Answer:
spread over a wide range
cannot be evaded
Everyone can contribute
convenient
Step-by-step explanation:
7^300 chia 7 dư bao nhiêu
Answer:
dư 0... 7^300 chia 7 đc 7^299 mà
Rebecca is comparing prices on toilet paper. Charmin has 18 rolls, each with 200 sheets, for $12.97. Angel Soft has 24 rolls, each with 425 sheets, for $19.98. Which is the better value?
The product that provides the better value per sheet is Angel Soft toilet paper.
Each sheet of Angel Soft costs $0.20 whereas each sheet of Charmin costs $0.36.
Data and Calculations:
Charmin has 18 rolls, each with 200 sheets, for $12.97
Angel Soft has 24 rolls, each with 425 sheets, for $19.98
Product Rolls Sheets Total Sheets Total Cost Cost per Sheet
in a Roll (rolls x sheet) (Total cost/No. Sheets)
Charmin 18 200 3,600 (18 x 200) $12.97 $0.36 ($12.97/3,600)
Angel Soft 24 425 10,200 (24 x 425) $19.98 $0.20 ($19.98/10,200)
Thus, Rebecca should go for Angel Soft toilet paper because it provides a better value per sheet than Charmin toilet paper.
Learn more about better product values here: https://brainly.com/question/14920077
Please need help with this ASAP !!!!!
First concert mixed fractions to normal Form
[tex]\\ \sf\longmapsto 1\dfrac{1}{4}=\dfrac{5}{4}[/tex]
[tex]\\ \sf\longmapsto 1\dfrac{3}{4}=\dfrac{7}{4}[/tex]
if all are in AP then common difference will be same[tex]\\ \sf\longmapsto \dfrac{3}{4}-\dfrac{1}{4}=\dfrac{5}{4}-\dfrac{3}{4}[/tex]
[tex]\\ \sf\longmapsto \dfrac{3-1}{4}=\dfrac{5-3}{4}[/tex]
[tex]\\ \sf\longmapsto \dfrac{2}{4}=\dfrac{2}{4}[/tex]
Hence it's true
Answer: True
Explanation:
1/4, 3/4, 1 1/4, 1 3/4
1 1/4 = 5/4
1 3/4 = 7/4
1/4, 3/4, 5/4, 7/4
= 0.25, 0.75, 1.25 , 1.75
This is arithmetic
Must click thanks and mark brainliest
A social media platform states that a social media post from a marketing agency has 7 hashtags, on average. A digital marketing specialist studying social media advertising believes the average number of hashtags used in a post from a marketing agency is different than the number stated by the social media platform. After completing a study, the digital marketing specialist found that the average number of hashtags used by a marketing agency in a social media post is 7.9 hashtags on average.
As the digital marketing specialist sets up a hypothesis test to determine if their belief is correct, what is their claim?
a. The average number of hashtags used in a social media post from a marketing agency is different than 7 hashtags.
b. The average number of hashtags used in a social media post from a marketing agency is different than 7.9 hashtags.
c. Marketing agencies use too many hashtags in a social media post.
d. The average number of hashtags used in a social media post from a marketing agency is 7 hashtags.
Answer:
a. The average number of hashtags used in a social media post from a marketing agency is different than 7 hashtags.
Step-by-step explanation:
A social media platform states that a social media post from a marketing agency has 7 hashtags, on average.
This means that at the null hypothesis, we test if the mean is 7, that is:
[tex]H_0: \mu = 7[/tex]
A digital marketing specialist studying social media advertising believes the average number of hashtags used in a post from a marketing agency is different than the number stated by the social media platform.
Keyword is different, so at the null hypothesis, we test if the mean is different of 7, that is:
[tex]H_1: \mu \neq 7[/tex]
Thus, the correct answer is given by option a.
180 °
X °
26 °
X = ? °
Answer:
X = 64
Step-by-step explanation:
All of the angles are right angles (because of the square at one of the angles shown above). This means each angle equals 90 degrees. If X + 26 = 90, then X = 64 because 90 - 26 = 64. I hope this helps!
