Answer:
-51
Step-by-step explanation:
-46+(-5)
= -51
Answer:
the answer is -17
I hope this helps you
A manufacturer knows that their items have a lengths that are skewed right, with a mean of 5.1 inches, and standard deviation of 1.1 inches. If 49 items are chosen at random, what is the probability that their mean length is greater than 4.8 inches? How do you answer this with the answer rounded 4 decimal places?
Answer:
0.9719
Step-by-step explanation:
Find the mean and standard deviation of the sampling distribution.
μ = 5.1
σ = 1.1 / √49 = 0.157
Find the z score.
z = (x − μ) / σ
z = (4.8 − 5.1) / 0.157
z = -1.909
Use a calculator to find the probability.
P(Z > -1.909)
= 1 − P(Z < -1.909)
= 1 − 0.0281
= 0.9719
The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719
What is Probability?Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true.
What is Standard deviation?In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values.
What is Mean?The arithmetic mean is found by adding the numbers and dividing the sum by the number of numbers in the list.
Given,
Mean = 5.1 inches
Standard deviation = 1.1 inches
Sample size = 49
New mean = 4.8
Z score = Difference in mean /(standard deviation / [tex]\sqrt{sample size}[/tex])
Z score = [tex]\frac{4.8-5.1}{1.1/\sqrt{49} }=-1.909[/tex]
Z score = -1.909
Then the probability
P(Z>-1.909)
=1-P(Z>-1.909)
=1-0.0281
=0.9719
Hence, The probability of the randomly used item mean length is greater than 4.8 inches is 0.9719
Learn more about Probability, Standard deviation and Mean here
https://brainly.com/question/14935665
#SPJ2
If x and y are two positive real numbers such that x 2 +4y 2 =17 and xy =2, then find the value of x- 2y. a. 3 b. 4 c. 8 d. 9
Answer: The value of x- 2y is a. [tex]\pm 3[/tex].
Step-by-step explanation:
Given: x and y are two positive real numbers such that [tex]x^2+4y^2=17[/tex] and [tex]xy= 2[/tex] .
Consider [tex](x-2y)^2=x^2-2(x)(2y)+(2y)^2\ \ \ [(a+b)^2=(a^2-2ab+b^2)][/tex]
[tex]=x^2-4xy+4y^2[/tex]
[tex]=x^2+4y^2-4(xy)[/tex]
Put [tex]x^2+4y^2=17[/tex] and [tex]xy= 2[/tex] , we get
[tex](x-2y)^2=17-4(2)=17-8=9[/tex]
[tex]\Rightarrow\ (x-2y)^2=9[/tex]
Taking square root on both sides , we get'
[tex]x-2y= \pm3[/tex]
Hence, the value of x- 2y is a. [tex]\pm 3[/tex].
What is the perimeter of the image attached?? (PLEASE HELP I WILL MARK BRAINLIEST)
Answer:
[tex] Perimeter = 3x + 3 [/tex]
Step-by-step explanation:
Perimeter of the given triangle in the figure is the sum of all three sides.
The expressions for the 3 sides are given as, [tex] x, (x - 3), (x + 6) [/tex].
Therefore,
[tex] Perimeter = x + (x - 3) + (x + 6) [/tex]
Simplify,
[tex] Perimeter = x + x - 3 + x + 6 [/tex]
Collect like terms
[tex] Perimeter = x + x + x - 3 + 6 [/tex]
[tex] Perimeter = 3x + 3 [/tex]
I will mark u brainleiest if u help me and 5 stars
Answer:
[tex]\boxed{50}[/tex]
Step-by-step explanation:
Because the initial temperature is 40 degrees and it increases by 10, add the two values together to get the final temperature.
40 + 10 = 50
Therefore, the final answer is 50 degrees.
Answer:
50
Step-by-step explanation:
If it starts at 40 degrees and increases 10 degrees, it is going to be 50 degrees. Increases means adding, so it is asking you to add 10 to 40 which is 50. If it asks decreases in the future you will have to subtract.
what number should replace the question mark
Answer: The missing number is 5.
