Answer:
7/3 or 2 1/3
Step-by-step explanation:
1 1/3 ÷ 1 3/4
Change to improper fractions
(3*1+1)/3 ÷ (4*1+3)/4
4/3 ÷ 7/4
Copy dot flip
4/3 * 7/4
Rewriting
4/4 * 7/3
7/3
As a mixed number
2 1/3
Answer:
11/3÷13/4
11/3×4/13
44/39=
1.1282
A cylindrical grain silo, with a flat top, is 30 feet tall and has a radius of 12 feet. It is full to the top with shelled corn. If the density of shelled corn averages 45 pounds/cubic foot, what does the corn in the silo weigh to the nearest pound
Answer:
610805 pounds
Step-by-step explanation:
The volume of grain in the silo will be calculated as equal to the volume of the cylinder formed by the silo
Height of the silo [tex]l[/tex] = 30 ft
radius of the silo r = 12 ft
volume of a cylinder = [tex]\pi r^{2} l[/tex]
substituting, we have
V = 3.142 x [tex]12^{2}[/tex] x 30 = 13573.44 cubic feet
We know that density ρ = weight/volume
density of the grains in the silo = 45 pound/cubic feet
therefore,
weight of grains = density x volume
weight of grains = 45 x 13573.44 = 610804.8 ≅ 610805 pounds
Given the function, Calculate the following values:
Answer:
[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]
Step-by-step explanation:
[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]
Carla drove her truck 414 miles on 18 gallons of gasoline. How many miles did she drive per gallon?
Answer:
23 miles per gallon
Step-by-step explanation:
414 miles = 18 gallons
=> 18/18 gallons = 414/18 miles
=> 1 gallon = 23 miles
So, she drove 23 miles per gallon.
Two faces of a six-sided die are painted red, two are painted blue, and two are painted yellow. The die is rolled three times, and the colors that appear face up on the first, second, and third rolls are recorded. (a) Find the probability of the event that exactly one of the colors that appears face up is red.
Answer:
12/27
Step-by-step explanation:
Step 1
We find all the total number of possible outcomes of rolling two faces of a six-sided die are painted red, two are painted blue, and two are painted yellow.
Where
R = Red
B = Blue
Y = Yellow
RRR, BBB, YYY, RBY, RYB, YBR, YRB, BRY, BYR, BBY, BBR, YYB, RRY, RRB, BYB, BRB, YRY, YBY, RYR, RBR,YRR, BRR, RBB, RYY, BYY,YBB, YYR
We have 27 Total outcomes for this 6 faced die
Step 2
The event that exactly one of the colors that appears face up is red.
RBY, RYB, YBR, YRB, RBB, RYY, BBR,
BRB, BRY, YRY, BYR, YYR
Total number of Possible outcomes where EXACTLY one of the colours that appears face up is red = 12
The probability of the event that exactly one of the colors that appears face up is red = Number of possible outcomes/ Total number of outcomes
= 12/27
If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots?
Answer: There are no real number roots (the two roots are complex or imaginary)
The discriminant D = b^2 - 4ac tells us the nature of the roots for any quadratic in the form ax^2+bx+c = 0
There are three cases
If D < 0, then there are no real number roots and the roots are complex numbers.If D = 0, then we have one real number root. The root is repeated twice so it's considered a double root. This root is rational if a,b,c are rational.If D > 0, then we get two different real number roots. Each root is rational if D is a perfect square and a,b,c are rational.Write the equations, after translating the graph of y = |x+2|: one unit up,
Answer:
y = |x + 2| + 1
Step-by-step explanation:
Parent Graph: f(x) = a|bx + c| + k
a is vertical stretch/shrink
b is horizontal stretch/shrink
c is horizontal movement left/right
k is vertical movement up/down
Since we are given an equation and we want to move it 1 unit up (vertical movement up), we only manipulate k:
y = |x + 2| + k
k = 1
y = |x + 2| + 1
Answer:
y = |x+2| + 1
Step-by-step explanation:
The equation will be y = |x+2| + 1.
By translating the graph one unit up, the equation will simply change by adding +1 to the graph, outside of the absolute value part.