Answer: X = 64
Step-by-step explanation:
Use the remainder term to find the minimum order of the Taylor polynomial, centered at 0, that is required to approximate the following quantity with an absolute error no greater than 10^-2.
√1.06.
n>= __________
Answer:
n ≥ 3
Step-by-step explanation:
Applying the remainder term in evaluating the minimum order of the Taylor polynomial
absolute error ≤ 10^-2
[tex]\sqrt{1.06}[/tex]
∴ n ≥ ?
The remainder term is the leftover term after computation ( dividing one polynomial with another )
attached below is the detailed solution
The minimum order of the Taylor polynomial, n≥3
What is Taylor polynomial?Taylor polynomial is a series of functions that has an infinite sum of terms that are expressed in terms of the function's derivatives.
[tex]\rm f(a)+\frac{f'(a)}{1!} (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +....,[/tex]
Applying the Taylor series polynomial, the minimum order of the Taylor polynomial, centered at 0
[tex]\rm f(0)+\frac{f'(0)}{1!} (x-0)+\frac{f''(0)}{2!} (x-0)^{2} +....,[/tex]
f(x) = [tex]\sqrt{x+1}[/tex]
[tex]f'(x)=\frac{1}{2}[/tex]
[tex]f''(x)=3/8[/tex]
substituting in the Taylors series
T(x) = [tex]1+\frac{x}{2} -\frac{x^{2} }{8} +\frac{x^{3} }{16}[/tex]......
T(0.06) = [tex]1+\frac{0.06}{2} -\frac{0.06^{2} }{8} +\frac{0.06^{3} }{16}...[/tex]
T(0.06) =1.03
f(0.06) =
[tex]\sqrt{0.06+1}\\= 1.03[/tex]
Therefore, the minimum order of the Taylor polynomial, n≥3
Learn more about Taylor polynomial;
https://brainly.com/question/23842376
Help please anyone???
9514 1404 393
Answer:
x^2/1 +y^2/81 = 1
Step-by-step explanation:
We know that the equation of a unit circle is ...
x^2 +y^2 = 1 . . . . . equation of a unit circle
We also know that replacing x with x/a in a function will expand the graph by a factor of 'a'. Similarly, replacing y with y/b will do the same in the vertical direction.
An ellipse is a circle that has had different expansion factors applied along its different axes. Here, the given points tell us the center of the ellipse is (0, 0), and that it has been expanded by a factor of 9 in the y-direction and a factor of 1 in the x-direction This means the equation for it would be ...
(x/1)^2 +(y/9)^2 = 1 . . . . . equation for desired ellipse
In the required form, this is ...
[tex]\dfrac{x^2}{1}+\dfrac{y^2}{81}=1[/tex]
hawkville's population is 2500 people. next year the town clerk expects the population to grow by 1.2%, how many new residents will hawkville have next year?
Answer:
30 new residents
Step-by-step explanation:
Find how many new residents they will have by finding 1.2% of the current population.
2500(0.012)
= 30
So, Hawkville will have 30 new residents
(y - .18) x .08 = needing help
Answer:
0.08y - 0.0144
Step-by-step explanation:
We need to solve the below expression i.e.
(y - .18) x .08
It can be done as follows :
Using distributive property to solve it.
(y - .18) x .08 = 0.08(y) - 0.18(0.08)
= 0.08y - 0.0144
So, the equivalent expression is 0.08y - 0.0144.
(PLEASE HELP AGAIN SORRY)
Find x.
A) 11.53
B) 12.12
C) 16.45
D) 15.92
Answer:
x = 15.92
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp / adj
tan 53 = x / 12
12 tan 53 = x
x=15.92453
Rounding to the nearest hundredth
x = 15.92
Answer:
15.92
Step-by-step explanation:
Use the order of operations to evaluate this expression (-2+1)
Answer:
12
Step-by-step explanation:
2²×3
I hope its correct
Answer:
4
[tex] {( - 2 + 1)}^{2} + 5(12 \div 3) - 9 \\ 2 + 1 + 5 \times 4 - 9 \\ 3 + 20 - 9 \\ 23 - 9 \\ 14[/tex]
Find the eigenvalues of the matrix:
[-43 0 80]
[40 -3 80]
[24 0 45]
Answer:
-3
1 + 4 sqrt( 241 )
1 - 4 sqrt( 241 )
Step-by-step explanation:
We need minus lambda on the entries down the diagonal. I'm going to use m instead of the letter for lambda.
