = $500

selling price of x new computer = 500*x = 500x

selling price of refurbished computer = $200

selling price of y refurbished computer = 200*y = 200y

Total selling price of x new computer and y refurbished computers = 500x+200y

given that

total prioce of computer is $6400

thus

500x+200y = 6400

using y = 20-x  from equation 2

500x+200(20-x) = 6400

=> 500x+ 4000 - 200x = 6400

=> 300x = 6400 - 4000 = 2400

=> x = 2400/300 = 8

Thus,

no of new computers sold = 8

no. of refurbished computer sold = 20 -8 = 12

Answer two questions about Equations A and B: A.5x=20 \ B.x=4 ​ 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side

Answers

Answer:

Multiply/divide both sides by the same non-zero constant

Step-by-step explanation:

5x = 20

Divide each side by 5

5x/5 = 20/5

x = 4

To obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"

Given the equations :

5x = 20 ___ (A)x = 4 _____ (B)

To obtain the value ; x = 4 from A

We multiply (A) by the same non-zero constant

Here, the constant value which can be used is 5 in other to isolate 'x'

5x/5 = 20/5

x = 4

Therefore, to obtain (B) from (A) "Multiply/divide both sides by the same non-zero constant"

Learn more on equations :https://brainly.com/question/2972832

#SPJ6

2 lines intersect a horizontal line to form 8 angles. Labeled clockwise, starting at the top left, the angles are: A, B, C, D, E, F, G, D. Which of the pairs of angles are vertical angles and thus congruent? ∠A and ∠G ∠A and ∠B ∠C and ∠F ∠D and ∠H

Answers

Answer:

∠A and ∠G is the pair of vertical angles.

Step-by-step explanation:

From the figure attached,

Two lines 'm' and 'n' are two parallel lines. These lines intersect a horizontal line 'l'.

Since, "Pair of opposite angles formed at the point of intersection are the vertical angles and equal in measure."

Therefore, Opposite angles ∠A ≅ ∠G, ∠B ≅ ∠H, ∠C ≅ ∠E and ∠D ≅ ∠F are the vertical angles.

From the given options,

∠A and ∠G is the pair representing the pair of vertical angles and thus congruent.

Answer:

a

Step-by-step explanation:

perform the indicated operation (8-15i)(-3 + 2i)

Answers

Answer:

[tex] - 24 + 16i + 45i + 15 = 9 + 61i[/tex]

ΔABC is similar to ΔMNO. The scale factor from ΔMNO to ΔABC is 3∕2 . If the area of ΔMNO is 10 square units, what's the area of ΔABC? Question 12 options: A) 45 square units B) 90 square units C) 22.5 square units D) 15 square units

Answers

Answer:

The area of ΔABC= 6.667 square units

Step-by-step explanation:

ΔABC is similar to ΔMNO.

The scale factor from ΔMNO to ΔABC is 3∕2

the area of ΔMNO is 10 square units,

The area of ΔABC/the area of ΔMNO

= 2/3

The area of ΔABC/10= 2/3

The area of ΔABC= 2/3 * 10

The area of ΔABC= 20/3

The area of ΔABC= 6 2/3

The area of ΔABC= 6.667 square units

Answer:

22.5 square units

Step-by-step explanation:

i multiplied 10 by 2 to get 20 and went with the closest answer and got it right.

i dont know how to do math but i guess it worked

What is the slope of the line shown below?



A. -13/6

B. 6/13

C. 13/6


D. -6/13
-

Answers

Answer:

13/6

Step-by-step explanation:

We can use the slope formula

m = ( y2-y1)/(x2-x1)

   = (6 - -7)/(1 - -5)

   = ( 6+7)/ (1+ 5)

   = 13/6

 

I need help please help meee I don’t understand

Answers

Answer:

204

Step-by-step explanation:

To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.

For height of the prongs, take 4 from 6.

6 - 4 = 2

Divide by 2 as there are 2 prongs.