Each cylinder is 12 cm high with a diameter of 8 cm.
Calculate the volume of each cylinder.
Use 3 as a value for π
Give your answer using the correct units.
Answer:
Volume = 576cm^3Step-by-step explanation:
[tex]h = 12 cm\\d = 8cm\\r =d/2 = 8/2 =4\\V = ?\\V =\pi r^2h\\\\V= 3 \times 4^2\times12\\V = 576 cm^3[/tex]
Gail bought 5 pounds of oranges and 2 pounds of bananas for $14. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $18. What was the cost per pound of the oranges and the bananas?
Answer:
1 pound of Oranges = $2
1 pound of Bananas = $2
Step-by-step explanation:
O = Oranges
B = Bananas
=> 5o + 2b = 14
=> 2b = 14 - 5o
=> b = 14/2 - 5/2o
=> b = 7 - 2.5o
3o + 6b = 18
=> 3o + 6( 7 - 2.5o ) = 18
=> 3o + 42 - 15o = 18
=> -12o + 42 = 18
=> -12o = -24
=> -o = -2
=> o = 2
One pound of oranges costs $2.
So,
5 (2) + 2b = 14
=> 10 + 2b = 14
=> 2b =4
=> b = 2
One pound of bananas also costs $2.
Ava started her hw at 7:20pm she finished it at 8:05 pm how long did she take to her hw?
Answer:
45 mins
Step-by-step explanation:
if the sin 30 = 1/2, then which statement is true?
Answer:
cos 60° = 1/2 because the angles are complements.
Step-by-step explanation:
The state of Georgia is divided up into 159 counties. Consider a population of Georgia residents with mutually independent and equally likely home locations. If you have a group of n such residents, what is the probability that two or more people in the group have a home in the same county
Answer:
[tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
Step-by-step explanation:
number of counties = 159
n number of people are mutually independent and equally likely home locations
considering the details given in the question
n ≤ 159
The number of ways for people ( n ) will live in the different counties (159) can be determined as [tex](\left \{ {{159} \atop {n}} \right} )[/tex]
since the residents are mutually independent and equally likely home locations hence there are : [tex]159^{n}[/tex] ways for the residents to live in
therefore the probability = [tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
Find the missing term in the
geometric sequence.
13,[ ? ],208
Answer:
110.5
Step-by-step explanation:
208=13+(3-1)d
208=13+2d
-13. -13
195=2d
÷2. ÷2
97.5=d. (d means difference)
13(first term)+97.5=110.5
Answer: 676
Step-by-step explanation: r/13=208/r
r²=2704
r=52
13x52=676
If you randomly select a letter from the phrase "Sean wants to eat at Olive Garden," what is the probability that a vowel is randomly selected
Answer:
12/27
Step-by-step explanation:
Count all letters and all vowels then divide vowels by letters
The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
What is the probability of an event in an experiment?The probability of any event suppose A, in an experiment is given as:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
How to solve the given question?In the question, we are given an experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden".
We are asked to find the probability that the selected letter is a vowel.
Let the event of selecting a vowel from the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden" be A.
We can calculate the probability of event A by the formula:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
The number of outcomes favorable to event A (n) = 12 (Number of vowels in the phrase)
The total number of outcomes in the experiment (S) = 27 (Number of letters in the phrase).
Now, we can find the probability of event A as:
P(A) = 12/27 = 4/9
∴ The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
Learn more about the probability of an event at
https://brainly.com/question/7965468
#SPJ2
isted below are amounts (in millions of dollars) collected from parking meters by a security service company and other companies during similar time periods. Do the limited data listed here show evidence of stealing by the security service company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing%. (Round to one decimal place as needed.)
Answer:
Means:
1.55
1.73
Standard Deviation:
0.1434
0.1338
Coefficient of variation:
9.2
7.7
the limited data listed here shows evidence of stealing by the security service company's employees.
