9514 1404 393
Answer:
parallel line: 5x+3y = 13perpendicular line: 6x-10y = 7Step-by-step explanation:
The equation of the given line can be written as ...
Δy·x -Δx·y = Δy·x1 -Δx·y1
where Δy and Δx are the differences in y and x coordinates of two points on the line, respectively. Here, we can find them to be ...
Δy = 5-(-5) = 10
Δx = -5 -1 = -6
Then the equation of the given line can be written as ...
10x +6y = 10(-5) +6(5) = -20
Dividing by 2 puts this in standard form:
5x +3y = -10 . . . . . . equation of the graphed line
__
A parallel line will have the same x- and y-coefficients with a different constant. The equation of the parallel line is 5x +3y = 13.
A perpendicular line will have the x- and y-coefficients swapped, with one of them negated. The equation constant will likely be different. The coefficients may be multiplied by some factor so all the numbers are integers.
The equation of a perpendicular line is 6x -10y = 7.
Help me please :) giving brainliest
Answer:
2.5
Step-by-step explanation:
You can change the equation from multiplication to division to get rate or time. We need the rate, so the equation should look like this now:
[tex]Distance/Time=Rate[/tex]
Now, we need to plug in the numbers we have...
[tex](5)/(2)=Rate[/tex]
...and solve for Rate:
[tex]Rate=2.5[/tex]
What is the scale factor of the dilation?
PLEASE BE CORRECT
Which expression is equivalent to the following complex fraction?
Answer:
Option B
Step-by-step explanation:
Answered by Gauthmath
lmk if you don't understand my handwriting
WILL MARK BRAINLIEST!!
Answer:
x=10
Step-by-step explanation:
[tex]\frac{3}{3}[/tex]=[tex]\frac{x+3}{13}[/tex]
Solve by cross multiplying
13×3=39
3(x+3)=3x+9
3x+9=39
3x=30
x=10
Answer:
x=10
Step-by-step explanation:
Assuming that the triangles are similar to each other, you can set up ratios
[tex]\frac{3}{3}=\frac{13}{x+3}[/tex]
since 3/3 is 1 and we know that anything other than 0 over itself is 1, we can deduce that x=10
the set of ordered pairs {(6,4),(2,-5),(-2,4)<(6,-4)} is a function?
Answer:
Not a function
Step-by-step explanation:
There are two points in the set that have the same x-value or "input": (6,4) and (6,-4). This fails the vertical line test which means that one input will give two potential outputs. This cannot make a function.
what is 4 9/6 as a mixed number
Answer:
33
Step-by-step explanation:
6x4+9= 33
Allen earns $7 an hour to wait tables at a restaurant. In addition, he makes an $8 tip from each
table. He waited 6 tables and made $104. Which equation(s) below could be used to find the
total number of hours he worked? How many hours did he work?
Answer:
he worked 8 hours
Step-by-step explanation:
104= 8 x 6 + 7x
104= 48 + 7x
56= 7x
x=8
104 - 48= 56
56/7
Answer:
Equation - 7h + 8t = $104
Hours Worked = 8
Step-by-step explanation:
First, let's create an equation!
7h + 8t = $104 (Our variables are h = # of hours, and t = # of tables)
Now, we have to input what we know! We know that Allen worked 6 tables.
7h + 8(6) = $104
and finally we can solve this equation!
7h + 48 = $104
-48 -48
7h = 56
÷7 ÷7
h = 8
In conclusion, Allen worked 8 hours!
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
Part A
What is the relationship between squaring and taking the square root? Because of this relationship, what happens when you square a square
root?
This function is _____over the interval
[tex]x < - 1[/tex]
This function is_____ over the interval l
[tex] - 1 < x < 1[/tex]
Select all of the possible degrees of this polynomial function
2
3
4
5
Answer:
the answer to this question is 1
Step-by-step explanation:
the reason to that is because when the line goes over 2 and -2.
Answer:
first part is decreasing and increasing
second part is 3 and 5
Step-by-step explanation:
edg 2021
A pooled variance is an estimated weighted variance made up of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same.
a. True
b. False
Answer:
True
Step-by-step explanation:
Considering the above definition of Pooled Variance, the correct answer is TRUE.
This is because Pooled variance is used to determine the reasonable estimates of variance, where several repeated tests are expected at each value.
This helps to provide greater precision estimates of variance.