Step-by-step explanation:
In the table we can only have numbers between 1 and 9,
The pattern that i see is:
We have sets of 3 numbers.
"the bottom number is equal to the difference between the two first numers, if the difference is negative, change the sign, if the difference is zero, there goes a 9 (the next number to zero)"
Goin from right to left we have:
9 - 6 = 3
6 - 2 = 4
4 - 9 = - 5 (is negative, so we actually use -(-5) = 5)
4 - 4 = 0 (we can not use zero, so we use the next number, 9)
3 - 3 = 0 (same as above)
? - 1 = 4
? = 4 + 1 = 5
The missing number is 5.
How do you solve an expansion?
[tex]\displaystyle\\(a+b)^n\\T_{r+1}=\binom{n}{r}a^{n-r}b^r\\\\\\(x+2)^7\\a=x\\b=2\\r+1=5\Rightarrow r=4\\n=7\\T_5=\binom{7}{4}x^{7-4}2^4\\T_5=\dfrac{7!}{4!3!}\cdot x^3\cdot16\\T_5=16\cdot \dfrac{5\cdot6\cdot7}{2\cdot3}\cdot x^3\\\\T_5=560x^3[/tex]
Answer:
[tex]\large \boxed{560x^3}[/tex]
Step-by-step explanation:
[tex](x+2)^7[/tex]
Expand brackets.
[tex](x+2) (x+2) (x+2) (x+2) (x+2) (x+2) (x+2)[/tex]
[tex](x^2 +4x+4) (x^2 +4x+4) (x^2 +4x+4)(x+2)[/tex]
[tex](x^4 +8x^3 +24x^2 +32x+16)(x^3 +6x^2 +12x+8)[/tex]
[tex]x^7 +14x^6 +84x^5 +280x^4 +560x^3 +672x^2 +448x+128[/tex]
The fifth term is 560x³.
The driveway needs to be resurfaced. what is the BEST estimate of the area of the driveway?
Answer:
125π ft²
Step-by-step explanation:
1/4π(30)² - 1/4π(20)² = 125π
the area of triangle ABC is 31 1/4 square centimeters. What is the measure of b?
Answer:
102 cm
Step-by-step explanation:
If the coefficient of correlation is 0.8, the percentage of variation in the dependent variable explained by the variation in the independent variable is
Answer:
The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.
Step-by-step explanation:
A coefficient of correlation of 0.8 means that dependent variable changes in 0.8 when independent variable changes in a unit. Hence, the percentage of such variation ([tex]\%R[/tex]) is:
[tex]\%R = \frac{\Delta y}{\Delta x}\times 100\,\%[/tex]
Where:
[tex]\Delta x[/tex] - Change in independent variable, dimensionless.
[tex]\Delta y[/tex] - Change in dependent variable, dimensionless.
If [tex]\Delta x = 1.0[/tex] and [tex]\Delta y = 0.8[/tex], then:
[tex]\%R = 80\,\%[/tex]
The percentage of variation in the dependent variable explained by the variation in the independent variable is 80 %.
Select the graph that correctly represents f(x) = –(x + 1)^2 – 3.
Answer:
Hey there!
The third graph, with a maximum at (-1, -3) is the correct choice.
Let me know if this helps :)
Answer:
see below
Step-by-step explanation:
f(x) = –(x + 1)^2 – 3
We know that this is a parabola in the form
y = a( x-h)^2 +k
where ( h,k) is the vertex
y = -1( x- -1)^2 + -3
a is negative so the parabola opens downward
( -1,-3) is the vertex
What is the radius of the circle whose center is the
origin and that passes through the point (5,12)?
Answer:
13 units
Step-by-step explanation:
Use the equation of a circle, (x - h)² + ( y - k )² = r², where (h, k) is the center and r is the radius.
Plug in the values and solve for r:
(5 - 0)² + (12 - 0)² = r²
25 + 144 = r²
169 = r²
13 = r
What is the sign of -1.69+(-1.69)
Answer: Negative sign
Adding two negative values results in another negative value.
