Answer:
m^2-m-6
Step-by-step explanation:
(m-3)(m+2)
m^2 +2m-3m-6
m^2-m-6
Answer:
m² - m - 6
Step-by-step explanation:
(m - 3)(m + 2)
each term in the second factor is multiplied by each term in the first factor, that is
m(m + 2) - 3(m + 2) ← distribute parenthesis
= m² + 2m - 3m - 6 ← collect like terms
= m² - m - 6
can someone help?
solve for x, using the secant lines
10cm, 7cm, 7cm. round to the nearest tenth
x = 4.9
Solution:
We can use the intersecting chords formula:
[tex]\text{(segment piece) x (segment piece) = (segment piece) x (segment piece)}[/tex][tex]7\times7 = 10x[/tex]
[tex]49 = 10x[/tex]
Divide each side by 10[tex]49\div10=10x\div10[/tex]
[tex]4.9 = x[/tex]
Therefore, x = 4.9.
A bicycle wheel travels 30π inches for each revolution. What is the diameter of the wheel?
Answer:30 inches
Step-by-step explanation:
Find the measure of ACD
A - 36 degrees
B - 126 degrees
C - 162 degrees
D - 216 degrees
Answer:
C
Step-by-step explanation:
i assume its
C.
Work out the probability of scoring a total of 4
Answer: 1/12
Step-by-step explanation:
find the area of a circle with a circumference of 50.24 50.24start color #11accd, 50, point, 24, end color #11accd units.
Answer:
Step-by-step explanation:
The formula for the circumference of a circle is C = 2πr, where r is the radius of the circle. Solving for the radius, we have:
r = C/(2π) = 50.24/(2π) ≈ 8
So the radius of the circle is approximately 8 units.
The formula for the area of a circle is A = πr^2, so we have:
A = π(8)^2 = 64π ≈ 201.06
Therefore, the area of the circle is approximately 201.06 square units.
6TH GRADE MATH, WRITE THE EQUATION FOR THIS GRAPH IN THE FORM OF Y=MX+B, TYSM
Answer:
m = 0
Step-by-step explanation:
Slope = rise/run or (y2 - y1) / (x2 - x1)
Pick 2 points (0,2) (1,2)
We see the y stay the same and the x increase by 1, so the slope is
m = 0/1 = 0
So, the slope is 0
A convex lens with focal length f centimeters will project the image of an object on a
point behind the lens. If an object is placed a distance of p centimeters from the lens,
then the distance q centimeters of the image from the lens is related to p and f by the
lens equation: 1/p+1/q=1/f
A. If the focal length of the convex lens is supposed to be 5 cm, and if the image is
formed 7 cm from the lens, find the distance from the lens to the object, p. (It’s not necessary to simplify your answer.)
B. Find an expression that gives q as a function of p, assuming that the focal length is a constant of 5 centimeters.
C. Sketch a graph of q as a function of p (i.e., q(p)), assuming that the focal length is a
constant of 5 centimeters. Show any important features of the graph.
D. Find limq(p) as p approaches infinity and limq(p) as p approaches 5from the positive side. What do these limits represent physically? What must
happen to the distance of the image and the object?
Answer:
A. Using the lens equation, 1/p + 1/q = 1/f, and substituting f = 5 cm and q = 7 cm, we can solve for p:
1/p + 1/7 = 1/5
Multiplying both sides by 35p, we get:
35 + 5p = 7p
Simplifying and rearranging, we get:
2p = 35
Therefore, the distance from the lens to the object, p, is:
p = 35/2 cm
B. Solving the lens equation, 1/p + 1/q = 1/f, for q, we get:
1/q = 1/f - 1/p
Substituting f = 5 cm, we get:
1/q = 1/5 - 1/p
Multiplying both sides by 5qp, we get:
5p = qp - 5q
Simplifying and rearranging, we get:
q = 5p / (p - 5)
Therefore, the expression that gives q as a function of p is:
q = 5p / (p - 5)
C. Here is a sketch of the graph of q(p):
The graph is a hyperbola with vertical asymptote at p = 5 and horizontal asymptote at q = 5. The image distance q is positive for object distances p greater than 5, which corresponds to a real image. The image distance q is negative for object distances p less than 5, which corresponds to a virtual image.
D. Taking the limit of q as p approaches infinity, we get:
lim q(p) = 5
This represents the horizontal asymptote of the graph. As the object distance becomes very large, the image distance approaches the focal length of the lens, which is 5 cm.
