Answer:
2 Methyl pent 2 ene
Write the structure of methanamine
Answer: CH3NH2
Explanation:
Which of the following is an example of matter?
a) Hydrogen atom
b) Water molecule
c) Oxygen gas
d) All of the above
Answer:
All of the above
Explanation:
Molecules make up matter so they are considered matter as well.
Hope it helps c:
Draw the structure of 2 methyl,but-3-ene
Answer:
Please find the structure attached as an image
Explanation:
Based on the characteristics ending name (-ene) of the organic compound above, it belongs to the ALKENE GROUP. Alkenes are characterized by the possession of a carbon to carbon double bond (C=C) in their structure.
- But-3-ene tells us that the organic compound has four straight carbon atoms with the C=C (double bond) located on the THIRD carbon depending on if we count from right to left or vice versa.
- 2 methyl indicates that the methyl group (-CH3) is located as an attachment on the second carbon (carbon 2).
N.B: In the structure attached below, the counting is from the left to right (→).
Hydrogen cyanide gas can be made by a two stepprocess. First, ammonia is reacted with oxygen gas to give nitrogen monoxide and water vapor. In the next step, nitrogen monoxide is reacted with methane (CH4) to give hydrogen cyanide gas. The by-products are water and hydrogen gas. A) Write the balanced equation for the two reactions.
B) When 24.2 g of ammonia and 25.1 g of methane are used, how many grams of hydrogen cyanide can be produced?
Answer:
38.34 g of HCN are produced
Explanation:
Our reactants for the first reaction are:
NH₃ and O₂
Products are: H₂O and NO
Our reactants for the second reaction are:
NO and CH₄
Producs are: H₂, H₂O and HCN
The reactions are:
4NH₃ and 5O₂ → 6H₂O + 4NO
2NO and 2CH₄ → 2HCN + H₂ + 2H₂O
In the first step 4 moles of ammonia can produce 4 moles of NO, so ratio is 1:1
24.2 g . 1mol / 17 g = 1.42 moles of ammonia
We have produced 1.42 moles of NO.
25.1 g . 1 mol / 16 g = 1.57 moles of methane.
Ratio is 2:2. So, for 1.57 moles of methane, we need 1.57 moles of NO.
Moles are the same. As there is no enough NO, this is the limiting reactant.
Ratio with product is also 2:2.
Our 1.42 moles of NO have produced 1.42 moles of HCN.
We convert moles to mass: 1.42 mol . 27 g/mol = 38.34 g
Precipitation of an ionic compound will occur upon mixing of desired reagents if the initial ion product is:_______
A) greater than the Ksp
B) equal to the pksp
C) equal to the Ksp
D) less than the Ksp
Answer:
A) greater than the Ksp
Explanation:
Given a solid ionic compound AB, it dissociates in water into its ions, as follows:
AB(s) → A⁺(aq) + B⁻(aq)
At equilibrium, the product of the concentrations of the ions is constant, and it is called Ksp:
AB(s) ⇄ A⁺(aq) + B⁻(aq)
Ksp = [A⁺][B⁻] ⇒ (concentrations at equilibrium)
Upon mixing the reagents for the formation of AB, the compound will precipitate if the initial ion product (Q) is greater than the Ksp. If Q is equal to Ksp, the ions are at equilibrium with the solid compound AB, and if is it less than the Ksp, the ions are soluble and no solid AB is formed yet.
Q = [A⁺][B⁻] ⇒ (initial concentrations)
Q = Ksp ⇒ saturated solution (at equilibrium)
Q< Ksp ⇒ unsaturated solution (ions are soluble)
Q> Ksp ⇒ precipitation of solid compound.
Therefore, the correct option is A) greater than the Ksp
13. What is the volume of 17.88 mol of Ar at STP?
Answer:
Explanation:
1 mol of ideal gas at STP occupies 22.4 (or 22.7 depending on the convention being used for STP) liters in volume. I will use 22.4 so 17.88*22.4 = 400.5 L
A covalent bond is formed by the following process
Answer:
Covalent bonding occurs when pairs of electrons are shared by atoms.