-1.69 + (-1.69) = -3.38
It's like starting $1.69 in debt and then adding 1.69 dollars of more debt. You'll slide further into debt being $3.38 in debt total.
The sign is negative as the value of -1.69 + (-1.69) is -3.38.
What is an expression?An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.
Example: 2 + 3x + 4y = 7 is an expression.
We have,
-1.69 + (-1.69)
= -1.69 - 1.69
= -3.38
This means,
The sign is negative.
Thus,
The value of -1.69 + (-1.69) is -3.38.
Learn more about expressions here:
https://brainly.com/question/3118662
#SPJ2
PLEASE HELP WILL GIVE BRAINLIEST AND THX Which ratios have a unit rate of 3? Choose all that apply. 15/2 cups: 2 1/2 cups 1 cup: 1/4 cups 2/3 cups: 1 cup 3 3/4 cups: 2 cups 2 cups: 2/3 cups 2 1/2 cups: 5/6 cups
Answer:
15/2 cups: 2 1/2 cups
2 cups: 2/3 cups
2 1/2 cups: 5/6 cups
Step-by-step explanation:
Take and divide each by the smaller number
15/2 cups: 2 1/2 cups
First put in improper fraction form
15/2 : 5/2
Divide each by 5/2
15/2 ÷ 5/2 : 5/2 ÷5/2
15/2 * 2/5 : 1
3 :1 yes
1 cup: 1/4 cups
Divide each by 1/4 ( which is the same as multiplying by 4)
1*4 : 1/4 *1
4 : 1 no
2/3 cups: 1 cup
Divide each by 2/3 ( which is the same as multiplying by 3/2)
2/3 * 3/2 : 1 * 3/2
1 : 3/2 no
3 3/4 cups: 2 cups
Change to improper fraction
( 4*3+3)/4 : 2
15/4 : 2
Divide each side by 2
15/8 : 2/2
15/8 : 1 no
2 cups: 2/3 cups
Divide each side by 2/3 ( which is the same as multiplying by 3/2)
2 * 3/2 : 2/3 *3/2
3 : 1 yes
2 1/2 cups: 5/6 cups
Change to an improper fraction
( 2*2+1)/2 : 5/6
5/2 : 5/6
Divide each side by 5/6( which is the same as multiplying by 6/5)
5/2 * 6/5 : 5/6 * 6/5
3 : 1 yes
The 15/2 cups: 2 1/2 cups, 2 cups: 2/3 cups, and 2 1/2 cups: 5/6 cups have a unit rate of 3
What is the ratio?It is defined as the comparison between two quantities that how many times the one number acquires the other number. The ratio can be presented in the fraction form or the sign : between the numbers.
For checking: 15/2 cups: 2 1/2 cups
= (15/2)/(5/2) [2(1/2) = 5/2]
= 3
For checking: 1 cup: 1/4 cups
= 1/(1/4)
= 4
For checking: 2/3 cups: 1 cup
=(2/3)/1
= 2/3
For checking: 3 3/4 cups: 2 cups
= (15/4)(2)
= 15/8
For checking: 2 cups: 2/3 cups
= (2)/(2/3)
= 3
For checking: 2 1/2 cups: 5/6 cups
= (5/2)/(5/6)
= 3
Thus, the 15/2 cups: 2 1/2 cups, 2 cups: 2/3 cups, and 2 1/2 cups: 5/6 cups have a unit rate of 3
Learn more about the ratio here:
brainly.com/question/13419413
#SPJ2
(x-2) is a factor of x^2-3x^2+kx+14. The value of k is?
Answer:
k = 5
Step-by-step explanation:
I will assume that your polynomial is
x^2 - 3x^2 + kx + 14
If x - a is a factor of this polynomial, then a is a root.
Use synthetic division to divide (x - 2) into x^2 - 3x^2 + kx + 14:
2 / 1 -3 k 14
2 -2 2k - 4
-------------------------------------
1 -1 (k - 2) 2k - 10
If 2 is a root (if x - 2 is a factor), then the remainder must be zero.