2 / 2 = 1

Remember L * W * H

6 * 3 * 1 = 18

Remember that there are two prongs!

3 + 4 = 7

6 * 7 * 4 = 168

168 + 2(18) = 204

What is the probability that a student who has no chores has a curfew ?

Answers

Answer:

15/22

Step-by-step explanation:

Of the 66 students who have no chores, 45 have a curfew.  So the probability is 45/66 = 15/22.

In parallelogram PQSR, what is PQ? 2 cm 5 cm 6 cm 9 cm

Answers

Answer:

D) 9 cm

Step-by-step explanation:

EDGE 2020

(D) 9 cm.

Parallelogram:A simple (non-self-intersecting) quadrilateral with two sets of parallel sides is known as a parallelogram in Euclidean geometry. A parallelogram's facing or opposing sides are of equal length, and its opposing angles are of similar size. The Euclidean parallel postulate or one of its equivalent formulations must be used in order to demonstrate the congruence of opposed sides and opposite angles because both conditions are a direct result of this postulate.In contrast, a quadrilateral with only one set of parallel sides is referred to as a trapezoid or trapezium in British or American English.The parallelepiped is a parallelogram's three-dimensional equivalent.

Therefore, the correct answer is (D) 9 cm.

Know more about a parallelogram here:

https://brainly.com/question/970600

#SPJ2

if the LCM and the HCF of two numbers are 9 and 3, respectively, what are the numbers?

Answers

Hey  There!

Answer:

HCF = 9  (With the two numbers) - 18,9LCM = 3  (with the two numbers) -  6,9

Step-by-step explanation:

HCF

If HCF is  ''9'' that means that ''9'' is the divisible of two numbers.

So 18 and 19 can be divided by 9 and that's the highest divisible for both factors.

And always remeber the answer is a ''Prime factor.''

LCM

If LCM is ''3'' that means ''3'' is the lowest common multiple out of  two numbers.

Hope this helps!

Have a nice Day!:)

Please help!! find the circumference of a circle with a diameter of 13 meters

Answers

Answer:

C = 2pie(r)

r= d/2= 13/2= 6.5

C = 2*3.14*6.5

C= 41

Step-by-step explanation:

An arithmetic sequence has this recursive formula: (a^1 =8, a^n= a^n-1 -6
A.a^n=8+(n-6)(-1)
B.a^n=8+(n-1)(-6)
C.

Answers

Answer:

[tex]a_n = 8 + (n - 1) (-6)[/tex]

Step-by-step explanation:

Given

[tex]a_1 = 8[/tex]

Recursive: [tex]a_{n} = a_{n-1} - 6[/tex]

Required

Determine the formula

Substitute 2 for n to determine [tex]a_2[/tex]

[tex]a_{2} = a_{2-1} - 6[/tex]

[tex]a_{2} = a_{1} - 6[/tex]

Substitute [tex]a_1 = 8[/tex]

[tex]a_2 = 8 - 6[/tex]

[tex]a_2 = 2[/tex]

Next is to determine the common difference, d;

[tex]d = a_2 - a_1[/tex]

[tex]d = 2 - 8[/tex]

[tex]d = -6[/tex]

The nth term of an arithmetic sequence is calculated as

[tex]a_n = a_1 + (n - 1)d[/tex]

Substitute [tex]a_1 = 8[/tex] and [tex]d = -6[/tex]

[tex]a_n = a_1 + (n - 1)d[/tex]

[tex]a_n = 8 + (n - 1) (-6)[/tex]

Hence, the nth term of the sequence can be calculated using[tex]a_n = 8 + (n - 1) (-6)[/tex]

Please help. I’ll mark you as brainliest if correct!

Answers

Answer:

x and y can have many values

Step-by-step explanation:

-24x - 12y = -16

Then: 24x + 12y = 16

We know: 6x + 3y = 4

X and Y can have a lot of valoues.

6x + 3y = 4

3 ( 2x + y) = 4

2x + y= 4/3

2x+y= 1.333...