Identify the two types of incorrect decisions in a hypothesis test. For each incorrect decision, what symbol is used to represent the probability of making that type of error?
Answer:
Type I error and Type II error
Explanation:
Type I and Type II errors are statistical errors made in hypothesis testing where an accepted hypothesis is actually the false hypothesis and the other true.
Type I error occurs when the chosen hypothesis is the alternative hypothesis which is false since the null hypothesis is true. We reject the null hypothesis which is actually true.
Type II error occurs when we accept or fail to reject the null hypothesis which is false and reject the alternative hypothesis which is true.
The probability of making a Type I error is represented by your alpha level (α)(we reject when below p-value)
The probability of a type-II error is represented by β which is beta.
What is the difference between the temperature - 7 Celsius and - 12 Celsius on a scatter diagram
Answer:
Sự khác biệt giữa nhiệt độ - 7 độ C và - 12 độ C trên biểu đồ phân tán là gì
Step-by-step explanation:
Annie bought a 2 3/4 pound roast for the family dinner. A total of 9 people will be at dinner. How many pound of roast will each person get if the roast is divided up equally?
Answer:
11 /36 of a pound
Step-by-step explanation:
Take the pounds and divide by the number of people
2 3/4 ÷ 9
Change the mixed number to an improper fraction
(4*2+3)/4 ÷9
11/4 ÷9
Copy dot flip
11/4 * 1/9
11/36
Evaluate f(x) = X - 8 for x = -8
Answer:-16
Step-by-step explanation:
Pls if anyone knows the answer that will be greatly appreciated :)
Answer:
I think the area is 60 but i couldn't figure out the perimeter, sorry.
Step-by-step explanation:
Answer:
perimeter = 36 m
area = 60 m²
Step-by-step explanation:
there is some missing information. for example about the types of the shapes. e.g. if the triangle on the top is an isosceles triangle (2 equal sides). or if the rectangle at the bottom is actually a square with 6 m on all sides. in order to make the sloped side of the top triangle a round, whole number, i assume that the bottom part is a square.
so, the area of this combined shape is the area of the bottom square plus the area of the top triangle.
area square As = 6×6 = 36 m²
so, one side of the triangle is also 6 m, the other is 14-6 = 8 m.
the area of such a right-angled triangle is half of the full rectangle of 6×8.
area triangle At = 6×8/2 = 48/2 = 24 m²
total area = As + At = 36 + 24 = 60 m²
the perimeter of the total shape is the sum of all sides.
so, 14, 6, 6 and ... the baseline/ Hypotenuse of the top triangle.
for that r need the mentioned Pythagoras :
c² = a² + b²
where a and b are the sides, and c is the Hypotenuse (the side opposite of the 90 degree angle).
so, in our case of an isosceles triangle with a 90 degree angle :
c² = 8² + 6² = 64 + 36 = 100
c = 10 m
so, the perimeter is
14+6+6+10 = 36 m
The length of a rectangle is 2 centimeters less than three times its width. Its area is 21 square centimeters. Find the dimensions of the rectangle. Use the formula, area=length*width.
Area = length x width
Area = 21 square cm
Width = x
Length = 3x + 2
21 = 3x+ 2 * x
21 = 3x ^2 + 2x
Subtract 21 from both sides:
3x^2 + 2x -21 = 0
Use the quadratic formula to solve for x:
-2 +/- sqrt(2^2-4*3(-21))/(2*3)
X = 7/3 and -3
A dimension can’t be a negative value so x needs to be 7/3
Width = x = 7/3 = 2 1/3 cm
Length = 3(7/3) + 2 = 9 cm
Check: 9 x 2 1/3 = 21
Dimensions: width 2 1/3 cm length 9 cm
Answer:
The dimensions of the rectangle are 7 by 3 centimeters.
Step-by-step explanation:
We are given that the length of a rectangle is two centimeters less than three times its width. In other words:
[tex]\displaystyle \ell = 3w-2[/tex]
Given that the area of the rectangle is 21 square centimeters, we want to determine the dimensions of the rectangle.
Recall that the area of a rectangle is given by:
[tex]A= w\ell[/tex]
Substitute:
[tex](21)=w(3w-2)[/tex]
Solve foro the width. Distribute:
[tex]3w^2-2w=21[/tex]
Isolate the equation:
[tex]3w^2-2w-21=0[/tex]
Factor. Find two numbers that multiply to 3(-21) = -63 and add to -2.