Setting 2k - 10 = to zero, we get k = 5.
The value of k is 5 and the polynomial is x^2 - 3x^2 + 5x + 14
what is the magnitude of the vector?
Answer:
[tex]\boxed{\sqrt{65}}[/tex]
Step-by-step explanation:
Magnitude is solved with the following equation: [tex]\sqrt{x^{2}+y^{2}}[/tex]
Therefore, just plug in your x and y-values and solve.
[tex]\sqrt{4^{2}+7{^{2}}[/tex]
[tex]\sqrt{16 + 49}[/tex]
[tex]\sqrt{65}[/tex]
Because [tex]\bold{\sqrt{65}}[/tex] cannot be simplified further, this is the magnitude of the vector.
In the figure below.. Please help!!!
====================================================
Explanation:
Both AB and XY are the first two letters of ABC and XYZ respectively. So we have one fraction of AB/XY = 2/7.
AC and XZ are the first and last letters of ABC and XYZ respectively. We can form another fraction AC/XZ. I'm dividing in the same order of small over large to keep things consistent. As you can probably guess, the order of the letters ABC and XYZ are important so we see how the angles match up and how the proportional sides match up.
Because the triangles are similar, the two fractions formed earlier are equal to one another.
The equation we need to solve is AB/XY = AC/XZ
-----
AB/XY = AC/XZ
2/7 = 3/N ... plug in given values
2N = 7*3 .... cross multiply
2N = 21
N = 21/2 .... divide both sides by 2
N = 10.5
ZX is 10.5 units long.
Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. , The mean, , is nothing. (Round to the nearest tenth as needed.)
Complete Question
Find the mean, variance, and standard deviation of the binomial distribution with the given values of n and p. , The mean, , is nothing. (Round to the nearest tenth as needed.)
p = 0.6 n = 18
Answer:
The mean [tex]\mu = 10.5[/tex]
The standard deviation [tex]\sigma = 2.08[/tex]
The variance [tex]var = 4.32[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is [tex]p = 0.6[/tex]
The sample size is [tex]n = 18[/tex]
Generally given that the distribution is binomial, then the probability of failure is mathematically represented as
[tex]q = 1- p[/tex]
substituting values
[tex]q = 1- 0.6[/tex]
[tex]q =0.4[/tex]
Generally the mean is mathematically evaluated as
[tex]\mu = np[/tex]
substituting values
[tex]\mu = 18 * 0.6[/tex]
[tex]\mu = 10.5[/tex]
The standard deviation is evaluated as
[tex]\sigma = \sqrt{npq}[/tex]
substituting values
[tex]\sigma = \sqrt{18 * 0.6 * 0.4}[/tex]
[tex]\sigma = 2.08[/tex]
The variance is evaluated as
[tex]var = \sigma^2[/tex]
substituting value
[tex]var = 2.08^2[/tex]
[tex]var = 4.32[/tex]
An ‘in shuffle’ is a perfect shuffle on a standard deck of 52 playing cards that splits the deck in half, then interleaves cards starting with the top half.
Required:
a. What is the position of the first card after the 7th shuffle?
b. How many times must one perform the shuffle so that the top card becomes the bottom card?
c. When do the first and last cards in the deck touch?
Answer:
a) position 22
b) 26
c) shuffle 25
Step-by-step explanation:
Assuming the shuffling occurs so that the bottom card of the top half of the deck (card 26) becomes the bottom card (card 52), while the top card of the bottom half (card 27) becomes the top card (card 1), the sequence of card 1 positions with successive shuffles is ...
{2, 4, 8, 16, 32, 11, 22, 44, 35, 17, 34, 15, 30, 7, 14, 28, 3, 6, 12, 24, 48, 43, 33, 13, 26, 52, 51, 49, 45, 37, 21, 42, 31, 9, 18, 36, 19, 38, 23, 46, 39, 25, 50, 47, 41, 29, 5, 10, 20, 40, 27, 1}
That is, after the first shuffle, card 1 is at position 2; after the second shuffle, it is at position 4; and so on.