[-43-m 0 80]
[40 -3-m 80]
[24 0 45-m]
Now let's find the determinant
(-43-m)[(-3-m)(45-m)-0(80)]
-0[40(45-m)-80(24)]
+80[40(0)-(-3-m)(24)]
Let's simplify:
(-43-m)[(-3-m)(45-m)]
-0
+80[-(-3-m)(24)]
Continuing:
(-43-m)[(-3-m)(45-m)]
+80[-(-3-m)(24)]
I'm going to factor (-3-m) from both terms:
(-3-m)[(-43-m)(45-m)-80(24)]
Multiply the pair of binomials in the brackets and the other pair of numbers;
(-3-m)[-1935-2m+m^2-1920]
Simplify and reorder expression in brackets:
(-3-m)[m^2-2m-3855]
Set equal to 0 to find the eigenvalues
-3-m=0 gives us m=-3 as one eigenvalue
The other is a quadratic and looks scary because of the big numbers.
I guess I will use quadratic formula and a calculator.
(2 +/- sqrt( (-2)^2 - 4(1)(-3855) )/(2×1)
(2 +/- sqrt( 15424 )/(2)
(2 +/- sqrt( 64 )sqrt( 241 )/(2)
(2 +/- 8 sqrt( 241 )/(2)
1 +/- 4 sqrt( 241 )
The grades in a statistics course for a particular semester were as follows:
Grade ABCDF f 14 18 32 20 16
Test the hypothesis, at the 0.05 level of significance, that the distribution of grades is uniform. (Test that each grade is equally likely) Round your solutions to 3 decimal places where necessary.
Test Statistic =
Critical Value =
Answer:
Test Statistic = 10
Critical Value = 9.488
Step-by-step explanation:
Given :
Grade A _ B _ C _ D _ F
_____14 _ 18 _32_ 20_16
H0 : distribution of grade is uniform
H1 : Distribution of grade is not uniform
Using the Chisquare statistic :
χ² = (observed - Expected)² / Expected
The expected value :
(14+18+32+20+16) / 5 = 20
χ² = (14-20)^2 / 20 + (18-20)^2 / 20 + (32-20)^2 / 20 + (20-20)^2 / 20 + (16-20)^2 / 20
χ² statistic = 10
The χ² critical at df = (n - 1) = 5 - 1 = 4
χ² Critical(10, 4) = 9.488
LET R equal the rental fee for one locker write an equation that represents the situation
Answer:
R x 1= price of 1 locker
Step-by-step explanation:
it would continue the same way. Just multiply R and the number of lockers.
Is there a certain situation it was asking about?
Please help.........
Answer:
a
Step-by-step explanation:
Sam is shopping for clothes. There's a 9% sales tax where he lives. Select the expression that gives the price of clothes after including the sales tax, where c is the original cost of the clothes.
1c + 0.9c
Incorrect Response
1.09c + 0.09c
Correct Answer
1.09c
Answer:
1.09c
Step-by-step explanation:
The clothes cost c before tax.
The tax is 9% of the price of the clothes, or 9% of c.
To find a percent of a number, change the percent to a decimal and multiply by the number.
9% as a decimal is 0.09
9% of c = 9% * c = 0.09c
The amount of tax is 0.09c.
Now we add the amount of tax to the original price, c.
c + 0.09c = 1.09c
Answer: 1.09c
The absolute value of the dilation factor is the ratio of each side length of the dilated quadrilateral to the corresponding side length of the preimage. How does the ratio of the perimeters in parts B and D compare with the ratio of corresponding side lengths
9514 1404 393
Answer:
perimeter ratio = dilation factor
Step-by-step explanation:
In general, all linear dimensions are scaled by the dilation factor. This includes lengths of sides, perimeter, circumference, diameter, radius, or any other 1-dimensional (length) measure of a figure.