Taking the limit of q as p approaches 5 from the positive side, we get:
lim q(p) = -infinity
This represents the vertical asymptote of the graph. As the object distance approaches the focal length of the lens, the image distance becomes infinitely large, indicating that the lens is no longer able to form a real image.
In order for the lens to form a real image, the object distance p must be greater than the focal length f. When the object distance is less than the focal length, the lens forms a virtual image.
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between -0.08°C and 1.68°C.
The probability of obtaining a reading between -0.08°C and 1.68°C is approximately 0.4854 or 48.54%.
What are the four types of probability?Probability is the branch of mathematics concerned with the occurrence of a random event, and there are four types of probability: classical, empirical, subjective, and axiomatic.
The readings at freezing on a set of thermometers are normally distributed, with a mean () of 0°C and a standard deviation () of 1.00°C. We want to know how likely it is that we will get a reading between -0.08°C and 1.68°C.
To solve this problem, we must use the z-score formula to standardise the values:
z = (x - μ) / σ
where x is the value for which we want to calculate the probability, is the mean, and is the standard deviation.
The lower bound is -0.08°C:
z1 = (-0.08 - 0) / 1.00 = -0.08
1.68°C is the upper bound:
z2 = (1.68 - 0) / 1.00 = 1.68
We can now use a standard normal distribution table or calculator to calculate the probabilities for each z-score.
The probability of obtaining a z-score of -0.08 or less is 0.4681, and the probability of obtaining a z-score of 1.68 or less is 0.9535, according to the table. We subtract the probability associated with the lower bound from the probability associated with the upper bound to find the probability of obtaining a reading between -0.08°C and 1.68°C:
P(-0.08°C x 1.68°C) = P(z1 z z2) = P(z 1.68) minus P(z -0.08) = 0.9535 - 0.4681 = 0.4854
As a result, the chance of getting a reading between -0.08°C and 1.68°C is approximately 0.4854 or 48.54%.
To know more about probability visit:
https://brainly.com/question/30719832
#SPJ1
Explain the Pythagorean identity in terms of the unit circle.
The three Pythagorean trigonometric identities, which I’m sure one can find in any Algebra-Trigonometry textbook, are as follows:
sin² θ + cos² θ = 1
tan² θ + 1 = sec² θ
1 + cot² θ = csc² θ
where angle θ is any angle in standard position in the xy-plane.
Consistent with the definition of an identity, the above identities are true for all values of the variable, in this case angle θ, for which the functions involved are defined.
The Pythagorean Identities are so named because they are ultimately derived from a utilization of the Pythagorean Theorem, i.e., c² = a² + b², where c is the length of the hypotenuse of a right triangle and a and b are the lengths of the other two sides.
This derivation can be easily seen when considering the special case of the unit circle (r = 1). For any angle θ in standard position in the xy-plane and whose terminal side intersects the unit circle at the point (x, y), that is a distance r = 1 from the origin, we can construct a right triangle with hypotenuse c = r, with height a = y and with base b = x so that:
c² = a² + b² becomes:
r² = y² + x² = 1²
y² + x² = 1
We also know from our study of the unit circle that x = r(cos θ) = (1)(cos θ) = cos θ and y = r(sin θ) = (1)(sin θ) = sin θ; therefore, substituting, we get:
(sin θ)² + (cos θ)² = 1
1.) sin² θ + cos² θ = 1 which is the first Pythagorean Identity.
Now, if we divide through equation 1.) by cos² θ, we get the second Pythagorean Identity as follows:
(sin² θ + cos² θ)/cos² θ = 1/cos² θ
(sin² θ/cos² θ) + (cos² θ/cos² θ) = 1/cos² θ
(sin θ/cos θ)² + 1 = (1/cos θ)²
(tan θ)² + 1 = (sec θ)²
2.) tan² θ + 1 = sec² θ
Now, if we divide through equation 1.) by sin² θ, we get the third Pythagorean Identity as follows:
(sin² θ + cos² θ)/sin² θ = 1/sin² θ
(sin² θ/sin² θ) + (cos² θ/sin² θ) = 1/sin² θ
1 + (cos θ/sin θ)² = (1/sin θ)²
1 + (cot θ)² = (csc θ)²
3.) 1 + cot² θ = csc² θ
! 100 POINTS !
What is this question asking? What does it mean by floor plan? A step-by-step explanation would be very much appreciated.
Brainliest, ratings and thanks are promised if a helpful answer is received.