(a) Hence the position of card 1 after the 7th shuffle is 22.
__
(b) The top card is in position 52 after 26 shuffles.
__
(c) The top card is in position 26 after 25 shuffles; the bottom card is in position 27 after 25 shuffles. That is when they first touch. (They touch again after 51 shuffles.)
A researcher examines typing speed before a typing class begins, halfway through the class, and after the class is over. 4. Identify the number of levels: 5. Identify the type of design: 6. Identify the dependent variable:
Answer:
Number of levels = 2
Type of design = Repeated measure
Dependent variable = Typing Speed
Step-by-step explanation:
The number of levels in an experiment simply refers to the number of experimental conditions in which participants are subjected to. In the scenario above, the number of levels is 2. Which are ; Halfway through the class and After the class is over.
The type of designed employed is REPEATED MEASURE, this is because the participants all took part in each experimental condition.
The dependent variable is TYPING SPEED, which is the variable which is measured with respect to the independent variable. Hence the observed value depends on period that is (halfway through the class or after the class is over).
Answer gets BRAINLIEST If q varies inversely as r, and g = 10 when r = 2.5, find the equation that connects a
and r.
Answer:
D.
Step-by-step explanation:
In direct variations, we would have:
[tex]q=kr[/tex]
Where k is some constant.
Since this is indirect variation, instead of that, we would have:
[tex]q=\frac{k}{r}[/tex]
To determine the equation, find k by putting in the values for q and r:
[tex]10=\frac{k}{2.5}\\k=2.5(10)=25[/tex]
Now plug this back into the variation:
[tex]q=\frac{25}{r}[/tex]
The answer is D.
Will mark Brainliest! Which point is a vertex of the hyperbola?
A. (1,−15)
B. (1,−2)
C. (1,3)
D. (1,11)
Answer:
So (1,3) is a vertex (out of two) of the hyperbola.
Step-by-step explanation:
The vertices are marked by the dot on the hyperbola.
They are (1,3) and (1,-7).
However, (1,-7) is not on the list of answer choices, but (1,3) is.
So (1,3) is a vertex (out of two) of the hyperbola.
So (1,3) is a vertex (out of two) of the hyperbola.
What is hyperbola?a plane curve generated by a point so moving that the difference of the distances from two fixed points is a constant : a curve formed by the intersection of a double right circular cone with a plane that cuts both halves of the cone.
According to the question
The vertices are marked by the dot on the hyperbola.
They are (1,3) and (1,-7).
However, (1,-7) is not on the list of answer choices, but (1,3) is.
Hence , (1,3) is a vertex (out of two) of the hyperbola.
To learn more about hyperbola from here
https://brainly.com/question/13338587
#SPJ2
Given the function f ( x ) = 2 x + 8 , evaluate and simplify the expressions below. See special instructions on how to enter your answers.
Answer:
[tex]f(a) = 2a + 8[/tex]
[tex]f(x + h) = 2x + 2h + 8[/tex]
[tex]\frac{f(x + h) - f(x)}{h} = 2[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 2x + 8[/tex]
Required
[tex]f(a)[/tex]
[tex]f(x + h)[/tex]
[tex]\frac{f(x + h) - f(x)}{h}[/tex]
Solving for f(a)
Substitute a for x in the given parameter
[tex]f(x) = 2x + 8[/tex] becomes
[tex]f(a) = 2a + 8[/tex]
Solving for f(x+h)
Substitute x + h for x in the given parameter
[tex]f(x + h) = 2(x + h) + 8[/tex]
Open Bracket
[tex]f(x + h) = 2x + 2h + 8[/tex]
Solving for [tex]\frac{f(x + h) - f(x)}{h}[/tex]
Substitute 2x + 2h + 8 for f(x + h), 2x + 8 fof f(x)
[tex]\frac{f(x + h) - f(x)}{h}[/tex] becomes
[tex]\frac{2x + 2h + 8 - (2x + 8)}{h}[/tex]
Open Bracket
[tex]\frac{2x + 2h + 8 - 2x - 8}{h}[/tex]
Collect Like Terms
[tex]\frac{2x - 2x+ 2h + 8 - 8}{h}[/tex]
Evaluate the numerator
[tex]\frac{2h}{h}[/tex]
[tex]2[/tex]
Hence;
[tex]\frac{f(x + h) - f(x)}{h} = 2[/tex]
PLEASE ANSWER ASAP!!!!