The ratio of perimeters is equal to the ratio of side lengths.
Find hypotenuse,perpendicular and base
Answer:
Hypotenuse = XY = 17 cm
Base = YZ = 15 cm
Perpendicular = XZ = 8 cm
Which is the graph of the linear inequality 2x – 3y < 12? On a coordinate plane, a solid straight line has a positive slope and goes through (0, negative 4) and (3, negative 2). Everything to the right of the line is shaded. On a coordinate plane, a dashed straight line has a positive slope and goes through (0, negative 4) and (3, negative 2). Everything to the right of the line is shaded. On a coordinate plane, a dashed straight line has a positive slope and goes through (0, negative 4) and (3, negative 2). Everything to the left of the line is shaded.
9514 1404 393
Answer:
(c) On a coordinate plane, a dashed straight line has a positive slope and goes through (0, negative 4) and (3, negative 2). Everything to the left of the line is shaded.
Step-by-step explanation:
The x-coefficient is positive, so we can determine the shading from ...
2x ... < ... (pay attention to the x-term and the inequality symbol)
That is, the solution region will have x values that are less than those on the (dashed) boundary line. Lower x-values are to the left, hence shading is on the left side of the boundary. (That's all you need to know here to make the correct choice.)
_____
Additional comment
If the choices are "above" or "below", then you will want to look at the y-term and the inequality symbol. If the coefficient of the variable of interest is negated (as it is for y here), then you need to consider the inequality symbol reversed: -y < ... ⇔ y > .... Here, that means the shading is above the line. Since the slope of the line is positive, "left" and "above" are the same thing.
Answer:
c
Step-by-step explanation:
E2021
Please help!!!
The figures to the right are similar. Compare the first figure to the second. Give the ratio of the perimeters and the ratio of the areas (integer or a simplified fraction)
Answer:
Perimeter: 3/4
Area: 9/16
Step-by-step explanation:
The ratio of the perimeters is equal to the ratio of the sides so:
18/24 = 3/4
Ratio of Area = (Ratio of Sides)^2
(3/4)^2 = 9/16
I wasn't sure about the answer so I used Gauthmath
(A) A small business ships homemade candies to anywhere in the world. Suppose a random sample of 16 orders is selected and each is weighed. The sample mean was found to be 410 grams and the sample standard deviation was 40 grams. Find the 90% confidence interval for the mean weight of shipped homemade candies. (Round your final answers to the nearest hundredth)
(B) When 500 college students are randomly selected and surveyed; it is found that 155 own a car. Find a 90% confidence interval for the true proportion of all college students who own a car.
(Round your final answers to the nearest hundredth)
(C) Interpret the results (the interval) you got in (A) and (B)
The correct answer to the given question is "[tex]\bold{392.47\ < \mu <\ 427.53}[/tex],[tex]\bold{0.28 \ < P <\ 0.34}[/tex], and for Interpret results go to the C part.
Following are the solution to the given parts:
A)
[tex]\to \bold{(n) = 16}[/tex]
[tex]\to \bold{(\bar{X}) = 410}[/tex]
[tex]\to \bold{(\sigma) = 40}[/tex]
In the given question, we calculate [tex]90\%[/tex] of the confidence interval for the mean weight of shipped homemade candies that can be calculated as follows:
[tex]\to \bold{\bar{X} \pm t_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}}}[/tex]
[tex]\to \bold{C.I= 0.90}\\\\\to \bold{(\alpha) = 1 - 0.90 = 0.10}\\\\ \to \bold{\frac{\alpha}{2} = \frac{0.10}{2} = 0.05}\\\\ \to \bold{(df) = n-1 = 16-1 = 15}\\\\[/tex]
Using the t table we calculate [tex]t_{ \frac{\alpha}{2}} = 1.753[/tex] When [tex]90\%[/tex] of the confidence interval:
[tex]\to \bold{410 \pm 1.753 \times \frac{40}{\sqrt{16}}}\\\\ \to \bold{410 \pm 17.53\\\\ \to392.47 < \mu < 427.53}[/tex]
So [tex]90\%[/tex] confidence interval for the mean weight of shipped homemade candies is between [tex]392.47\ \ and\ \ 427.53[/tex].