Find the function h(x) = f(x) - g(x) if f(x) = 3^x and g(x) = 3^2x - 3^x. A.h( x) = 0 B.h( x)=-3^2x C.h( x) = 3^x (2 - 3^x) D.h( x) = 2(3^2x)

Answers

Answer:

3^x( 2-3^x)

Step-by-step explanation:

f(x) = 3^x and g(x) = 3^2x - 3^x

h(x) = f(x) - g(x)

       3^x - ( 3^2x - 3^x)

Distribute the minus sign

         3^x - 3^2x + 3^x

     2 * 3^x - 3 ^ 2x

Rewriting

We know that 3^2x = 3^x * 3^x

2 * 3^x - 3^x* 3^x

Factoring out 3^x

3^x( 2-3^x)

how to find the roots of a quadratic equation -10x^2 + 0x +250

Answers

Answer:

Step-by-step explanation:

The first thing you want to do is to factor in any quadratic equation.

So, -10(x^2-25)

Now, we see this is a special case, whenever we see a equation in this case, x^2 - b^2, we factor it to this (x+b)(x-b)

So, -10(x+5)(x-5)

x = -5 and x = 5

The volume of a gas in a container varies inversely as the pressure on the gas. If a gas has a volume of 356 cubic inches under a pressure of 6 pounds per square inch, what will be its volume if the pressure is increased to 7 pounds per square inch? Round your answer to the nearest integer if necessary.

Answers

Answer:

[tex]V_2=305.14\ \text{inch}^3[/tex]

Step-by-step explanation:

The volume of a gas in a container varies inversely as the pressure on the gas.

[tex]V\propto \dfrac{1}{P}\\\\V_1P_1=V_2P_2[/tex]

If V₁ = 356 inch³, P₁ = 6 pounds/in², P₂ = 7 pounds/in², V₂ = ?

So, using the above relation.

So,

[tex]V_2=\dfrac{V_1P_1}{P_2}\\\\V_2=\dfrac{356\times 6}{7}\\\\V_2=305.14\ \text{inch}^3[/tex]

So, the new volume is [tex]305.14\ \text{inch}^3[/tex].

In a recent​ year, the scores for the reading portion of a test were normally​ distributed, with a mean of and a standard deviation of . Complete parts​ (a) through​ (d) below. ​(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than . The probability of a student scoring less than is nothing. ​(Round to four decimal places as​ needed.) ​(b) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is between and . The probability of a student scoring between and is nothing. ​(Round to four decimal places as​ needed.) ​(c) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is more than . The probability of a student scoring more than is nothing. ​(Round to four decimal places as​ needed.) ​(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below. A. than 0.05. B. than 0.05. C. The event in part is unusual because its probability is less than 0.05. D. The events in parts are unusual because its probabilities are less than 0.05.

Answers

The question is incomplete. Here is the complete question.

In a recent year, the socres for the reading portion of a test were normally distributed, with a mean of 23.3 and a standard deviation of 6.4. Complete parts (a) through (d) below.

(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 18. (Round to 4 decimal places as needed.)

(b) Find a probability that a random selected high school student who took the reading portion of the test has a score that is between 19.9 and 26.7.

(c) Find a probability that a random selected high school student who took the reading portion of the test ahs a score that is more than 36.4.

(d) Identify any unusual events. Explain your reasoning.

Answer: (a) P(X<18) = 0.2033

              (b) P(19.9<X<26.7) = 0.4505

              (c) P(X>36.4) = 0.0202

               (d) Unusual event: P(X>36.4)

Step-by-step explanation: First, determine the z-score by calculating:

[tex]z = \frac{x-\mu}{\sigma}[/tex]

Then, use z-score table to determine the values.