Step-by-step explanation:
Given data:
security Service Company Other Companies
x₁ x₂
1.5 1.8
1.7 1.9
1.6 1.6
1.4 1.7
1.7 1.8
1.5 1.9
1.8 1.6
1.4 1.5
1.4 1.7
1.5 1.8
n₁ = 10 n₂ = 10
To find:
coefficient of variation for each of the two samples
Solution:
The formula for calculating coefficient of variation of sample is:
Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100%
Calculate Mean for Security Service Company data:
Mean = (Σ x₁) / n₁
= (1.5 + 1.7 + 1.6 + 1.4 + 1.7 + 1.5 + 1.8 + 1.4 + 1.4 + 1.5) / 10
= 15.5 / 10
Mean = 1.55
Calculate Standard Deviation for Security Service Company data:
Standard Deviation = √∑(x₁ - Mean)²/n₁-1
= √∑(1.5-1.55)² + (1.7-1.55)² + (1.6-1.55)² + (1.4-1.55)² + (1.7-1.55)² + (1.5-1.55)² + (1.8-1.55)² + (1.4-1.55)² + (1.4-1.55)² + (1.5-1.55)² / 10-1
=√∑ (−0.05)² + (0.15)² + (0.05)² + (−0.15)² + (0.15)² + (−0.05)² + (0.25)² + (−0.15)² + (−0.15)² + (−0.05)² / 10 - 1
= √∑0.0025 + 0.0225 + 0.0025 + 0.0225 + 0.0225 + 0.0025 + 0.0625 + 0.0225 + 0.0225 + 0.0025 / 9
= √0.185 / 9
= √0.020555555555556
= 0.14337208778404
= 0.143374
Standard Deviation = 0.143374
Coefficient of Variation for Security Service Company:
CV = (Standard Deviation / Mean) * 100%
= (0.143374 / 1.55) * 100
= 0.09249935 * 100
= 9.249935
CV = 9.2
CV = 9.2%
Calculate Mean for Other Companies data:
Mean = (Σ x₂) / n₂
= (1.8 + 1.9 + 1.6 + 1.7 + 1.8 + 1.9 + 1.6 + 1.5 + 1.7 + 1.8) / 10
= 17.3 / 10
Mean = 1.73
Calculate Standard Deviation for Other Companies data:
Standard Deviation = √∑(x₂-Mean)²/n₂-1
= √∑[(1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.7-1.73)² + (1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.5-1.73)² + (1.7-1.73)² + (1.8-1.73)²] / 10 - 1
= √∑ [(0.07)² + (0.17)² + (-0.13)² + (-0.03)² + (0.07)² + (0.17)² + (-0.13)² + (-0.23)² + (-0.03)² + (0.07)²] / 9
= √∑ (0.0049 + 0.0289 + 0.0169 + 0.0009 + 0.0049 + 0.0289 + 0.0169 + 0.0529 + 0.0009 + 0.0049) / 9
= √(0.161 / 9)
= √0.017888888888889
= 0.13374935098493
= 0.13375
Standard Deviation = 0.13375
Coefficient of Variation for Other Companies:
CV = (Standard Deviation / Mean) * 100%
= (0.13375 / 1.73) * 100
= 0.077312 * 100
= 7.7312
CV = 7.7
CV = 7.7%
Yes, the limited data listed here shows evidence of stealing by the security service company's employees because there is a significant difference in the variation.
Factor completely 6x - 18.
6(x + 3)
6(x-3)
6X (-18)
Prime
Answer:
6(x-3)
Step-by-step explanation:
the common number for 6 and 18 is 6 so if you extract that from the expression then it turns to 6(x-3) which cannot be factored further
Answer:
Option B: 6(x - 3)
Step-by-step explanation:
What is the value of x for the given equation?
4 – 2(x + 7) = 3(x + 5)
X=
Answer:
-5
Step-by-step explanation:
What are the zeros of the quadratic function represented by this graph?
У
A
6
2
X
-6
- 2
6
2-
-6-
A.
1 and 3
OB.
-3 and -1
C.
-3 and 1
D. -1 and 3
Look where the parabola crosses the x axis. This is where the x intercepts are located. The term "x intercept" is the same as "root" and also the term "zero".
Angles One angle is 4º more than three times another. Find
the measure of each angle if
a. they are complements of each other.
b. they are supplements of each other.