Step-by-step explanation:
So first of all u have to convert the metres into centimetres. After the conversation draw the map of both in centimetres and your map is done. The question is answered
Answer:
Determine the dimensions of the room: Measure the length and width of the room you want to draw a floor plan for using a tape measure. Record these measurements in meters.
Choose a scale: Since you want to use a scale of 1cm to 0.5m, you need to convert your measurements from meters to centimeters. For example, if your room measures 6 meters by 4 meters, you need to multiply each measurement by 100 to get 600cm by 400cm. Then, divide each measurement by 2 to get your scale measurement. In this case, your floor plan will be 300cm by 200cm.
Draw a rough sketch: Using a pencil and graph paper, draw a rough sketch of the room's shape based on the dimensions you have recorded.
Add doors and windows: Using the same scale, add doors and windows to your floor plan. Doors are typically represented by a straight line with an arc on top, while windows are represented by a straight line with a horizontal line through the middle.
Add fixtures and appliances: Add any fixtures and appliances that are permanent to the room, such as sinks, cabinets, and appliances. You can use symbols to represent these items, such as a rectangle for a refrigerator or a triangle for a sink.
Label everything: Finally, label everything on your floor plan using a legible font. This includes the dimensions of the room, the location of doors and windows, and the names of fixtures and appliances.
Step-by-step explanation:
true/false. The p-value of a test is the probability of observing a test statistic at least as extreme as the one computed, given that the null hypothesis is true.
True. The p-value is a probability value that measures the power of evidence in against to the null hypothesis in a statistical test.
Mainly, it represents the possibility of staring at a test statistic as a minimum as extreme as the one computed, assuming that the null hypothesis is genuine.
If the p-value is small, commonly less than a chosen significance stage (e.g., 0.05), it shows that the determined data is unlikely to have took place by danger alone and provides proof against the null hypothesis. alternatively, a large p-value suggests that the determined information is consistent with the null speculation, and the evidence isn't sturdy enough to reject it.
Consequently, the p-value is an critical tool in statistical inference, permitting researchers to draw conclusions about the population based totally on pattern information and degree the extent of uncertainty in their outcomes.
Learn more about p-value:-
https://brainly.com/question/13786078
#SPJ4
Below are the jersey numbers of 11 players randomly selected from a football team. Find the range, variance, and standard deviation for the given sample data. What do the results tell us?
92 19 41 24 75 53 70 3 67 64 9
Step-by-step explanation:
To find the range, we need to subtract the smallest value from the largest value in the dataset:
Range = Largest value - Smallest value
Range = 92 - 3
Range = 89
To find the variance and standard deviation, we need to calculate the mean first:
Mean = (Sum of all values) / (Number of values)
Mean = (92+19+41+24+75+53+70+3+67+64+9) / 11
Mean = 45.09 (rounded to two decimal places)
Next, we need to calculate the variance:
Variance = (Sum of squared differences from the mean) / (Number of values - 1)
Variance = [(92-45.09)^2 + (19-45.09)^2 + (41-45.09)^2 + (24-45.09)^2 + (75-45.09)^2 + (53-45.09)^2 + (70-45.09)^2 + (3-45.09)^2 + (67-45.09)^2 + (64-45.09)^2 + (9-45.09)^2] / (11-1)
Variance = 1071.45 (rounded to two decimal places)
Finally, we can calculate the standard deviation by taking the square root of the variance:
Standard deviation = Square root of variance
Standard deviation = Square root of 1071.45
Standard deviation = 32.74 (rounded to two decimal places)
The range tells us the difference between the highest and lowest values in the dataset, which in this case is 89. The variance and standard deviation tell us how spread out the data is from the mean. The higher the variance and standard deviation, the more spread out the data is. In this case, the variance and standard deviation are both relatively high, indicating that the data is fairly spread out.
The Stamp-M-Out Company manufactures rubber stamps. An inspector finds that there are 10 defective stamps in a sample of 700. a) What is the probability that a randomly selected stamp will be defective?
b) According to Stamp-M-Out Company quality control standards no more than 3.5% of stamps produced may be defective. Does Stamp-M-Out Company need to adjust its manufacturing process to meet this standard?
A defective stamp is likely to be chosen at random 1.4% of the time, or about 0.014 times. The observed percentage probability faulty stamps is below the 3.5% maximum permitted rate,
How can I figure out probability?Name an event from one outcome. Step 2: Compile a list of all potential outcomes, including any positive ones. Step 3: Subtract the number of favorable outcomes from the total number of possibilities that are feasible.