(a) x = 18

[tex]z = \frac{18-23.3}{6.4}[/tex]

z = -0.83

P(X<18) = P(z< -0.83)

P(X<18) = 0.2033

(b) x=19.9 and x=26.7

[tex]z = \frac{19.9-23.3}{6.4}[/tex]

z = -0.67

[tex]z = \frac{26.7-23.3}{6.4}[/tex]

z = 0.53

P(19.9<X<26.7) = P(z<0.53) - P(z< -0.67)

P(19.9<X<26.7) = 0.7019 - 0.2514

P(19.9<X<26.7) = 0.4505

(c) x=36.4

[tex]z = \frac{36.4-23.3}{6.4}[/tex]

z = 2.05

P(X>36.4) = P(z>2.05) = 1 - P(z<2.05)

P(X>36.4) = 1 - 0.9798

P(X>36.4) = 0.0202

(d) Events are unusual if probability is less than 5% or 0.05. So, part (c) has an unusual event.

The probability will be:

(a) 0.2038

(b) 0.4046

(c) 0.0203

(d) Event in part (c) is unusual.

According to the question,

[tex]\mu = 23.2[/tex][tex]\sigma = 6.4[/tex]

Let,

"X" shows the test scores.

(a)

The z-score for X=18 will be:

→ [tex]z = \frac{X- \mu}{\sigma}[/tex]

      [tex]= \frac{18-23.3}{6.4}[/tex]

      [tex]= -0.828[/tex]

So,

The probability will be:

→ [tex]P(X<18) = P(z < -0.828)[/tex]

                     [tex]= 0.2038[/tex]

(b)

The z-score for X=19.9 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

     [tex]= \frac{19.9-23.3}{6.4}[/tex]

     [tex]= -0.531[/tex]

The z-score for X=26.7 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

      [tex]= \frac{26.7-23.3}{6.4}[/tex]

      [tex]= 0.531[/tex]

So,

The probability will be:

→ [tex]P(19.9 < X< 23.3) = P(-0.531 < z< 0.531)[/tex]

                                   [tex]= 0.4046[/tex]

(c)

The z-score for X=36.4 will be:

→ [tex]z = \frac{X -\mu}{\sigma}[/tex]

     [tex]= \frac{36.4-23.3}{6.4}[/tex]

     [tex]= 2.047[/tex]

So,

The probability will be:

→ [tex]P(X > 36.4 )= P(z > 2.047)[/tex]

                       [tex]= 0.0203[/tex]

(d)

Just because it's probability value is less than 0.05, so that the events is "part c" is unusual.

Learn more about probability here:

https://brainly.com/question/23044118

Which of the following is the correct factorization of 64x³ + 8? (2x + 4)(4x² - 8x + 16) (4x + 2)(16x² - 8x + 4) (4x - 2)(16x² + 8x + 4) (2x - 4)(4x² + 8x + 16)

Answers

Answer:

work is pictured and shown

Whats 18x^3 divided by 7x?????

Answers

18/7 is about 2.6 and x^3 / x = x^2 so the answer is 2.6x^2 or 18/7 * x^2.

a department store regularly sells a pair of pants for $49.95. they are having a sale where clothing 30% off.
after including an 8% sales tax, how much do the pants cost on sale?

A. $30.97
B. $38.96
C. $37.76
D. $32.17​

Answers

Answer:

C. $37.76

Step-by-step explanation:

30% of $49.95

=30/100×49.95

=$14.99

selling price = 49.95 -14.99

= $34.96

8% sales tax included

=8/100×34.96

=$2.80

new price= 34.96+2.80

=$37.76

Find the side length, b.
Round to the nearest tenth.

Answers

Answer:

b ≈ 9.2

Step-by-step explanation:

Using Pythagoras' identity in the right triangle.

The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is

b² = a² + c² = 6² +7² = 36 + 49 = 85 ( take the square root of both sides )

b = [tex]\sqrt{85}[/tex] ≈ 9.2 ( to the nearest tenth )

Answer:

9.22

Step-by-step explanation:

Since it's a 90° triangle [tex]c^{2} =a^{2} +b^{2}[/tex].

In this example they labeled the hypotenuse as b instead of c are equation is still the same just put the correct variables in the right places.

