Answer:
The area of the square is increasing at a rate of 40 square centimeters per second.
Step-by-step explanation:
The area of the square ([tex]A[/tex]), in square centimeters, is represented by the following function:
[tex]A = l^{2}[/tex] (1)
Where [tex]l[/tex] is the side length, in centimeters.
Then, we derive (1) in time to calculate the rate of change of the area of the square ([tex]\frac{dA}{dt}[/tex]), in square centimeters per second:
[tex]\frac{dA}{dt} = 2\cdot l \cdot \frac{dl}{dt}[/tex]
[tex]\frac{dA}{dt} = 2\cdot \sqrt{A}\cdot \frac{dl}{dt}[/tex] (2)
Where [tex]\frac{dl}{dt}[/tex] is the rate of change of the side length, in centimeters per second.
If we know that [tex]A = 25\,cm^{2}[/tex] and [tex]\frac{dl}{dt} = 4\,\frac{cm}{s}[/tex], then the rate of change of the area of the square is:
[tex]\frac{dA}{dt} = 2\cdot \sqrt{25\,cm^{2}}\cdot \left(4\,\frac{cm}{s} \right)[/tex]
[tex]\frac{dA}{dt} = 40\,\frac{cm^{2}}{s}[/tex]
The area of the square is increasing at a rate of 40 square centimeters per second.
Which are correct representations of the inequality -3(2x - 5) <5(2 - x)? Select two options.
Ox45)
0 - 6x - 5 < 10 - x
0 -6x + 15 < 10 - 5
E
우
-
3
5
2
-1
0
1
2
3
Answer:
45.9
Step-by-step explanation:
A random sample of 35 employees of the local green technologies plant Greenies, who completed two years of college, were asked to take a basic mathematics test. The mean and standard deviation of their scores were 75.1 and 12.8, respectively. In a random sample of 50 employees who had only completed high school, the mean and standard deviation of the test scores were 72.1 and 14.6, respectively. Assuming equal variance between the two populations, can we infer at the .10 level of significance that students who completed two years of college had a higher average than students who had only completed high school
Answer:
There is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
Step-by-step explanation:
The hypothesis :
H0 : μ1 = μ2
H1 : μ1 > μ2
Given :
n1 = 35 ; x1 = 75.1 ; s1 = 12.8
n2 = 50 ; x2 = 72.1 ; s2 = 14.6
Pooled variance = Sp² = (df1*s1² + df2*s2²) ÷ (n1 + n2 - 2)
df1 = n1 - 1 = 35 - 1 = 34
df2 = n2 - 1 = 50 - 1 = 49
(x1 - x2) ÷ Sp(√(1/n1 + 1/n2))
Sp² = (34*12.8^2 + 49*14.6^2) / (35+50-2)
Sp² = (5570.56 + 10444.84) / 83
Sp² = 192.95662
Sp = √192.95662
Sp = 13.89
Test statistic = (75.1 - 72.1) / 13.89 * √(1/35 + 1/50)
Test statistic = 3 / (13.89 * 0.2203892)
Test statistic = 0.980
df = n1 + n2 - 2
df = 35 + 50 - 2 = 83
Using the Pvalue calculator :
Pvalue(0.980, 83) = 0.165
α = 0.1
Pvalue > α ; We fail to reject the H0; and conclude that there is no significance evidence that students who completed two years of college had a higher average than students who had only completed high school.
The largest angle in a triangle is six times the smallest angle. The middle angle is three times the smallest angle. Given that the sum of the angles in a triangle is , find the measure of each angle.
Answer:
Smallest: 18° Middle: 54° Largest: 108°
Step-by-step explanation:
We can start by writing out what we know in a series of equations:
s= smallest angle, m= medium angle, L= largest angle.
Since the largest is 6 times the smallest we have:
L=6s
Since the middle is 3 times the smallest we have:
m=3s
Since the 3 interior angle measures of a triangle always must equal 180°, we have:
s+m+L=180
Then we plug in our L and m into the third equation:
s+3s+6s=180
Combining like terms and solving:
10s=180
s=18
Then we plug in 18 for s into the first 2 equations to get:
L= 6* 18
L= 108
and
m= 3* 18
m= 54
So s= 18, m= 54, and L=108.