P(faulty) = quantity of defective stamps divided by total quantity of stamps
P(defective) = 10/700.
0.014 P(defective)
Consequently, there is a 1.4% chance (or about 0.014) that a randomly chosen stamp will be flawed.
B-The observed percentage of flawed stamps is:
10 / 700 0.5 – 0.014
Divide this rate by 100 to get the percentage:
0.014 x 100 approximately 1.4%
To know more about probability visit:
https://brainly.com/question/30034780
#SPJ1
when a certain number is doubled and then decreased by 9, the result is not more than 19. Find the range of values of the number
Answer:
The number must be at most 10.
If the number is doubled and then decreased by 9, the result is 2x - 9.
2x - 9 ≤ 19
2x ≤ 28
x ≤ 14
Therefore, the range of values of the number is 0 to 10.
Find the probability of landing on yellow, the probability of the complement, and the sum of the event and the complement. Type your answers without any spaces.
The probability of landing on yellow is 0.2, probability of component is 0.8, and sum of event and complement is 1.
On assuming that the pie is evenly divided into 5 parts,
So, the probability of landing on yellow is = 1/5 = 0.2,
The complement of landing on yellow is the probability of not landing on yellow, which is the probability of landing on any of the other 4 parts of the pie.
So, the probability of the complement is = 4/5 = 0.8,
The sum of the event (landing on yellow) and the complement (not landing on yellow) is equal to the probability of the entire sample space, which is 1.
⇒ P(Yellow) + P(Not Yellow) = 1
⇒ 0.2 + 0.8 = 1
So, the sum of the event and the complement is 1 or 100%.
Learn more about Probability here
https://brainly.com/question/16551257
#SPJ4
The given question is incomplete, the complete question is
A circular pie is divided in 5 parts , Green , Yellow, Blue Black and Red.
Find the probability of landing on yellow, the probability of complement, and the sum of the event and the complement.
After y - 4x = 12 is put in slope-intercept form, what is the slope?
-4
-1/4
-3
4
find the following answer
Cardinality of given set is 10.
Describe Cardinality.The cardinality of a mathematical set refers to the number of entries in the set. It may be limited or limitless. For instance, if set A has six items, its cardinality is equivalent to 6: 1, 2, 3, 4, 5, and 6. A set's size is often referred to as the set's cardinality. The modulus sign is used to indicate it on either side of the set name, |A|.
a Set's CardinalityA set that can be counted and has a finite number of items is said to be finite. On the other hand, an infinite set is one that has an unlimited number of components and can either be countable or uncountable.
Possible set of A=14+4+1+9=28
Possible set of C=1 +6+9+9=25
n(A∩ C)=10
Hence, Cardinality of given set is 10.
To know more about modulus, visit:
https://brainly.com/question/10737199
#SPJ1
Use the slope and y-intercept to identify the equation of this line.
The equation of the line is y = -2x. The correct option is the last option y = -2x
Writing the equation of the line in the given graphFrom the question, we are to write the equation of the line in the given graph using the slope and y-intercept from the graph
First, we will determine the slope of the graph
The slope of the graph calculated from the formula
Slope = Change in y / Change in x
Slope = (y₂ - y₁) / (x₂ - x₁)
Picking the points (-1, 2) and (0, 0)
Slope = (0 - 2) / (0 - (-1))
Slope = -2/(0 + 1)
Slope = -2/1
Thus,
Slope = -2
From the graph, the y-intercept of the graph is 0
Then,
From the slope-intercept form of the equation of a line,
y = mx + c
Where m is the slope
and c is the y-intercepts
The equation of the line is
y = -2x + 0
y = -2x
Hence, the equation is y = -2x
Learn more on Writing the equation of a line here: https://brainly.com/question/25722412
#SPJ1
the function f is defined by f of x is equal to 3 divided by the square root of x minus 2 divided by x cubed for x > 0. g
The required value of the function (f + g)(x) for given f(x) and g(x) as ( 3 / √x ) - ( 2 / x³ ) and √(5x - 7) is equals to ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7).
Function f(x) is equals to,
( 3 / √x ) - ( 2 / x³ ) for all x > 0
Function g(x) is equals to,
g(x) = √(5x - 7)
To get the value of (f + g)(x),
Substitute the value of f(x) and g(x) and add the functions f(x) and g(x) together,
Sum of f(x) and g(x) is equals to,
(f + g)(x)
= f(x) + g(x)
= ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7)
Therefore, value of the function (f + g)(x) is equals to ( 3 / √x ) - ( 2 / x³ ) + √(5x - 7).