[tex]b = \sqrt{6^{2} +7^{2} }[/tex]

b = 9.22

Please help. I’ll mark you as brainliest if correct! Thank you

Answers

Answer:

8 pounds of cheaper candy,

17.5 pounds of expensive candy

Step-by-step explanation:

Let's define some variables. Let's say the amount of pounds of candy that sells for $2.20/lb is x, and the $7.30 is y. Now we can write some equations!

x + y = 25.5

[tex]\frac{2.2x + 7.3y}{25.5} = 5.7[/tex]

We can start substitution. We can say that x = 25.5 - y. Plugging this into our second equation, we get:

y = 17.5

Plugging this in, we find that:

x = 8.

4 solid cubes were made out of the same material. All four have different side lengths: 6cm, 8cm, 10cm, and 12cm. How to distribute the cubes onto two plates of a scale so the scale is balanced? Answer: A= the cube with side length 6 cm, B= the cube with side length 8 cm, C= the cube with side length 10 cm, D= the cube with side length 12 cm. On one side of the scale : , on the other side of the scale

Answers

Answer: The cube with side length of 12cm is alone in one plate, the other 3 cubes are in the other plate.

Step-by-step explanation:

We have 4 cubes with side lengths of:

6cm, 8cm, 10cm and 12cm.

Now, some things you need to know:

If we want a scale to be balanced, then the mass in both plates must be the same.

The volume of a cube of side length L is:

V = L^3

And the mass of an object of density D, and volume V is:

M = D*V.

As all the cubes are of the same material, all of them have the same density, so the fact that we do not know the value of D actually does not matter here.

Then we want to forms two groups of cubes in such a way that the total volume in each plate is the same (or about the same), the volumes of the cubes are:

Cube of 6cm:

V = (6cm)^3 = 216cm^3

Cube of 8cm:

V = (8cm)^3 = 512cm^3

Cube of 10cm:

V = (10cm)^3 = 1000cm^3

cube of 12cm

V = (12cm)^3 =  1728cm^3

First, if we add the volumes of the first two cubes, we have:

V1 = 216cm^3 + 512cm^3 = 728cm^3

Now we can see that we add 1000cm^3 the volume will be equal to the volume of the larger cube, so here we can also add the cube with side length of 10cm

Then the volume of the 3 smaller cubes together is:

V1 = 216cm^3 + 512cm^3 + 1000cm^3 = 1728cm^3.

Then, if we want to have the same volume in each plate, then we need to have the 3 smaller cubes in one plate, and the larger cube in the other plate.

The graph of g(x) is the result of translating the graph of f(x) = (one-half) Superscript x three units to the left. What is the equation of g(x)?

Answers

Answer:

[tex]g(x) = 0.5^{(x+3)}[/tex]

Step-by-step explanation:

Assuming f(x) = [tex]0.5^{x}[/tex] is a correct interpretation of f(x),

the way to translate three units to the left is to change x to x+3.  This gives our answer:   [tex]g(x) = 0.5^{(x+3)}[/tex]

Answer:

B. g(x) = (1/2)⁽ˣ⁺³⁾

Hope this helps!

Step-by-step explanation:

Which option is correct and how would one solve for it?

Answers

Answer:

2+4+6+8

Step-by-step explanation:

We have the sum of 2n  where n runs from 1 to 4

n=1  2(1) = 2

n=2  2(2) = 4

n=3  2(3) = 6

n=4  2(4) = 8

The sum is add

2+4+6+8

Find the value of x.

Answers

Answer:

5

Step-by-step explanation:

This shape is formed by two right triangles.

Let's start by the little one.

Let y be the third side.

Using the Pythagorian theorem we get:

y^2 = 6^2 + 3^2

y^2 = 36 + 9

y^2 = 45

y = 3√(5)

●●●●●●●●●●●●●●●●●●●●●●●●

Now let's focus on the second triangle. Let z be the third side.