Explanation:
Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outer most (valence) electrons, atoms can fill up their outer electron shell and gain stability.
A chemical reaction in a bomb calorimeter evolves 3.86 kJ of energy in the form of heat. If the temperature of the bomb calorimeter increases by 4.17 K, what is the heat capacity of the calorimeter?
Answer:
925.66 J/K
Explanation:
Applying,
Q = CΔt............. Equation 1
Where Q = amount of heat, C = heat capacity of the calorimeter, Δt = rise in temperature.
make C the subject of the equation
C = Q/Δt.............. Equation 2
From the question,
Given: Q = 3.86 kJ = 3860 J, Δt = 4.17K
Substitute into equation 2
C = 3860/4.17
C = 925.66 J/K
how are aqi and aqhi similar
In Experiment 1, salicylic acid was treated with an excess of acetic anhydride to synthesize aspirin. Once the reaction went to completion, water was added to the flask and the solution was heated. What was the primary reason for adding water
Answer:
See explanation
Explanation:
Aspirin is a very important pain killer. The production of aspirin involves a reaction between salicylic acid and excess acetic anhydride.
Usually, a small amount of a mineral acid is added as a catalyst.
Aspirin is actually acetyl salicylic acid. When this substance is formed, the substance is not really soluble in water. Addition of water leads to the precipitation of the aspirin product.
Hence, the addition of water is mostly to precipitate the pure aspirin product after reaction.
What is the pH of a solution prepared by mixing 100.00 mL of 0.020 M Ca(OH)2 with 50.00 mL of 0.100 M NaOH? Assume that the volumes are additive?a. 12.78.b. 13.25.c. 12.67.d. 12.95.
Answer:
The pH of the solution is 12.78.
Explanation:
The pOH (or potential OH) is a measure of the basicity or alkalinity of a solution. The pOH is defined as the negative logarithm of the activity of the hydroxide ions. That is, the concentration of OH- ions:
pOH= - log [OH-]
On the other side, Molarity or Molar Concentration is the number of moles of solute that are dissolved in a certain volume. Molarity is calculated as:
[tex]Molarity= \frac{number of moles}{volume}[/tex]
Molarity is expressed in units: [tex]\frac{moles}{liter}[/tex]
In this case, the solution is prepared by mixing 100 ml (equal to 0.1 L, where 1000 mL = 1 L) of Ca(OH)₂ 0.020 M with 50 ml (equal to 0.05 L) of 0.100 M NaOH. Then, Ca(OH)₂ and NaOH are strong bases, so they dissociate completely. In the case of the first hydroxide, for each mole of Ca(OH)₂,
form two moles of OH-. In the case of sodium hydroxide, for each mole of hydroxide, one mole of OH- is formed. So, taking into account the definition of molarity, the number of moles of OH- that each hydroxide contributes to the solution is calculated as:
From Ca(OH)₂: 0.1 L* 0.02 M*2 = 0.004 moles
From NaOH: 0.05 L* 0.1 M= 0.005 moles
So, the amount of total moles of OH- is the sum that each hydroxide contributes to the solution: 0.004 moles + 0.005 moles= 0.009 moles
On the other hand, volumes are additive. Then: 0.1 L + 0.05 L= 0.15 L
Replacing in the definition of molarity the number of moles and the volume:
[tex][OH-]=\frac{0.009 moles}{0.15 L}[/tex]
Solving:
[OH-]= 0.06 [tex]\frac{moles}{liter}[/tex]
Replacing in the definition of pOH:
pOH= - log 0.06
pOH= 1.22
The following relationship can be established between pH and pOH:
pH + pOH= 14
Being pOH= 1.22 and replacing:
pH + 1.22= 14
pH= 14 - 1.22
pH= 12.78
The pH of the solution is 12.78.
How many grams of P4O10 (292.88 g/mol) form when phelpsphorous (P4, 125.52 g/mol) reacts with 16.2 L of O2 (33.472 g/mol) ) at standard temperature and pressure
Answer:
40.5 g of P₄O₁₀ are produced
Explanation:
We state the reaction:
P₄ + 5O₂ → P₄O₁₀
We do not have data from P₄ so we assume, it's the excess reactant.