Learn more about function here
brainly.com/question/12827129
#SPJ4
The above question is incomplete, the complete question is:
The function f is defined by f of x is equal to 3 divided by the square root of x minus 2 divided by x cubed for x > 0, g as a function of x is equal to the square root of quantity 5 x minus 7 Find (f + g)(x).
Determine the relationship between the two triangles and whether or
not they can be proven to be congruent.
The two triangles are related by_____, so the triangles______
The two triangles are related by SAS criteria, so the triangles are congruent.
What are congruent triangles?Congruent triangles are triangles that are precisely the same size and form. When the three sides and three angles of one triangle match the same dimensions as the three sides and three angles of another triangle, two triangles are said to be congruent. Corresponding portions are those areas of the two triangles that share the same dimensions (are congruent). This indicates that corresponding triangle parts are congruent (CPCTC).
From the given figure we observe for that the two triangles two sides and the corresponding angle of 90 degree is similar.
Thus, using the SAS criteria we see that the two triangles are equal.
Hence, the two triangles are related by SAS criteria, so the triangles are congruent.
Learn more about congruent triangles here:
https://brainly.com/question/30596171
#SPJ1
which of the following assumptions must be true in order for this to be the correct sampling distribution
Since means cannot be smaller than 0, the sampling distribution of the mean is always right skewed.
No matter the sample size, the form of the sampling distribution of means is always the same as the population distribution.
We require two assumptions in order to apply the sampling distribution model to sample proportions: The selected values must be independent of one another, according to the independence assumption. The Sample Size Assumption demands that the sample size, n, be sufficiently large.
While doing a t-test, it is typical to make the following assumptions: the measuring scale, random sampling, normality of the data distribution, sufficiency of the sample size, and equality of variance in standard deviation.
To know more about sampling distribution, click the below link
https://brainly.com/question/29375938
#SPJ4
the actual question is :
Which of the following is true about the sampling distribution of the mean?
a. It is an observed distribution of scores
b. It is a hypothetical distribution
c. It will tend to be normally distributed with a
standard deviation equal to the population
standard deviation
d. The mean will be estimated by the standard
error
e. Both (a) and (b)
We have a circular plate of radius a
. The temperature distribution, u(rho,ϕ)
, has boundary conditions u(a,ϕ)=T1
when 0<ϕ<π
and T2
when π<ϕ<2π
. The steady state temperature distribution satisfies the Laplace equation.
I have used separation of variables to reduce the equation to two ODE's which I solved to find the general solution to be u(rho,ϕ)=∑Cλexp(λϕ)ϕλ
The question then asks us to find the Fourier series for u(a,ϕ)
. I did this by finding the series for the two boundary conditions which resulted in: u(a,ϕ)=(T1−T2)2+∑((−1m)−1)(T2−T1)sin(mϕ)πm
(Noted that I am not 100% sure this is correct)
The final part of the question, and the source of my problem, asks us to find an expression for u(rho,ϕ)
as an infinite series using the previous answer. I do not understand how to form a general solution using this - I cannot see how the Fourier series is of any relevance to a general solution as it doesnt appear to help us find Cλ
or λ
itself. Any help would be much appreciated!
the Fourier series solution is not directly used to find the general solution but is used as a part of it, along with the radial solution. The Fourier series solution helps in finding the solution to the given boundary value problem, which, when combined with the radial solution, gives the complete solution to the Laplace equation.
The Fourier series approach that you have used helps in finding the solution to the boundary value problem, i.e., finding u(a,ϕ) for the given boundary conditions. However, to find a general solution to the Laplace equation, we need to use the superposition principle, which states that the sum of any two solutions to the Laplace equation is also a solution.
Therefore, we can use the previously obtained Fourier series solution for u(a,ϕ) as a building block to construct the general solution. We know that the Laplace equation has radial symmetry, which means that the temperature distribution is only a function of radius (rho) and not of angle (ϕ). Hence, we can write the general solution as:
u(rho,ϕ) = f(rho) + u(a,ϕ)
where f(rho) is the radial component of the solution and u(a,ϕ) is the previously obtained Fourier series solution.
To find f(rho), we need to solve the radial ODE using the boundary conditions at rho=0 and rho=a. Once we have obtained f(rho), we can add it to u(a,ϕ) to get the general solution.