[tex] \Large{ \boxed{ \bf{ \color{purple}{Solution:}}}}[/tex]
Let the smaller angle be x
Then, Larger angle would be x + 4°
Case -1:❍ They are complementary angles.
This means, they add upto 90°So,
➙ x + x + 4° = 90°
➙ 2x + 4° = 90°
➙ 2x = 86°
➙ x = 86°/2 = 43°
Then, x + 4° = 47°
So, Our required answer:
Smaller angle = 43°Larger angle = 47°Case -2:❍ They are supplementary angles.
This means, they add upto 180°So,
➙ x + x + 4° = 180°
➙ 2x + 4° = 180°
➙ 2x = 176°
➙ x = 176°/2 = 88°
Then, x + 4° = 92°
So, Our required answer:
Smaller angle = 88°Larger angle = 92°✌️ Hence, solved !!
━━━━━━━━━━━━━━━━━━━━
Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
Answer:
?
Step-by-step explanation:
Answer:
33
Step-by-step explanation:
Let "x" be the number of nickels, of dimes, and of quarters.
The value of the nickels is 5x cents.
The value of the dimes is 10x cents
The value of the quarters is 25x cents.
Equation:
Value of nickels + Value of dimes + Value of quarters =1320 cents
5x + 10x + 25x = 1320
Sove for "x". Then you will know the number of each coin.
Anand needs to hire a plumber. He's considering a plumber that charges an initia
hourly rate of $28. The plumber only charges for a whole number of hours. Anar
more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
28 - 65H <250
Complete question :
Anand needs to hire a plumber. He's considering a plumber that charges an initial fee of $65 along with an
hourly rate of $28. The plumber only charges for a whole number of hours. Anand would like to spend no more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
A. 28 + 65H < 250
B. 28 + 65H > 250
C. 65 + 28H < 250
D. 65 +28H > 250
2) What is the largest whole number of hours that Anand can afford?
Answer:
65 + 28H < 250
Number of hours Anand can afford = 6 hours
Step-by-step explanation:
Given the following information :
Initial hourly rate = $65
Hourly rate = $28
Number of hours worked (whole number) = H
Maximum budgeted amount to spend = $250
Therefore ;
(Initial charge + total charge in hours) should not be more than $250
$65 + ($28*H) < $250
65 + 28H < 250
Number of hours Anand can afford :
65 + 28H < 250
28H < 250 - 65
28H < 185
H < (185 / 28)
H < 6.61
Sinve H is a whole number, the number of hours he can afford is 6 hours
Answer:
65 + 28H < 250
6
Step-by-step explanation:
tried it, it worked.
the other answer is correct but hard to understand so give them thanks and 4 star :)
Complete the table for the given rule.
Rule: y = 6x – 4
х. Y
1
3
10
Answer:
a y = 2
b.y = 14
c. y =56
Step-by-step explanation:
a .6 (1)- 4=2
y=2
b. 6 (3)- 4
=18-4
y=14
c. 6 (10) - 4
= 60 - 4 =56
Assume that a randomly selected subject is given a bone density test. Those test scores are normally distributed with a mean of 0 and a standard deviation of 1. Find the probability that a given score is less than 1.99 and draw a sketch of the region.
Answer:
Step-by-step explanation:
To find this probability, we shall be using the z-score route
Mathematically ;
z-score = (x -mean)/SD
From the question, x = 1.99, mean = 0 and SD = 1
So z = (1.99-0)/1 = 1.99
So the probability we want to calculate is;
P(z<1.99)
This value can be obtained from the standard normal distribution table.
P(z < 1.99) = 0.9767
The sketch of the region is as shown as in the attachment.