To check the answer we can:
Add the three to make sure they equal 180. Make sure the smallest is the smallest, and the largest is the largest.Compare the subtraction problems (6/8-5/8=1/8) and (6/9-7/9=-1/9) why is the answer to the first problem positive nad the answer to the second problem negative select all that apply
6/9 - 7/9 = -1/9
is a negative number.
Need help on last question
Answer:
Step-by-step explanation:
so let the equation equal 13
13 = 3[tex]x^{3}[/tex]-12x+13
so when ever 3[tex]x^{3}[/tex]-12x=0 then this is equation is true, soooo
x (3[tex]x^{2}[/tex] - 12) =0
so when x = 0 this is true, but also when
3[tex]x^{2}[/tex]-12=0 also
3[tex]x^{2}[/tex] = 12
[tex]x^{2}[/tex] = 4
x = 2
so when x = 2 or -2 or 0 , then this is true
The functions f(x) and g(x) are shown on the graph.
f(x) = x2
What is g(x)?
10-
If(x)
1
х
10
-5
5
10
g(x)
-10
A. g(x) = (– x)2 - 3
B. g(x) = – x2 + 3
c. g(x) = (-x)2 + 3
D. g(x) = -X2 - 3
Answer:
[tex]g(x) = -x^2 + 3[/tex]
Step-by-step explanation:
Given
[tex]f(x) = x^2[/tex]
Required
Determine g(x)
First, shift f(x) down by 3 units
The rule is:
[tex]f'(x) = f(x) - 3[/tex]
So:
[tex]f'(x) = x^2 - 3[/tex]
Next, reflect f'(x) across the x-axis to get g(x)
The rule is:
[tex]g(x) = -f(x)[/tex]
So, we have:
[tex]g(x) = -(x^2 - 3)[/tex]
Open bracket
[tex]g(x) = -x^2 + 3[/tex]
Answer:
D
Step-by-step explanation:
I figured out the hard way
Find the slope of the line that passes through the two points. 4,4 & 4,9
HELPPPPPPP
Answer:
is 22
Step-by-step explanation:
Answer:
It doesn't have a slope?
Step-by-step explanation:
Knowing that the slope equation is y2-y1/x2-x1
9-4 5
----- = ------ = 0
4-4 0
this means that the slope is 0...
How do I make people brainliest
Answer:
you have to wait until two people answer then you click their answer to make them brainliest
Step-by-step explanation:
i dont know
blah blah blah blah blah blah blah blah blah blah blah blah
On a map of a town, 3 cm represents 150 m. Two points in the town are 1 km apart. How far apart are the two points on the map?
Answer:
5000 km
Step-by-step explanation:
We are given that
3 cm represents on a map of a town=150 m
Distance between two points=1 km
We have to find the distance between two points on the map.
3 cm represents on a map of a town=150 m
1 cm represents on a map of a town=150/3 m
1 km=1000 m
1 m=100 cm
[tex]1km=1000\times 100=100000 cm[/tex]
100000 cm represents on a map of a town
=[tex]\frac{150}{3}\times 100000[/tex] m
100000 cm represents on a map of a town=5000000 m
100000 cm represents on a map of a town
=[tex]\frac{5000000}{1000} km[/tex]
100000 cm represents on a map of a town=5000 km
Hence, two points are separated by 5000 km on the map.
What do you add to 2 7/8 to make 5
Answer:
2 1/8
Step-by-step explanation:
7/8 is the same as 0.875 and therefore you need 0.125 also known as 1/8 to make it a whole number. When you add it to the already existing whole 2 you get three. Subtract three from five to make two which is what you need to add on top to finally get 5.
There's a three in the tens
placed
The digit is the ones places is
third multiple of three
It is a two-digit number
Answer:
That number is 39
I need help with this word problem.
Answer:
$3.22 per square feet
Step-by-step explanation:
To solve, I usually set up an equation:
sq ft = 12 1/2 = 1
$ 40.21 x
Then, use cross multiplication.
(12 1/2)x=40.21
Divide both sides by 12 1/2 or 12.5
x = 3.2168
Round to the hundredths place [because we're dealing with money]
$3.22
I hope this helps!
Answer:
3.22 per sq ft
Step-by-step explanation:
Take the total cost and divide by the amount of tiles
40.21 / 12.5
3.2168 per sq ft
Rounding to the nearest cent
3.22 per sq ft
What is the equation of the line that is perpendicular to
and has the same y-intercept as the given line?