Divide. Equation and answer choices in picture
any unrelated answer will be reported
Answer:
B =
[tex]4x - 1 - \frac{4}{2x - 3} [/tex]
Step-by-step explanation:
In this type of questions the answers are required in the
[tex]quotient \: + \frac{remainder}{divisor} [/tex]
form.
First of all, the equations in question must be arranged properly
[tex](8 {x}^{2} - 14x - 1) \div 2x - 3[/tex]
Then you divide.
[tex]2x - 3 \sqrt{8 {x}^{2} - 14x - 1 } [/tex]
Answer
[tex]4x - 1 - \frac{4}{2x - 3} [/tex]
A Prefeitura da Cidade Feliz doou um
terreno para a Comunidade Viver Bem
discutir projetos que deveriam ser
implantados no local. Após um planejamento
participativo, ficou acertado que 45% da área
total desse terreno serão destinados a uma
creche;
3%,
para banheiros públicos e 12%
para uma academia de ginástica comunitária.
A sobra da área, que é de 960m² será
utilizada para uma pequena praça com
parque de lazer. Qual é a área total ocupada
pela creche, banheiros públicos e academia
de ginástica comunitária?
Aqui temos a seguinte divisao de terreno:
creche + banheiros + academia = 45% + 3% + 12% = 60%
O que sobra: Fazendo a conta, 100 - 60 = 40, restará 40%
No enunciado informa que sobraram 960m².
Logo concluimos que 40% = 960m²
Sendo assim, regra de 3:
m² %
960 -------- 40
X -------- 60
40X = 960 . 60
X = 57600/40
X = 1440
Logo 1440m² é destinado para: creche, banheiros públicos e academia
de ginástica comunitária.
O terreno tem um total de 1440 + 960 = 2400m²
para cada espaço - novamente diversas regra de 3:
→ creche = 45%
m² %
2400 -------- 100
X -------- 45
X = 108000/100 = 1080
→ banheiros públicos = 3%
m² %
2400 -------- 100
X -------- 3
X = 7200/100 = 72
→ academia de ginástica comunitária = 12%
m² %
2400 -------- 100
X -------- 12
X = 28800/100 = 288
provando:
60% = 1440m² (visto acima)
creche - 1080
banheiros - 72
academia - 288
1080 + 72 + 288 = 1440 (60%)
In a study of 24 criminals convicted of antitrust offenses, the average age was 60 years, with a standard deviation of 7.4 years. Construct a 95% confidence interval on the true mean age. (Give your answers correct to one decimal place.)___ to____ years
Answer: 56.9 years to 63.1 years.
Step-by-step explanation:
Confidence interval for population mean (when population standard deviation is unknown):
[tex]\overline{x}\pm t_{\alpha/2}{\dfrac{s}{\sqrt{n}}}[/tex]
, where [tex]\overline{x}[/tex]= sample mean, n= sample size, s= sample standard deviation, [tex]t_{\alpha/2}[/tex]= Two tailed t-value for [tex]\alpha[/tex].
Given: n= 24
degree of freedom = n- 1= 23
[tex]\overline{x}[/tex]= 60 years
s= 7.4 years
[tex]\alpha=0.05[/tex]
Two tailed t-critical value for significance level of [tex]\alpha=0.05[/tex] and degree of freedom 23:
[tex]t_{\alpha/2}=2.0687[/tex]
A 95% confidence interval on the true mean age:
[tex]60\pm (2.0686){\dfrac{7.4}{\sqrt{24}}}\\\\\approx60\pm3.1\\\\=(60-3.1,\ 60+3.1)\\\\=(56.9,\ 63.1)[/tex]
Hence, a 95% confidence interval on the true mean age. : 56.9 years to 63.1 years.