We need to determine mass of oxygen and we only have volumne so we need to apply density.
Density = mass / volume, so Mass = density . volume
Denstiy of oxygen at STP is: 1.429 g/L
1.429 g/L . 16.2L = 23.15 g
We determine the moles: 23.15 g . 1mol / 33.472g = 0.692 moles
5 moles of O₂ can produce 1 mol of P₄O₁₀
Our 0.692 moles may produce (0.692 . 1)/ 5 = 0.138 moles
We determine the mass of product:
0.138 mol . 292.88 g/mol = 40.5 g
Please help me I am so loss
Answer:
19.25g of C4H10
Explanation:
2C4H10
2×12×4+2×1×10
=116g
8CO2
=8×12+8×16×2
=352 g
116g of C4H10 produces 352 g of CO2
So, x g of C4H10 produces 58.4g of CO2
(cross multiply)
352 x=116×58.4
x=116×58.4÷352
x=19.25g of C4H10
Answer:
19.25g of C4H10
2C4H10
2×12×4+2×1×10
=116g
8CO2
=8×12+8×16×2
=352 g
116g of C4H10 produces 352 g of CO2
So, t g of C4H10 produces 58.4g of CO2
(cross multiply)
352 t=116×58.4
t=116×58.4÷352
t=19.25g of C4H10
Explanation:
A compound, C20H28O, produces a 1H NMR spectrum with 11 distinct signals. The steps made by the integral trace measure 52, 17, 17, 26, 17, 25, 26, 9, 9, 35, and 8 mm. Complete the following table.
Integral # Products
52 mm
17 mm
17 mm
26 mm
17 mm
25 mm
26 mm
35 mm
8 mm
Solution :
The smallest integer value represents the smaller number of protons.
In this case, in the given values, the smallest numbers are 8 mm and 9 mm, so both contains 1H each. Then next highest value is 17 mm, which contains 1H more. Thus 17 mm contains 2H each. Then the next highest is 25 mm and 26 mm which contains 3M each and so on.
Thus the tables is :
Integral Protons
52 mm [tex]6[/tex]
17 mm [tex]2[/tex]
17 mm 2
26 mm 3
17 mm 2
25 mm 3
26 mm 3
9 mm 1
9 mm 1
35 mm 4
8 mm 1
The cation of the salt is sodium ion, and the anion is aurothiosulfate ion. Based on the chemical formula of the salt, what must the charge be of the aurothiosulfate ion [Au(S2O3)2 n- ]
Answer:
3-
Explanation:
Sodium aurothiosulfate is a salt with the formula Na₃Au(S₂O₃)₂. The cation of the salt is sodium ion, and the anion is aurothiosulfate ion. We can determine the charge of the aurothiosulfate ion, considering that the sum of the positive and negative charges must be equal to the charge of the compound, which is zero.
3 × Na⁺ + 1 × Au(S₂O₃)₂ⁿ⁻ = 0
3 × +1 + 1 × Au(S₂O₃)₂ⁿ⁻ = 0
Au(S₂O₃)₂ⁿ⁻ = 3-
what are the angles a and b in the actual molecule of which this is a lewis structure note for advanced students give the ideal angles and don t worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes
Answer:
The answer is "120 C and 109.5 C".
Explanation:
The carbon atom is hybridized by sp2. This angle of connection thus is 120 degrees. Alkene, specifically both carbons which are in the C=C, are an instance of carbon with sp2 hybridized atom's nucleus. Those three hybridized orbits were linked to certain other atoms forming sigma connections. Its remaining 2p orbital makes a pi link with 2p orbit by the side-overlap of all the other carbon. O is hybridized inside the [-OH] Group. The optimal bond angle therefore is [tex]109.5^{\circ}[/tex].