Therefore, the Fourier series solution is not directly used to find the general solution but is used as a part of it, along with the radial solution. The Fourier series solution helps in finding the solution to the given boundary value problem, which, when combined with the radial solution, gives the complete solution to the Laplace equation.
To know more about Fourier series solution click here:
brainly.com/question/29672996
#SPJ4
Need Help!
A commuter railway has 800 passengers per day and charges each one two dollars per day. For each 4 cents that the fare is increased, 5 fewer people will go by train.
What is the greatest profit that can be earned?
Greatest profit = $_____
Answer:
Step-by-step explanation:
To find the greatest profit, we need to determine the fare that will maximize revenue, while also considering the decrease in ridership due to the fare increase.
Let's assume the initial fare is $2, and the number of passengers is 800 per day. So, the initial revenue is:
$2 x 800 = $1600 per day
Now, let's say we increase the fare by 4 cents to $2.04. According to the problem, for each 4 cents increase in fare, there will be 5 fewer passengers. So, the number of passengers will decrease to:
800 - (5 x 4) = 780 passengers per day
The new revenue at this fare will be:
$2.04 x 780 = $1591.20 per day
By increasing the fare, the revenue decreased. This means that we may have increased the fare too much. Let's try another fare.
If we increase the fare by 2 cents to $2.02, the number of passengers will decrease by:
800 - (5 x 2) = 790 passengers per day
The new revenue at this fare will be:
$2.02 x 790 = $1595.80 per day
This is more revenue than the initial fare of $2 per person. Let's continue this process:
If we increase the fare by another 2 cents to $2.04, the number of passengers will decrease by:
790 - (5 x 2) = 780 passengers per day
The new revenue at this fare will be:
$2.04 x 780 = $1591.20 per day
This is less revenue than the $2.02 fare, so we can stop here.
Therefore, the greatest profit can be earned by charging $2.02 per person per day, and the maximum revenue will be:
$2.02 x 790 = $1595.80 per day
This is a bit less than the initial daily revenue of $1600, but it is the most revenue we can get by increasing the fare without causing a significant reduction in ridership.
Answer:
$2205
Step-by-step explanation:
You want the greatest profit that can be earned by a commuter railway that has 800 passengers per day at a fare of $2, and 5 fewer for each 4¢ increase in the fare.
Ridership functionThe number of riders (q) as a function of price (p) can be described by ...
q = 800 -5(p -2)/0.04
q = 1050 -125p . . . . . . . simplified
Revenue functionThe daily revenue is the product of price and the number of riders who pay that price.
r = pq
r = p(1050 -125p)
r = 125p(8.40 -p)
Maximum revenueThis function describes a parabola that opens downward. It has zeros at p=0 and p=8.40. The vertex of the parabola is on the line of symmetry, halfway between the zeros:
pmax = (0 +8.40)/2 = 4.20
The maximum revenue is ...
r(4.20) = 125·4.20(8.40 -4.20) = 125(4.20²) = 2205
The maximum revenue that can be earned is $2205.
__
Additional comment
The ridership at that fare is 125(4.20) = 525.
Profit is the difference between revenue and cost. Here, we have no information about the cost function, so we cannot predict the maximum profit. The question seems to assume that profit is equal to revenue.
When conducting a survey, which of the following is the most important reason to use a random sample? Correct. Random selection ensures that the sample is unbiased on average, so that the results of the study can be generalized to the population.
Random sampling is crucial when surveying as it ensures that the sample selected is representative of the population.
By randomly selecting participants from the population, the sample is likely to be unbiased on average, which means that the results of the study can be generalized to the entire population. Without random sampling, the results of the study may be skewed or biased towards a certain group, which can lead to incorrect conclusions and poor decision-making. Therefore, it is essential to use random sampling when surveying to obtain accurate and reliable results.
Find out more about Random selection
at brainly.com/question/30135122
#SPJ4
Earnings per Share, Price-Earnings Ratio, Dividend Yield
The following information was taken from the financial statements of Zeil Inc. for December 31 of the current fiscal year:
Common stock, $25 par value (no change during the year) $3,500,000
Preferred $10 stock, $100 par (no change during the year) 2,000,000
The net income was $424,000 and the declared dividends on the common stock were $35,000 for the current year. The market price of the common stock is $11.20 per share.
For the common stock, determine (a) the earnings per share, (b) the price-earnings ratio, (c) the dividends per share, and (d) the dividend yield. If required, round your answers to two decimal places.
a. Earnings per Share $fill in the blank 1
b. Price-Earnings Ratio fill in the blank 2
c. Dividends per Share $fill in the blank 3
d. Dividend Yield fill in the blank 4
%
Therefore , the solution of the given problem of unitary method comes out to be common shares of Zeil Inc. is 2.23%.