(0,0)
(5,0)
O y = x+1
O y = x+5
o y = 5x + 1
O y = 5x + 5
-6 -5 -4 -3 -2 -1
23
4 5 6
Mark this and return
Save and Exit
Nyt
Submit
Answer:
y = 5x + 1
Step-by-step explanation:
Given the coordinate points (0,1) and (5,0)
First, get the slope
Slope m =(0-1)/5-0
m = -1/5
Since the required line is perpendicular, then the required slope is;
M = -1/(-1/5)
M = 5
Since 1the y intecept id (0,1) i.e. 1
Required equation is y = mx+b
y = 5x + 1
This gives the required equation
Note that the coordinate (0,1) was used instead os (0,0)
solve the inequality x^3+4x>5x^2 please show steps and interval notation. thank you.
Answer: [tex]x\in (0,1)\cup (4,\infty)[/tex]
Step-by-step explanation:
Given
In equality is [tex]x^3+4x>5x^2[/tex]
Taking terms one side
[tex]\Rightarrow x^3-5x^2+4x>0\\\Rightarrow x(x^2-5x+4)>0\\\Rightarrow x(x^2-4x-x+4)>0\\\Rightarrow x(x-4)(x-1)>0\\\Rightarrow (x-0)(x-1)(x-4)>0[/tex]
Using wavy curve method
[tex]x\in (0,1)\cup (4,\infty)[/tex]
What is the rate of change of the line on the graph
Answer:
A. ¼
Step-by-step explanation:
Rate of change (m) = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line, (4, 1) and (-4, -1), find the rate of change using the formula stated above:
Where,
[tex] (4, 1) = (x_1, y_1) [/tex]
[tex] (-4, -1) = (x_2, y_2) [/tex]
Plug in the values
Rate of change (m) = [tex] \frac{-1 - 1}{-4 - 4} [/tex]
= [tex] \frac{-2}{-8} [/tex]
= [tex] \frac{1}{4} [/tex]
Rate of change = ¼
Divide the following complex numbers:
[tex](2 + i) \div (1 - 4i)[/tex]
Answer:
[tex]-\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
Step-by-step explanation:
[tex] (2 + i) \div (1 - 4i) = [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} [/tex]
[tex] = \dfrac{2 + i}{1 - 4i} \times \dfrac{1 + 4i}{1 + 4i} [/tex]
[tex] = \dfrac{(2 + i)(1 + 4i)}{(1 - 4i)(1 + 4i)} [/tex]
[tex] = \dfrac{2 + 8i + i + 4i^2}{1 + 16} [/tex]
[tex] = \dfrac{2 + 9i - 4}{17} [/tex]
[tex] = \dfrac{-2 + 9i}{17} [/tex]
[tex]= -\dfrac{2}{17} + \dfrac{9}{17}i[/tex]
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Х/10 is between 1/5
and 0.6. What could the value of x be?
Answer:
2 < x < 6
Step-by-step explanation:
x/10
1/5 = 2/10
.6 = 6/10
2 < x < 6
PLEASE HELP
The function in the table is quadratic:
TRUE
FALSE
Answer:
False
Step-by-step explanation:
Each f(x) increases by 8 therefore this equation is a linear function. If you where to graph it would be a straight line
Hope this helped :)
Answer:
False
Step-by-step explanation:
The slope is the same between all pounts which means the function is linear.
Hope this helps!
A large on-demand, video streaming company is designing a large-scale survey to determine the mean amount of time corporate executives watch on-demand television. A small pilot survey of 10 executives indicated that the mean time per week is 12 hours, with a standard deviation of 3 hours. The estimate of the mean viewing time should be within 0.25 hour. The 95% level of confidence is to be used. How many executives should be surveyed? (Use z Distribution Table.)
How many executives should be surveyed? (Round the final answer to the next whole number.)
Answer:
554 executives should be surveyed.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 3 hours.
This means that [tex]\sigma = 3[/tex]
The 95% level of confidence is to be used. How many executives should be surveyed?
n executives should be surveyed, and n is found with [tex]M = 0.25[/tex]. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]0.25 = 1.96\frac{3}{\sqrt{n}}[/tex]
[tex]0.25\sqrt{n} = 1.96*3[/tex]
[tex]\sqrt{n} = \frac{1.96*3}{0.25}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96*3}{0.25})^2[/tex]
[tex]n = 553.2[/tex]
Rounding up:
554 executives should be surveyed.
stuck on this problem
Answer:
B
Step-by-step explanation:
When we reflect something across the y axis, the y axis stays the same but the x values change by a factor of -1.