The Pythagorian theorem:

6^2 + x^2 = z^2

Using the Pythagorian theorem on the big triangle :

[3√(5)]^2 + z^2 = (3+x)^2

45 + z^2 = 3x^2 + 6x + 9

36 +z^2 = 3x^2 +6x

So we have a system of equations.

36+ x^2 = z^2

36 +z^2 = 3x^2 +6x

We want to khow the value of x so we will eliminate z .

Add (36+x^2 -z^2 =0) to the second one.

36 + x^2-z^2+36+z^2 = 3x^2+6x

72 + x^2 = 3x^2 +6x

72 - 2x^2 -6x = 0

Multipy it by -1 to reduce the number of - signs

2x^2 + 6x -72 = 0

This is a quadratic equation

Let A be the discriminant

● a = 2

● b = 6

● c = -72

A = b^2-4ac

A = 36 -4*2*(-72) = 36 + 8*72 =612

So this equation has two solutions

The root square of 612 is approximatively 25.

● (-6-25)/4 = -31/4 = -7.75

● (-6+25)/4 = 19/4 = 4.75 wich is approximatively 5

A distance cannot be negative so x = 5

the value of x=5, the person above showed good work

Let the following sample of 8 observations be drawn from a normal population with unknown mean and standard deviation:

21, 14, 13, 24, 17, 22, 25, 12

Required:
a. Calculate the sample mean and the sample standard deviation.
b. Construct the 90% confidence interval for the population mean.
c. Construct the 95% confidence interval for the population mean

Answers

Answer:

a

   [tex]\= x = 18.5[/tex]  ,  [tex]\sigma = 5.15[/tex]

b

 [tex]15.505 < \mu < 21.495[/tex]

c

 [tex]14.93 < \mu < 22.069[/tex]

Step-by-step explanation:

From the question we are are told that

    The  sample data is  21, 14, 13, 24, 17, 22, 25, 12

     The sample size is  n  = 8

Generally the ample mean is evaluated as

        [tex]\= x = \frac{\sum x }{n}[/tex]

        [tex]\= x = \frac{ 21 + 14 + 13 + 24 + 17 + 22+ 25 + 12 }{8}[/tex]

         [tex]\= x = 18.5[/tex]

Generally the standard deviation is mathematically evaluated as

         [tex]\sigma = \sqrt{\frac{\sum (x- \=x )^2}{n}}[/tex]

[tex]\sigma = \sqrt{\frac{\sum ((21 - 18.5)^2 + (14-18.5)^2+ (13-18.5)^2+ (24-18.5)^2+ (17-18.5)^2+ (22-18.5)^2+ (25-18.5)^2+ (12 -18.5)^2 )}{8}}[/tex]

[tex]\sigma = 5.15[/tex]

considering part b

Given that the confidence level is  90% then the significance level is evaluated as

         [tex]\alpha = 100-90[/tex]

         [tex]\alpha = 10\%[/tex]

         [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex]  from the normal distribution table the value is  

     [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]

The margin of error is mathematically represented as

      [tex]E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E =1.645 * \frac{5.15 }{\sqrt{8} }[/tex]

=>     [tex]E = 2.995[/tex]

The 90% confidence interval is evaluated as

       [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

       [tex]18.5 - 2.995 < \mu < 18.5 + 2.995[/tex]

       [tex]15.505 < \mu < 21.495[/tex]

considering part c

Given that the confidence level is  95% then the significance level is evaluated as

         [tex]\alpha = 100-95[/tex]

         [tex]\alpha = 5\%[/tex]

         [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex]  from the normal distribution table the value is  

     [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

The margin of error is mathematically represented as

      [tex]E = Z_{\frac{ \alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]

=>    [tex]E =1.96 * \frac{5.15 }{\sqrt{8} }[/tex]

=>     [tex]E = 3.569[/tex]

The 95% confidence interval is evaluated as

       [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

       [tex]18.5 - 3.569 < \mu < 18.5 + 3.569[/tex]