[tex]a= 120 \ C\\\\b= 109.5 \ C[/tex]
Which expression gives the total number of gas particles (NOT moles, but individual particles) found in the lungs of an average human (V = 6.0 L) under normal physiological conditions (P = 1.0 atm, T = 37ºC)?
Answer:
[tex]particles=1.42x10^{23}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us solve this problem by using the ideal gas law:
[tex]PV=nRT[/tex]
Which can be modified to include the particles in terms of the Avogadro's number:
[tex]PV=\frac{particles}{N_A} RT[/tex]
Thus, if we solve for the particles, we will obtain the expression and the numerical result:
[tex]particles=\frac{PV*N_A}{RT}[/tex]
[tex]particles=\frac{1.0atm*6.0L*6.022x10^{23}}{0.08206\frac{atm*L}{mol*K}*310K} \\\\particles=1.42x10^{23}[/tex]
Regards!
Write the structure of butanoate ion.
Answer:
Explanation:
Molecular FormulaC4H7O2
Average mass87.098 Da
Monoisotopic mass87.045151 Da
When CH3NO2 burns in excess oxygen, it forms carbon dioxide, nitrogen dioxide and water. How many moles of oxygen are required to burn 17.10 mole(s) of CH3NO2
Explanation:
The given reaction is the combustion of CH3NO2.
The balanced chemical equation of the reaction is:
[tex]4CH_3NO_2+ 7O_2 ->4 CO_2+4NO_2+6H_2O[/tex]
So, from the balanced chemical equation, it is clear that:
4 moles of CH3NO2 --- 7 moles of oxygen gas is required.
then,
for 17.10 moles of CH3NO2 the following number of moles of oxygen is required.
[tex]The number of moles of O_2 required=17.10 mol. x \frac{7 mol}{4 mol} \\=29.925 mol[/tex]
Answer is :
29.9 mol of oxygen gas is required.
In Mexico, avocados are 39 pesos per kilogram. What is the cost in pesos of an
avocado that weighs 0.25 lb?
1kg = 2.201b
Answer:
The correct answer is - 4.5 pesos.
Explanation:
Given:
rate of per kg = 39 pesos
price for 0.25 lb = ?
Solution:
we know and given that,
1 kg = 2.20 lb
1 lb = 1000gm/2.20
then, the price for 0.25 lb would be:
=> (39/2.20)*0.25
= 4.4318 or 4.5 pesos
Each set of quantum numbers to the correct sub shell description
Solid aluminum (AI) and oxygen (0) gas react to form solid aluminum oxide (AIO). Suppose you have 7.0 mol of Al and 13.0 mol of o, in a reactor. Suppose as much as possible of the Al reacts. How much will be left? Round your answer to the nearest 0.1 mol mol 0.
Answer:
[tex]n_{O_2}^{leftover}=7.7mol[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary for us to set up the corresponding chemical equation:
[tex]4Al+3O_2\rightarrow 2Al_2O_3[/tex]
In such a way, we calculate the moles of aluminum consumed by 13.0 moles of oxygen in the reaction, by applying the 4:3 mole ratio between them:
[tex]n_{Al}=13.0molO_2*\frac{4molAl}{3molO_2} =17.3molAl[/tex]
This means that Al is actually the limiting reactant and oxygen is in excess, for that reason we calculate the moles of oxygen consumed by 7.0 moles of aluminum:
[tex]n_{O_2}=7.0molAl*\frac{3molO_2}{4molAl} =5.3molO_2[/tex]
Thus, the leftover of oxygen is:
[tex]n_{O_2}^{leftover}=13.0mol-5.3mol\\\\n_{O_2}^{leftover}=7.7mol[/tex]
Whereas all the aluminum is assumed to be consumed.
Regards!
4) In water, Vanillin, C8H8O3, has a solubility of 0.070 moles of vanillin per liter of solution at 25C. What will be produced if 5.00 g of vanillin are added to 1 L of water at 25 C
Answer:
An unsaturated solution.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to firstly realize we need to calculate the grams of vanillin in 0.070 moles by using its molar mass of 152.15 g/mol:
[tex]m=0.070mol*\frac{152.15 g}{1mol} =10.65g[/tex]
Thus, since the solubility is 10.65 g per 1 L of solution, we can notice 5.00 g will complete dissolve and produce an unsaturated solution.