Need Assitance
*Show Work*
Answer:
66 2/3 %
Step-by-step explanation:
First find the students not in the 8th grade
24 - 8 = 16
16 students are not in the 8th grade
Take the fraction of the students not in the 8th grade over the total
16/24 = 2/3
Change to a decimal
.66666666666
Multiply by 100 to change to a percent
66.666666%
66 2/3 %
Answer:
66.67% of students are not in eighth grade
Step-by-step explanation:
8/24=1/3
1/3=0.33333333333
1-0.33333333333=0.66666666667
0.66666666667=66.67%
What is the nearest 100 of 1730
Answer:
1700
Step-by-step explanation:
pls thnx and mark me brainliest
The Venn diagram shows 3 type numbers odd even in prime
Compute the least-squares regression line for the given data set. Use a TI-84 calculator. Round final answers to four decimal places, as needed.
x 5 7 6 2 1
y 4 3 2 5 1
Regression line equation: ŷ = _______ + _______ x.
Answer:
Y = 2.843+ 0.037 X
Step-by-step explanation:
Let the equation of the straight line to be fitted to the data , be Y = a+b X where a and b are to be evaluated. The normal equations fro determining a and b are
∑Y = na +b ∑X
∑XY = a∑X + b∑X²
We now calculate ∑X, ∑Y , ∑X², and ∑XY
X Y XY X²
5 4 20 25
7 3 21 49
6 2 12 36
2 5 10 4
1 1 1 1
21 15 64 115
Thus the normal equation becomes
5a + 21b =15
21a +115b = 64
Solving these two equations simultaneously we get
105 a + 441b = 315
105a + 575b = 320
134b= 5
b= 0.037 , a= 2.843
Hence the equation for the required straight line is
Y = 2.843+ 0.037 X
Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.
Answer:
1/8, 3/8
Step-by-step explanation:
Let x and y represent the two fractions. Then we are given ...
x + y = 1/2
x + 5y = 2
Subtracting the first equation from the second, we get ...
(x +5y) -(x +y) = (2) -(1/2)
4y = 3/2 . . . . . simplify
y = 3/8 . . . . . . divide by 4
x = 1/2 -3/8 = 1/8
The two numbers are 1/8 and 3/8.
A passenger train traveled 180 miles in the same amount of time it took a freight train to travel 120 miles. The rate of the freight train was 15 miles per hour slower than the rate of the passenger train. Find the rate of the passenger train.
Answer:
The passenger train is moving at 45 miles per hour
Step-by-step explanation:
Let the amount of time it took the two trains to travel the distance = t.
Since the two trains traveled the distance at the same time,
Rate of the passenger train =[tex]\frac{180}{t}[/tex]
Rate of the freight train = [tex]\frac{120}{t}[/tex]
Where t is in hours.
From the problem, we can see that the rate of the freight train was 15 miles per hour slower than the rate of the passenger train. Mathematically, we can represent this as
[tex]\frac{120}{t}= \frac{180}{t}-15[/tex]
from the above equation, we can now get our value for t as
[tex]\frac{120-180}{t}=-15\\\frac{-60}{t}=-15\\t=4 hours[/tex]
We have our time of travel for the two trains as 4 hours.
The rate of the passenger train can now be calculated by 180/4 = 45 miles per hour
average of 2721 2557 2999 2278 4339
Answer:
Step-by-step explanation:
So we know that the average of numbers is all of the numbers added up and divided by the total amount of numbers.
2721
+ 2557
-------------------
5278
.... AND SO ON.........
=14,894 is all of the number added together!!!
Then we count up the numbers= 5
14,894/5
=2978.8
I hope this helps!!!
What is the solution of the linear equation? LaTeX: 5k\:+\:3.8\:=\:3k\:+\:95 k + 3.8 = 3 k + 9 Group of answer choices 26 6.4 .065 2.6
Answer:
[tex]k = 2.6[/tex]
Step-by-step explanation:
Given
[tex]5k + 3.8 = 3k + 9[/tex]
Required
Solve
[tex]5k + 3.8 = 3k + 9[/tex]
Collect like terms
[tex]5k -3k+ 3.8 = 3k -3k + 9[/tex]
[tex]2k+ 3.8 = 9[/tex]
Subtract 3.8 from both sides
[tex]2k+ 3.8 - 3.8= 9 - 3.8[/tex]
[tex]2k= 9 - 3.8[/tex]
[tex]2k = 5.2[/tex]
Divide through by 2
[tex]k = 5.2/2[/tex]
[tex]k = 2.6[/tex]