B is the Answer
Answer:
c. switch the x-values and y-values in the table
Step-by-step explanation:
For any table or graph reflection over the line y=x
The rule is (x,y) ----> (y,x)
f(x) is reflected over the line y=x, so the coordinates of f(x) becomes
(-2,-31) becomes (-31,-2)
(-1,0) becomes (0,-1)
(1,2) becomes (2,1)
(2,33) becomes (33,2)
As per the rule, we switch the x-values and y-values in the table
For reflection over the line y=x , the coordinate becomes
(-31,-2)
(0,-1)
(2,1)
(33,2)
19.Find dy/dx
of the function y = f(x) definded by x²+xy-y2 = 4.
Answer:
2x + y
Step-by-step explanation:
x² + xy - y² = 4
→ Remember the rule, bring the power down then minus 1
2x + y
Matthew earns extra money by doing odd jobs for his neighbors. He charges a flat fee of $20 plus $7 per hour for each job. If he earned $90 for a job he did last week, how many hours did he work?
Answer:
10 hours
Step-by-step explanation:
ok so we know he is getting payed $20 + $7 every hour so what i would do is keep the multiply the 7 till you get 70 so thats 7x10=70 and 70+20=90 so he worked for 10 hours last week :) i hope this helps, i tried my best to explain it
the campus bookshop sells exercise books and textbooks, where, the total cost of 10 exercise books and 2 textbooks is $1400.00. One also finds the total cost of 3 textbooks and 30 exercise books is $3000. Then determine the price of 1 exercise book?
Answer:
The price of 1 exercise book is $122.45.
Step-by-step explanation:
This question is solved using a system of equations.
I am going to say that:
x is the price of one exercise book.
y is the price of one textbook.
Total cost of 10 exercise books and 2 textbooks is $1400.00.
This means that:
[tex]10x + 2y = 1400[/tex]
Since we want x:
[tex]2y = 1400 - 10x[/tex]
[tex]y = 700 - 5x[/tex]
One also finds the total cost of 3 textbooks and 30 exercise books is $3000.
This means that:
[tex]3x + 30y = 3000[/tex]
Since [tex]y = 700 - 5x[/tex]
[tex]3x + 30(700 - 5x) = 3000[/tex]
[tex]3x + 21000 - 150x = 3000[/tex]
[tex]147x = 18000[/tex]
[tex]x = \frac{18000}{147}[/tex]
[tex]x = 122.45[/tex]
The price of 1 exercise book is $122.45.
Simplify 6/x^2−2x/x^2+3.
Answer:
3x2−2x+6/x2
Step-by-step explanation:
have a great day <33333
Solve the given system by the substitution method.
3x + y = 8
7x - 4y = 6
Answer:
[tex]{ \tt{y = 8 - 3x}} - - - (i) \\ \\ = > 7x - 4(8 - 3x) = 6 \\ 7x - 32 + 12x = 6 \\ 19x - 32 = 6 \\ 19x = 38 \\ x = 2 \\ \\ = > y = 8 - 3(2) \\ y = 2[/tex]
What is the area of this composite figure?
Answer:
Well, divide the shape into rectangles,
triangles or other shapes after that, you can find the area of and then add the areas back together.
Step-by-step explanation:
The area of composite shapes is defined as the area covered by any composite shape. A composite shape is made up of basic shapes put together. Thus, the area of the composite shape is found by individually adding all the basic shapes.
To calculate the area of a composite shape you must divide the shape into rectangles, triangles or other shapes you can find the area of and then add the areas back together.es
Sketch the graph of y = 2(x – 2)2 and identify the axis of symmetry
Answer:
x = 2
Step-by-step explanation:
The minimum point of the curve is (2, 0). Hence, axis of symmetry is x = 2
[tex](v+6)^{2}=2v^{2}+14v+12[/tex]
Answer:
v=-6 or 4
Step-by-step explanation:
Answer:
the answer would be 5
Step-by-step explanation:
have to do the question multiply add and divide to find your answer
Order the following integers from smallest (left side) to biggest (right
side):
20, 0, 22, -35, 100, -59
Need help please