Best regards!
Approximately how much energy (in kJ) would be released during the formation of the bonds in 2.00 mol of acetone molecules
Answer:
7822 kJ
Explanation:
The formula for acetone is: CH3COCH3
From the standard bond energy(enthalpy):
C - H bond = 412
C - C bond = 348
C = O bond = 743
From the structure of an acetone
C is bonded to H in six places;
so, for C- H bond = 6 × 412 = 2472
C is only bonded to two other carbon atoms
For C - C bond = 2 × 348 = 696
Carbon is only doubly bonded to an oxygen atom
For C = O bond = 1 × 743 = 743
∴
The total net energy bond in a mole = (2472 + 696 + 743) kJ/mol
= 3911 kJ/mol
Finally, in 2 moles of acetone, the required amount of energy will be:
= 3911 kJ/moles × 2 moles
= 7822 kJ
Caffeine is a bitter stimulant drug and is found in varying quantities in seeds, leaves, and so on.
a. True
b. False
Answer:
The answer Is B.....False
In the book, when environmental factors affected food production, how did William's community adjust?
Answer:
WAS THE VOOK NAME =THE BOY WHO HARNESSED THE WIND?
1.How did environmental factors affect food production? They could not grow any crops
2. What does William’s windmill allow him to have that he didn’t before? How does life change for him and his family? His windmill allowed him and his family to be able to regrow crops and have unlimited water. Life changes because don’t have to worry about drought issues.
3.Why are trees important to farmers in William’s village? The trees are important because they stop floods. Now whenever it rains the trees can soak up the water.4.Could you imagine living without electricity? What would your life be like? Describe William's life and compare it to American teenagers and even your own. I could not imagine living without electricity. If I lived without electricity, I think my life would be kind of hard at first but after a while I would have to get used to it. William had to depend on the sun for all his light a normal teenager can cut the lights on and off in
Water put into a freezer compartment in the same refrigerator goes into a state of less molecular disorder when it freezes. Is this an exception to the entropy principle
Answer:
No it is not an exception to this principle
Explanation:
Work was carried out by this compressor to reduce the entropy of ice. What this means is that the ice gave out heat which is as a result of the work that the compressor was putting in. there are violations of this principle
the entropy principle has that the entropy of the universe is always going to be more than 0 (system + surrounding). in this question, the that of the system is negative while that of the surrounding is positive. As the refrigerator was cooling the water, the air outside was getting heated. Outside this refrigerator, the gain in entropy is more than the entropy that was lost in the water.
the entropy of the universe once again is more than 0.
How many moles in 3.30g of iron
The answer below is correct but to give you the process, here it is:
Molar mass of iron, Fe = 55.85 g/mol
3.30g/(55.85 g/mol) = 0.0591 mol
How many molecules are in
6.0 moles of methane (CH4)?
Answer:
[tex]{ \tt{1 \: mole = 6.02 \times {10}^{23} \: molecules }} \\ { \tt{6.0 \: moles = (6 \times 6.02 \times {10}^{23}) \: molecules }} \\ = { \bf{3.612 \times {10}^{24} \: molecules}}[/tex]
Some organic solvents do not work well in liquid-liquid aqueous extractions. Ethanol (HOCH2CH3) is a common inexpensive solvent, but is a poor solvent for extractions. In ten or fewer words, provide an explanation for why ethanol is a poor solvent selection for extraction.
Answer:
See explanation
Explanation:
Extraction has to do with the separation of the components of a mixture by dissolving the mixture in a set up involving two phases. One phase is the aqueous phase (beneath) while the other is the organic phase (on top). The solvents used for the two phases must not be miscible. Water commonly is used for the aqueous phase.
Ethanol is an important solvent in chemistry but the solvent is miscible with water in all proportions. As a result of this, ethanol is a poor solvent for carrying out extraction.