       [tex]14.93 < \mu < 22.069[/tex]

Other Questions
Eight years ago you purchased an asset for $100,000 that has yielded a nominal capital gain of $30,000. If you sold the asset today, your inflation-adjusted capital gains would be zero due to inflation over the last eight years. The capital gains tax is 28 percent. If you sold the asset today your tax liability would be A local electricity - generating company has a monopoly that is protected by an entry barrier that takes the form of:________. a. economies of scale. b. perfectly inelastic demand curve. c. control of a key raw material. d. network externalities. Which of the following is an even function? f(x) = (x 1)2 f(x) = 8x f(x) = x2 x f(x) = 7 Which of the following is a true statement regarding physical activity and cardiovascular health? (Select all that apply.) Aerobic exercise decreases resting heart rate because the heart has an increased stroke volume. Aerobic exercise increases LDL, or bad, cholesterol in the blood because blood circulation is increased. Aerobic exercise increases resting heart rate because the heart pumps more blood while in a rested state. Aerobic exercise reduces heart disease because it makes the heart work harder, improving its strength. What is the value of the product (3 2i)(3 + 2i)? Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario who are the customers for textbooks? What do these customers want in terms of goods and services related to textbooks? From the publishers point of view, who are the key customer? A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%. if a + b + c = 9 and ab + bc + ca = 26 find the value of a^2 + b^2 + c^2 ys is the perpendicular bisector of xz. What is the length of Xs if xz is 18 inches long? twice x,plus 8,is the same as -10 Figure out if the figure is volume or surface area.(and the cut out cm is 4cm) To what extent were the colonists' responses and forms of protest toward Britishrule just? WILL MARK BRAINLIEST!!!! PLZ HELP!!! A food packet is dropped from a helicopter and is modeled by the function f(x) = 15x2 + 6000. The graph below shows the height f(x), in feet, of the food packet at different times x, in seconds: Use the graph to determine the domain of f(x) for all viable x values, based on the context. x 6000 0 x 20 20 x 20 All real numbers Income statement data for Boone Company for two recent years ended December 31, are as follows: Current Year Previous Year Sales $396,000 $330,000 Cost of goods sold 330,400 280,000 Gross profit $65,600 $50,000 Selling expenses $17,600 $16,000 Administrative expenses 16,520 14,000 Total operating expenses $34,120 $30,000 Income before income tax $31,480 $20,000 Income tax expenses 12,600 8,000 Net income $18,880 $12,000 a. Prepare a comparative income statement with horizontal analysis, indicating the increase (decrease) for the current year when compared with the previous year. If required, round to one decimal place. Boone Company Comparative Income Statement For the Years Ended December 31 Current year Amount Previous year Amount Increase (Decrease) Amount Increase (Decrease) Percent Sales $396,000 $330,000 $ % Cost of goods sold 330,400 280,000 % Gross profit $65,600 $50,000 $ % Selling expenses 17,600 16,000 % Administrative expenses 16,520 14,000 % Total operating expenses $34,120 $30,000 $ % Income before income tax $31,480 $20,000 $ % Income tax expense 12,600 8,000 % Net income $18,880 $12,000 $ % b. The net income for Boone Company increased by 57.3% between years. This increase was the combined result of an in sales of 20% and percentage in cost of goods sold. The cost of goods sold increased at a rate than the increase in sales, thus causing the percentage increase in gross profit to be than the percentage increase in sales. The segments shown below could form a triangle.A. TrueB. False In a class test containing 10 questions, 5 marks are awarded for every correct answer and (2) marks are awarded for every incorrect answer and 0 for questions not attempted.Heena gets two correct and five incorrect answers out of seven questions she attempts. What is her score? If AC = 40, find the length of JK. Businesses should test data storage procedures periodically to ensure that backed up data is correct and complete, and that the storage media or cloud-based storage service works properly.A) TrueB) False Which promotion activity can you perform in a bookstore? A. A book signing B. Email Marketing C. blogging D. online coimpetitions