-9 and 7 suffice. Hence:
[tex]3w^2-9w+7w-21=0 \\ \\ 3w(w-3)+7(w-3) = 0 \\ \\ (3w+7)(w-3)=0[/tex]
Zero Product Property:
[tex]3w+7=0\text{ or } w-3=0[/tex]
Solve for each case. Hence:
[tex]\displaystyle w = -\frac{7}{3}\text{ or } w=3[/tex]
Since width cannot be negative, we can ignore the first solution.
Therefore, our width is three centimeters.
And since the length is two less than three times the width, the length is:
[tex]\ell = 3(3) - 2 = 7[/tex]
The dimensions of the rectangle are 7 by 3 centimeters.
I really need help
Dz,2 of X is
(0-4)
(2,-2)
(6,2)
9514 1404 393
Answer:
(6,2)
Step-by-step explanation:
As is often the case with multiple-choice problems, you don't actually need to know the detailed working. You just need to know what the answer looks like.
When point X is dilated by a factor of 2 with point Z as the center of dilation, it will move to a location twice as far from Z. You can tell by looking at the graph that X' will be in the first quadrant, above and to the right of the location of X. The only sensible answer choice is ...
X' = (6, 2)
_____
Additional comment
X is a distance of X-Z = (4, 0) -(2, -2) = (2, 2) from Z Doubling that will put the image point a distance of 2(2, 2) = (4, 4) from Z. When this is added to Z, we find ...
X' = Z + (4, 4) = (2+4, -2+4) = (6, 2)
If you multiply x + 3 by 2x + 5, what will the coefficient of x be?
Answer:
Answer: 2x^2+11x+15 Coefficient of x is 11 and coefficient of x^2 is 2.
Step-by-step explanation:
(x+3)×(2x+5)=?
Use FOIL Method Foil stands for First Outer Inner Last
Step 1: (x×2x) =2x^2 Multiply First Terms together (x and 2x)
Step 2: (x×5) =5x Multiply Outer terms together (x and 5)
Step 3: (3×2x) =6x Multiply Inner terms together (3 and 2x)
Step 4: (3×5) =15 Multiply Last terms together (3 and 5)
2x^2+5x+6x+15 Combine Like Terms
Answer: 2x^2+11x+15
What is the quadratic regression equation that fits these data?
9514 1404 393
Answer:
D. y = -0.32x² -1.26x +15.81
Step-by-step explanation:
This is one of those multiple-choice questions where you only need a vague idea of what the answer is supposed to look like.
In this case the answer must be a quadratic equation with a negative leading coefficient. (The parabola opens downward.)
The only answer choice that is a 2nd degree polynomial with a negative leading coefficient is choice D.
__
A: linear equation
B: exponential equation
C: quadratic that opens upward (positive leading coefficient)
D: quadratic that opens downward -- the answer you're looking for
Can someone help me solve this geometry problem down below?
Answer:
x = 29
Step-by-step explanation:
Given that both triangles are congruent to each other, therefore, their corresponding angles are congruent as well. This means all three angles in one is the same as all three corresponding angles of the other.
Therefore:
m<CAB = m<CDE = 74°
m<ABC = 2x (given)
m<BCA = 48° (given)
Thus:
m<CAB + m<ABC + m<BCA = 180° (sum of triangle)
Substitute
74 + 2x + 48 = 180
Add like terms
2x + 122 = 180
2x + 122 - 122 = 180 - 122
2x = 58
2x/2 = 58/2
x = 29
A group of 49 randomly selected students has a mean age of 22.4 years with a standarddeviation of 3.8. Construct a 98% confidence interval for the population mean knowing thatthe population standard deviation is 4.2 years.
Answer:
The 98% confidence interval for the population mean is between 21 and 23.8 years.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.98}{2} = 0.01[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.01 = 0.99[/tex], so Z = 2.327.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
[tex]M = 2.327\frac{4.2}{\sqrt{49}} = 1.4[/tex]
The lower end of the interval is the sample mean subtracted by M. So it is 22.4 - 1.4 = 21 years.
The upper end of the interval is the sample mean added to M. So it is 22.4 + 1.4 = 23.8 years.
The 98% confidence interval for the population mean is between 21 and 23.8 years.
Write expression with two terms that is equivalent to the expression shown. 4(2x + 11 - x)
Explain how you could find the shortest distance from A(6, 5) to the line y = 5x – 10. (Use a diagram, be specific, and list all your steps.