An unitary method is what?This common convenience, already-existing variables, or all important elements from the original Diocesan adaptable study that followed a particular methodology can all be used to achieve the goal. Both of the crucial elements of a term affirmation outcome will surely be missed if it doesn't happen, but if it does, there will be another chance to get in touch with the entity.
Here,
Earnings per Share are calculated as (Net Income – Preferred Dividends) / the average number of outstanding Common Shares.
=> Market price per share / earnings per share is the Price-Earnings Ratio.
=> Dividends per Share are calculated as follows: Common Stock Dividends / Average Common Shares Outstanding
=> Dividend Yield is the product of dividends per share and the share price.
=> (Beginning Common Shares plus Ending Common Shares) / 2 equals the average number of Common Shares Outstanding.
=> Starting common shares equals ending common shares, which is
=> $3,500,000 / $25, or 140,000.
(a) The earnings per share are ($424,000 - $0) / 140,000, which equals $3.03.
The ordinary stock price of Zeil Inc.
(b) The price-earnings ratio for Zeil Inc.'s common shares is 11.20 divided by 3.03, or 3.69.
(c) Dividends per Share: $35,000./140,000. = $0.25
Therefore, $0.25 in dividends are paid per unit of Zeil Inc. common stock.
(d) Dividend Yield: $0.25 divided by $11.20 equals 0.0223, or 2.23%.
The common shares of Zeil Inc. is 2.23%.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
In the diagram below ijk~ljm. FIND G
As the triangles are similar to each other, using congruent theorem, we get the value of side g = 2m.
What are similar triangles?Comparable triangles are those that resemble one another but may not be precisely the same size. Comparable items are those that share the same shape but differ in size.
This shows that when shapes are amplified or demagnified, they superimpose one another. This feature of similar shapes is often known as "similarity".
As per the triangles,
g/5 = 4/10
⇒ g = 4 × 5/10
⇒ g = 2m.
Therefore, we conclude that the value of g = 2m as per the similar triangles' theorem.
To know more about similar triangles, visit:
https://brainly.com/question/14366937
#SPJ1
Raul's favorite gummy bear colors are yellow and red. He bought a package of gummy bears that only had his favorite colors. When he counted the gummy bears, he had 20 red and 23 yellow. What is the ratio of red gummy bears to yellow gummy bears?
Question 2 options:
23/20
23/43
20/23
20/43
The ratio between the number of red gummy bears to the number of yellow gummy bears is of:
20/23.
How to obtain the ratio?The ratio between the number of red gummy bears and the number of yellow gummy bears is obtained applying the proportions in the context of the problem.
To obtain the ratio between two amounts A and B, you need to divide the first amount by the second amount. The result of this division will give you the ratio of the two amounts.
The amounts for this problem are given as follows:
Amount A: 20 red gummy bears.Amount B: 23 yellow gummy bears.Hence the ratio between these two amounts is given as follows:
20/23.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
PLEASE HELP!
whoever answers right get brainliest!!!
Answer:
FIRST ONE "Deb sold vases for two years, neither sold nor bought the next year and then sold bases for two more years"
Step-by-step explanation:
Notice the number of bases in debs collection is DECREASING as the years passes for the first and third period. This is she is selling her vases but in the middle the number is the same (two point in the same horizontal line) this means she neither sold nor bought any vase in that period.
Just need help on 7,8, and 9
According to the given information, the missing values in the ratio table are:
7. 6:1/3, 12:2, 6:1, 24:4
8. 1/4:3, 2:6, 1:12, 5/4:15
9. 1/3:8/3, 2/3:2/3, 1:1, 4/3:1.04
What is ratio?
A ratio is a mathematical comparison of two or more quantities. Ratios express the proportional relationship between the quantities being compared. Ratios are often written using a colon (:) or as a fraction, such as "1:2" or "1/2".
7.
We can simplify the ratio of feet to seconds by converting 1/3 to its equivalent fraction with a denominator of 3:
Ratio of feet to seconds = 6 : 1/3 = 6 : (1/3) = 6 : (1/3) x (3/3) = 6 : 1
So, the ratio of feet to seconds is 6 : 1.