Find the measure of the remote exterior angle. mZx = (4n – 18)º
m2y = (n+9)°
m2z = (151 – 5n)º
y
Х
Z
Answer:
71°
Step-by-step explanation:
The sum of two interior angles in a triangle is equal to an exterior angle
m<x + m<y = m<z
4n - 18 + n + 9 = 151 - 5n
5n - 9 = 151 - 5n add like terms
10n = 160
n = 16
Since m<z = 151 - 5n we replace n with 16 and 151 - 5×16 = 71
Answer:
A. 71
Step-by-step explanation:
x + y = z
4n - 18 + n + 9 = 151 - 5n
5n - 9 = 151 - 5n
10n = 160
n = 16
Z = 151 - 5(16) = 71
there was a total of 400 oranges and mangoes at a fruit stall.3/8 of these fruits were mangoes.each orange was priced at 40 cents,and each mango was priced at 60 cents.how much would mr.mead make if he sold 2/3 of the mangoes and 4/5 of the oranges?
Answer:
First find the number of Mango and oranges. 400 divided by 8 = 50. We use 8 because it is the whole part of the percentage. Since, there is 3/8 mangoes, multiply 50* 3= 150 mangoes and 50*5= 250 oranges.
2/3 of 150=100 mangoes. You would find this by dividing 150/3=50 then multiply by 2.
4/5 of 250= 200 oranges. You would find this by dividing 250/5=50 then multiply by 4.
$.40*100= $40.00 mangoes
$.60*200= $120.00 oranges
Mr. Mead would make $160.00
Step-by-step explanation:
Frank and Gregory leave Centreville traveling in opposite directions on a straight road. Gregory drives 22 miles per hour faster than Frank. After 2.25 hours, they are 216 miles apart. Find Frank's speed and Gregory's speed.
Answer:
Frank speed = 37mi/hGregory speed = 59mi/hrStep-by-step explanation:
Let the speed of Frank be x and speed of Gregory be y. If Gregory drives 22 miles per hour faster than Frank, then y = 22+x. SInce they they are 216miles apart after 2.25 hours,
Speed = Distance/Time
Total time travelled by them = 2.25hours
Total distance = 216 hours
Total speed = x+y = x+22+x
Substituting this parameters into the formula given to get x we will have;
x+22+x = 216/2.25
2x+22 = 96
2x = 96-22
2x = 74
x = 74/2
x = 37
Hence the speed of Frank is 37miles per hour while that of gregory is 37+22 = 59miles/hour
At the "cloth for you" shop, you can buy a top for £10.00 and a Bermuda trouser for £12.00. Due to a sensational sell, there is a 20% discount on all tops. If you buy one top and two Bermuda trousers, how much money do you spend in total?
Answer:
£32 in total for the top and two trousers
Step-by-step explanation:
The price for a top In the "cloth for you" shop= £10
The price for a bermuda trouser In the "cloth for you" shop= £12
There is a 20% discount on tops
The price If I bought one top and would trouser will be
(10-(0.2*10)) for the top
2(12) for the trouser
Total= (10-(0.2*10))+ 2(12)
Total = 10-2+24
Total = £32
So I spent £32 in total for the top and two trousers
If 5x + 2 =12x- 5, then x = ?
Answer:
x = 1
Step-by-step explanation:
First, move all the variables to one side by subtracting 5x on both sides:
5x + 2 = 12x - 5
2 = 7x - 5
Add 5 to both sides:
7 = 7x
1 = x
Answer:
x=1
Step-by-step explanation:
5x + 2 =12x- 5
Subtract 5x from each side
5x-5x + 2 =12x-5x- 5
2 = 7x-5
Add 5 to each side
2+5 = 7x-5+5
7 = 7x
Divide each side by 7
7/7 = 7x/7
1 =x