Step-by-step explanation:
I cannot draw a diagram here.
but I can explain what to do in general.
the shortest distance from a point to a line is always via a connecting line that is perpendicular to the given line and his through the given point.
and then the distance from the given point to the intersection point is calculated.
every line is defined in the form like
y = ax + b
where a is the slope of the line, and b is the intersection point on the y-axis (the offset from point 0).
the slope of a line is the ratio y/x defining how many units y changes when x changes a certain amount of units.
in our example,
y = 5x - 10
5 (or rather 5/1) is the slope of the line.
it means that y grows by 5 units every time x grows by 1 unit.
a perpendicular line (cuts the original line with a 90 degree angle) has a related slope : it reverts x and y and flips the sign :
5/1 turns into -1/5
that means at the perpendicular line whenever x grows by 5 units, y goes down by 1 unit.
so, the first approach for the perpendicular line is
y = -1/5 x + b
to get b we use the given point (6, 5) that has to be in the perpendicular line.
5 = -1/5 × 6 + b
25/5 = -6/5 + b
31/5 = b
=> y = -1/5 x + 31/5
the intersecting point is now where both lines are equal
5x - 10 = -1/5 x + 31/5
25x - 50 = -x + 31
26x = 81
x = 81/26
y = 5×(81/26) - 10 = 405/26 - 260/26 = 145/26
the distance of the given point (6, 5) to the line intersection point (81/26, 145/26) is the calculated as
distance² = (6 - 81/26)² + (5 - 145/26)²
distance = sqrt((6-81/26)² + (5-145/26)²)
since the result was not requested here, I save us the calculation.
Yanni read 24 pages of
a book. One third of the book is
still left to read. How many
pages are there in the
whole book?
Answer:
36 pages
Step-by-step explanation:
If one third of the book is left to read until completion, then Yanni has read two thirds of the book so far.
24 pages is equal to two thirds, so one third will be half of this; 12 pages.
The whole book is three thirds, so 12 * 3, which is 36 pages
Answer:
di gun0ifulgwuytid5
Step-by-step explanation:
DJ e57
if one half of a number is 5 more than 6, what is the value when the number is tripled
Answer:
66
Step-by-step explanation:
let's use x to represent the unknown number
1/2x is 5 more than 6:
↓
1/2x=5+6
solve to find x
1/2x=11
x=22
next, it asks us what is the value of the number when the number is tripled
since we already found what x is equal to, we can multiply that by 3 to figure out its value when it's tripled
3(22)=66
Using mathematical equation to model the scenario, the value of the number when tripled is 66
Let the number = n
0.5n = 5 + 6
0.5n = 11
Divide both sides by 0.5
n = 22
When n is tripled :
n = 22 × 3
n = 66
Hence, the value of the number when tripled is 66
Learn more : https://brainly.com/question/25480062
Jordan Bikes 4/3 miles in 1/10 hours. whats is his speed in miles per hour?
Need help! Thank you :)
Answer:
The value of [tex]x[/tex] is 10.
Step-by-step explanation:
Both angles ABC and CBD are complementary, that is, the sum of the measures of both angles equals 90°, that is:
[tex]\angle ABC + \angle CBD = 90^{\circ}[/tex] (1)
If we know that [tex]\angle ABC = 5\cdot x[/tex] and [tex]\angle CBD = 4\cdot x[/tex], then the value of [tex]x[/tex] is:
[tex]5\cdot x + 4\cdot x = 90^{\circ}[/tex]
[tex]9\cdot x = 90^{\circ}[/tex]
[tex]x = 10[/tex]
The value of [tex]x[/tex] is 10.
What value of x makes the equation 3x +7=22
Answer:
x = 5
Step-by-step explanation:
Your goal is to isolate x
3x + 7 = 22
Subtract 7 from both sides and you are left with
3x = 15
In order to isolate x divide both sides by 3
x = 5
Find the y-intercept from the line passing through (1, 3) and having slope m=2.
Answer:
The y intercept is 1
Step-by-step explanation:
The slope intercept form of a line is
y = mx+b where m is the slope and b is the y intercept
y = 2x+b
Substitute the point into the equation and solve for y
3 = 2(1)+b
3 =2+b
1 = b
The y intercept is 1
PLz help!!
What is the degree of the polynomial
Answer:
3 maybe I'm just guessing.
now thats room for an answer again: yeah, 3 is right. its the x³ that defines the degree, its just the biggest power.