B)
[tex]\to \bold{(n) = 500}[/tex]
[tex]\to \bold{(X) = 155}[/tex]
[tex]\to \bold{(p') = \frac{X}{n} = \frac{155}{500} = 0.31}[/tex]
Here we need to calculate [tex]90\%[/tex] confidence interval for the true proportion of all college students who own a car which can be calculated as
[tex]\to \bold{p' \pm Z_{\frac{\alpha}{2}} \times \sqrt{\frac{p'(1-p')}{n}}}[/tex]
[tex]\to \bold{C.I= 0.90}[/tex]
[tex]\to\bold{ (\alpha) = 0.10}[/tex]
[tex]\to\bold{ \frac{\alpha}{2} = 0.05}[/tex]
Using the Z-table we found [tex]\bold{Z_{\frac{\alpha}{2}} = 1.645}[/tex]
therefore [tex]90\%[/tex] the confidence interval for the genuine proportion of college students who possess a car is
[tex]\to \bold{0.31 \pm 1.645\times \sqrt{\frac{0.31\times (1-0.31)}{500}}}\\\\ \to \bold{0.31 \pm 0.034}\\\\ \to \bold{0.276 < p < 0.344}[/tex]
So [tex]90\%[/tex] the confidence interval for the genuine proportion of college students who possess a car is between [tex]0.28 \ and\ 0.34.[/tex]
C)
In question A, We are [tex]90\%[/tex] certain that the weight of supplied homemade candies is between 392.47 grams and 427.53 grams.In question B, We are [tex]90\%[/tex] positive that the true percentage of college students who possess a car is between 0.28 and 0.34.Learn more about confidence intervals:
brainly.com/question/24131141
PLEASE HELP ASAP, Thank you
9514 1404 393
Answer:
2.244
Step-by-step explanation:
Your answer looks like it may have a transcription error.
The period is reasonably computed as the difference of the x-values of the given points:
period = 4.114 -1.870 = 2.244 . . . seconds
Which statement is true about the value of Start Absolute Value negative 5 End Absolute Value?
Statements? At least look for one that says it is equivalent to positive 5.
determine the slope and the y intercept of the line 63=-9y
Answer:
-7
Step-by-step explanation:
63 divided by -9 = y
63 divided by -9 = -7
Check answers :
-9 x -7 = a
a= 63
The correlation coefficient, r, between the prices of smartphones, x, and the number of sales of phones, y, equals −0.63.
Select the statement which best describes the relationship between the price and sales.
The value of r indicates that the number of sales decreases as the price decreases.
The value of r indicates that the number of sales decreases as the price stays the same.
The value of r indicates that the number of sales decreases as the price increases.
The value of r indicates that the number of sales is not related to the price.
I think its (C): The value of r indicates that the number of sales decreases as the price increases.
Answer:
(C) The value of r indicates that the number of sales decreases as the price increases.
ED2021.
The best statement, given the correlation coefficient of -0.63 is: value of r indicates that the number of sales decreases as the price increases.
What is a Negative Correlation Coefficient?A negative correlation coefficient has a negative sign, and implies a negative relationship between two variables.
This means that, as one variable decreases, the other variable increases.
Thus, a correlation coefficient of -0.63 shows a negative relationship between prices of smartphones and the number of sales.
Therefore, the best statement, given the correlation coefficient of -0.63 is: value of r indicates that the number of sales decreases as the price increases.
Learn more about correlation coefficient on:
https://brainly.com/question/4219149
help with 4b thank you.
