Answer:
[tex]\eta_{turbine} = 0.777 = 77.7\%[/tex]
[tex]\eta_{combined} = 0.728 = 72.8\%[/tex]
Explanation:
First we calculate the power input to the turbine. The input power will be equal to the potential energy of water per unit time:
Input Power = [tex]P_{in} = \frac{Work}{Time} = \frac{Potential\ Energy\ of\ Water}{t} \\P_{in} = \frac{(mass)(g)(height)}{Time} = (mass flow rate)(g)(height)\\\\P_{in} = (1500\ kg/s)(9.81\ m/s^2)(70\ m)\\P_{in} = 1.03\ x\ 10^6\ W = 1030\ KW[/tex]
Now, for turbine efficiency:
[tex]\eta_{turbine} = \frac{Mechanical\ Power\ Out}{P_{in}}\\\\\eta_{turbine} = \frac{800\ KW}{1030\ KW}\\\\\eta_{turbine} = 0.777 = 77.7\%[/tex]
for generator efficiency:
[tex]\eta_{generator} = \frac{Power\ Generation}{Mechanical\ Power\ Out}\\\\ \eta_{generator} = \frac{750\ KW}{800\ KW}\\\\\eta_{turbine} = 0.9375 = 93.75\%[/tex]
Now, for combined efficiency:
[tex]\eta_{combined} = \eta_{turbine}\ \eta_{generator}\\\\\eta_{combined} = (0.777)(0.937)\\\eta_{combined} = 0.728 = 72.8\%[/tex]