Using this ratio and the other ratios given, we can create equations to solve for the missing values:
6 : 1 = 12 : x
Cross-multiplying, we get: 6x = 12
Solving for x, we get: x = 2
y : 1 = 6 : 1
Cross-multiplying, we get: y = 6
6 : 1 = 24 : z
Cross-multiplying, we get: 6z = 24
Solving for z, we get: z = 4
Therefore, the missing values are:
x = 2, y = 6, z = 4
8.
We can set up equations based on the given ratios and solve for the missing values.
1/4 : x = blue ribbon : red ribbon
y : 6 = blue ribbon : red ribbon
1 : z = blue ribbon : red ribbon
5/4 : 15 = blue ribbon : red ribbon
To find x:
1/4 : x = 1 : z (since blue ribbon : red ribbon = 1 : z)
Cross-multiplying, we get:
1z = 4x
z = 4x
To find y:
y : 6 = 1/4 : x (since blue ribbon : red ribbon = 1/4 : x)
Cross-multiplying, we get:
y * x = 6 * 1/4
y * x = 3/2
y = (3/2) / x
To find z:
1 : z = 5/4 : 15 (since blue ribbon : red ribbon = 1 : z)
Cross-multiplying, we get:
1 * 15 = 5/4 * z
z = (1 * 15 * 4) / 5
z = 12
Therefore, the values of x, y, and z are x = 3, y = 2, and z = 12.
9.
To find the values of x, y, and z, we need to first simplify the ratios given.
The ratio between orange fabrics and yellow fabric is:
1/3 : 8/3
We can simplify this ratio by multiplying both sides by 3 to get:
1 : 8
The ratio between 2/3 and x is:
2/3 : x
The ratio between 1 and y is:
1 : y
The ratio between 4/3 and z is:
4/3 : z
We can simplify this ratio by multiplying both sides by 3/4 to get:
1 : (4/3)z or 1 : 1.33z (rounded to two decimal places)
Now we have the following ratios:
Orange : Yellow = 1 : 8
2/3 : x = 2/3 : x
1 : y = 1 : y
1 : (4/3)z = 1 : 1.33z
To solve for x, y, and z, we can use cross-multiplication.
Orange : Yellow = 1 : 8
1/8 = (Orange / Yellow)
8/1 = (Yellow / Orange)
2/3 : x = 2/3 : x
This ratio is already in its simplest form, so x = 2/3.
1 : y = 1 : y
This ratio is already in its simplest form, so y = 1.
1 : (4/3)z = 1 : 1.33z
1 = (4/3)z / 1.33z
1 = 0.96z
z = 1.04
Therefore, the values of x, y, and z are:
x = 2/3, y = 1, z = 1.04
To learn more about ratio visit:
https://brainly.com/question/12024093
#SPJ1
In a recent survey a random sample of 320 married couples were asked about their education levels 41 couples reported that at least one of the parents had a doctorate degree use your calculator to find value of Z that should be used to calculate confidence in a role for the percentage of married couples in which at least one partner has a doctorate with a 95% confidence level round three decimal places
Answer:
Step-by-step explanation:
To find the value of Z for a 95% confidence level, we can use a standard normal distribution table or a calculator that has a built-in function for finding Z values.
Using a calculator, we can use the following steps:
Determine the level of confidence, which is 95%. This means that the probability of the true population proportion being within the confidence interval is 0.95.
Find the critical value of Z using a Z-table or calculator. For a 95% confidence level, the critical Z value is 1.96.
Calculate the sample proportion, which is the number of married couples in the sample with at least one partner having a doctorate degree divided by the total sample size:
p-hat = 41/320 = 0.128125
Calculate the standard error of the sample proportion, which is the square root of the product of the sample proportion and the complement of the sample proportion, divided by the sample size:
SE(p-hat) = sqrt((p-hat)(1 - p-hat)/n) = sqrt((0.128125)(1 - 0.128125)/320) = 0.0248 (rounded to four decimal places)
Calculate the margin of error, which is the product of the critical Z value and the standard error:
Margin of error = Z * SE(p-hat) = 1.96 * 0.0248 = 0.0486 (rounded to four decimal places)
Calculate the lower and upper bounds of the confidence interval by subtracting and adding the margin of error to the sample proportion:
Lower bound = p-hat - margin of error = 0.128125 - 0.0486 = 0.0795 (rounded to four decimal places)
Upper bound = p-hat + margin of error = 0.128125 + 0.0486 = 0.1767 (rounded to four decimal places)
Therefore, the 95% confidence interval for the percentage of married couples in which at least one partner has a doctorate degree is (0.0795, 0.1767).