First let's compute dx/dt
[tex]x = t - \frac{1}{t}\\\\x = t - t^{-1}\\\\\frac{dx}{dt} = \frac{d}{dt}\left(t - t^{-1}\right)\\\\\frac{dx}{dt} = 1-(-1)t^{-2}\\\\\frac{dx}{dt} = 1+\frac{1}{t^{2}}\\\\\frac{dx}{dt} = \frac{t^2}{t^{2}}+\frac{1}{t^{2}}\\\\\frac{dx}{dt} = \frac{t^2+1}{t^{2}}\\\\[/tex]
Now compute dy/dt
[tex]y = 2t + \frac{1}{t}\\\\y = 2t + t^{-1}\\\\\frac{dy}{dt} = \frac{d}{dt}\left(2t + t^{-1}\right)\\\\\frac{dy}{dt} = 2 - t^{-2}\\\\\frac{dy}{dt} = 2 - \frac{1}{t^2}\\\\\frac{dy}{dt} = \frac{2t^2}{t^2}-\frac{1}{t^2}\\\\\frac{dy}{dt} = \frac{2t^2-1}{t^2}\\\\[/tex]
From here, apply the chain rule to say
[tex]\frac{dy}{dx} = \frac{dy*dt}{dx*dt}\\\\\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}\\\\\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2} \div \frac{t^2+1}{t^{2}}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2} \times \frac{t^{2}}{t^2+1}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2+1}\\\\[/tex]
We could use polynomial long division, or we could add 2 and subtract 2 from the numerator and do a bit of algebra like so
[tex]\frac{dy}{dx} = \frac{2t^2-1}{t^2+1}\\\\\frac{dy}{dx} = \frac{2t^2-1+2-2}{t^2+1}\\\\\frac{dy}{dx} = \frac{(2t^2+2)-1-2}{t^2+1}\\\\\frac{dy}{dx} = \frac{2(t^2+1)-3}{t^2+1}\\\\\frac{dy}{dx} = \frac{2(t^2+1)}{t^2+1}-\frac{3}{t^2+1}\\\\\frac{dy}{dx} = 2-\frac{3}{t^2+1}\\\\[/tex]
This concludes the first part of 4b
=======================================================
Now onto the second part.
Since t is nonzero, this means either t > 0 or t < 0.
If t > 0, then,
[tex]t > 0\\\\t^2 > 0\\\\t^2+1 > 1\\\\\frac{1}{t^2+1} < 1 \ \text{ ... inequality sign flip}\\\\\frac{3}{t^2+1} < 3\\\\-\frac{3}{t^2+1} > -3 \ \text{ ... inequality sign flip}\\\\-\frac{3}{t^2+1}+2 > -3 + 2\\\\2-\frac{3}{t^2+1} > -1\\\\-1 < 2-\frac{3}{t^2+1}\\\\-1 < \frac{dy}{dx}\\\\[/tex]
note the inequality signs flipping when we apply the reciprocal to both sides, and when we multiply both sides by a negative value.
You should find that the same conclusion happens when we consider t < 0. Why? Because t < 0 becomes t^2 > 0 after we square both sides. The steps are the same as shown above.
So both t > 0 and t < 0 lead to [tex]-1 < \frac{dy}{dx}[/tex]
We can say that -1 is the lower bound of dy/dx. It never reaches -1 itself because t = 0 is not allowed.
We could say that
[tex]\displaystyle \lim_{t\to0}\left(2-\frac{3}{t^2+1}\right)=-1\\\\[/tex]
---------------------------------------
To establish the upper bound, we consider what happens when t approaches either infinity.
If t approaches positive infinity, then,
[tex]\displaystyle L = \lim_{t\to\infty}\left(2-\frac{3}{t^2+1}\right)\\\\\\\displaystyle L = \lim_{t\to\infty}\left(\frac{2t^2-1}{t^2+1}\right)\\\\\\\displaystyle L = \lim_{t\to\infty}\left(\frac{2-\frac{1}{t^2}}{1+\frac{1}{t^2}}\right)\\\\\\\displaystyle L = \frac{2-0}{1+0}\\\\\\\displaystyle L = 2\\\\[/tex]
As t approaches infinity, the dy/dx value approaches L = 2 from below.
The same applies when t approaches negative infinity.
So we see that [tex]\frac{dy}{dx} < 2[/tex]
---------------------------------------
Since [tex]-1 < \frac{dy}{dx} \text{ and } \frac{dy}{dx} < 2[/tex], those two inequalities combine into the compound inequality [tex]-1 < \frac{dy}{dx} < 2[/tex]
So dy/dx is bounded between -1 and 2, exclusive of either endpoint.
Sally's paycheck this week was $100. She spent $220.45 for a shirt, $12.95 for a CD, $15 for gasoline, and put the balance in the bank.
a. What percent of her total pay was spent on the shirt?
b. What percent of her total pay did she put in the bank?
Answer:
A) 220.45%
B) 0%
Step-by-step explanation:
A) 220.45 / 100 = 2.2045 * 100 = 220.45%
B) Costs exceeded her paycheck, so 0% of her pay was leftover and put in the bank.
Answer: A) 22.045% , B) 75.16%
I guess its a typo and weekly salary was $1000
So weekly salary = 1000
Spent on shirt = $220.45
Spent on CD = $12.95
Spent on Gasoline = $15
A) 220.45/1000×100
= 22.045%
B) Total spent = 220.45 + 12.95 + 15
= $248.4
Total left with her = 1000 - 248.4
= $751.6
Total percent of pay she put in bank = 751.6/1000×100
= 75.16%
Must click thanks and mark brainliest
Suppose that a rectangular yard has a width of 2x and a length of 5x+2. Which of the following represents the perimeter P as a function of x?
Answer:
f(x)=15x+5
thanks
Step-by-step explanation:
p=2(length +width)
p=f(x)=2(5x+2+2x)
=f(x)=10x+4+5x
collecting like terms,we get;
f(x)=15x+5
The expression that represents the perimeter P as a function of x is 14x + 14
The perimeter can simply be defined as the part or portion surrounding a shape or boundary. The formula for calculating the perimeter of the rectangular yard is expressed as:
The perimeter of the rectangular yard = 2(L+W) where:
L is the length
W is the width
Given the following parameters
Length = 5x + 2
Width = 2x
Substitute the given parameters into the formula above:
Perimeter = 2(5x+2+2x)
Perimeter = 2(7x + 2)
Perimeter = 14x + 4
Hence the expression that represents the perimeter P as a function of x is 14x + 14
Learn more: https://brainly.com/question/10452031
Find the area in the right tail more extreme than z=0.93 in standard normal distribution, rounded to three decimal places.
Answer:
17.62%
Step-by-step explanation:
z→ ρ
0.93 (L)0.82381 (R)0.17619
17.62% / 82.38%
The area in the right tail more extreme than z=0.93 in standard normal distribution is 17.62% rounded to three decimal places.
What is a normal distribution of data?A normal distribution of data occurs when the majority of data points are relatively similar and the data set has a small range of values.
We need to find the area in the right tail more extreme than z=0.93 in standard normal distribution.
Here, z=0.93
z→ ρ
The mean ( the population mean, at 0.93 standard deviation units, and it represents an area that is, 17.619% of the total area of the standard distribution).
In this normal distribution, every given score is a z-score. A z-score explain us the distance from the mean in standard deviation units.
A = 17.62% / 82.38%
Hence, The area in the right tail more extreme than z=0.93 in standard normal distribution is 17.62% rounded to three decimal places.
Learn more about standard deviation and variance:
https://brainly.com/question/11448982
#SPJ2
The ratio of red beads to blue beads on a necklace is 4:7. If there are 16 red beads, how many blue ones are there?
Answer:
There are 28 beads
Step-by-step explanation:
Total ratio:
[tex]{ \sf{ (4 + 7) = 11}}[/tex]
let total beads be x:
[tex]{ \sf{ \frac{4}{11} \times x = 16 }} \\ \\ { \sf{x = \frac{11 \times 16}{4} }} \\ x = 44 \: beads[/tex]
Blue beads:
[tex] = 44 - 16 \\ = 28 \: \: beads[/tex]