Answer:
√5
Step-by-step explanation:
[tex](2 ,-5) = (x_1,y_1)\\(3,-7)=(x_2,y_2)\\\\d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\ \\d = \sqrt{(3-2)^2 +(-7-(-5))^2}\\ \\d = \sqrt{(1)^2+(-7+5)^2}\\ \\d = \sqrt{(1)^2 + (-2)^2}\\ \\d = \sqrt{1 +4}\\ \\d = \sqrt{5}[/tex]
Find the area of the shaded triangle below.
Answer:
A = 12 square units
Step-by-step explanation:
Area of a Triangle = base * height / 2
The triangle might look weird and doesn't look like it has a base, but if you look at the left side you see there is a straight line which means there is a base, so we flip the picture until we see that the flat line on the bottom or the base.
The base is 4 units.
To find the height, we don't need a straight line, we just need to see how the tall the triangle is, to do that you must start from the lowest point and count up to the highest point.
You now get 6 units.
A = bh/2
A = 4*6/2
A = 24/2
A = 12 square units
A standardized exam's scores are normally distributed. In a recent year, the mean test score was and the standard deviation was . The test scores of four students selected at random are , , , and . Find the z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) The z-score for is nothing. (Round to two decimal places as needed.) Which values, if any, are unusual? Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The unusual value(s) is/are nothing. (Use a comma to separate answers as needed.) B. None of the values are unusual.
Answer:
The z-score for 1880 is 1.34.
The z-score for 1190 is -0.88.
The z-score for 2130 is 2.15.
The z-score for 1350 is -0.37.
And the z-score of 2130 is considered to be unusual.
Step-by-step explanation:
The complete question is: A standardized exam's scores are normally distributed. In recent years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are 1880, 1190, 2130, and 1350. Find the z-scores that correspond to each value and determine whether any of the values are unusual. The z-score for 1880 is nothing. (Round to two decimal places as needed.) The z-score for 1190 is nothing. (Round to two decimal places as needed.) The z-score for 2130 is nothing. (Round to two decimal places as needed.) The z-score for 1350 is nothing. (Round to two decimal places as needed.) Which values, if any, are unusual? Select the correct choice below and, if necessary, fill in the answer box within your choice. A. The unusual value(s) is/are nothing. (Use a comma to separate answers as needed.) B. None of the values are unusual.
We are given that the mean test score was 1464 and the standard deviation was 310.
Let X = standardized exam's scores
The z-score probability distribution for the normal distribution is given by;
Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = mean test score = 1464
[tex]\sigma[/tex] = standard deviation = 310
S, X ~ Normal([tex]\mu=1464, \sigma^{2} = 310^{2}[/tex])
Now, the test scores of four students selected at random are 1880, 1190, 2130, and 1350.
So, the z-score of 1880 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1880-1464}{310}[/tex] = 1.34
The z-score of 1190 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1190-1464}{310}[/tex] = -0.88
The z-score of 2130 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{2130-1464}{310}[/tex] = 2.15
The z-score of 1350 = [tex]\frac{X-\mu}{\sigma}[/tex]
= [tex]\frac{1350-1464}{310}[/tex] = -0.37
Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.
According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.
Solve 13x + 14 = 12x -5 (make sure to type the number only)
Answer:
x = -19
Step-by-step explanation:
13x + 14 = 12x - 5
subtract 12x from both sides
x + 14 = -5
subtract 14 from both sides
x = -19
Answer:
x= -19
Step-by-step explanation:
13x+14=12x−5
Subtract 12x from both sides.
13x+14−12x=−5
Combine 13x and −12x to get x.
x+14=−5
Subtract 14 from both sides.
x=−5−14
Subtract 14 from −5 to get −19
x=−19
Why would a linear function be an appropriate model?
Answer:
I know the answer
Step-by-step explanation:
Linear functions are those whose graph is a straight line. A linear function has the following form. y = f(x) = a + bx. A linear function has one independent variable and one dependent variable. The independent variable is x and the dependent variable is y.
Evaluating function expressions
-1•f(-8)-4•g(4)=
Answer: -7
Step-by-step explanation:
To find f(-8) look at the f function. Find the y value when x = -8
To find g(4) look at the g function. Find the y value when x = 3
Plug these values into the equation
-1 f(-8) - 4 f(4)
-1 (-5) - 4 (3)
5 - 12 = -7
y x1 x2
10 1 16
11 5 11
15 5 14
15 9 11
20 7 1
23 11 8
27 16 7
32 21 3
a. Using technology, construct a multiple regression model with the given data.
b. Interpret the meaning of the values for b1 and b2.
Answer:
ŷ = 0.964X1 - 0.336X2 + 13.066
b1 = 0.964 which is the unit change in the value of y when x1 changes.
b2 = - 0.336 which is the unit change in the value of y when x2 changes
Step-by-step explanation:
Y
10
11
15
15
20
23
27
32
X1
1
5
5
9
7
11
16
21
X2
16
11
14
11
1
8
7
3
The general form of a multiple regression equation is in form:
ŷ = b1x1 + b2x2 + c
Where,
ŷ = predicted or dependent variable
b1 and b2 = slope or gradient Coefficient for the independent or predictor variables x1 and X2 respectively.
c = intercept (constant)
Using the online multiple regression calculator, the model obtained by Inputting the values is written below:
ŷ = 0.964X1 - 0.336X2 + 13.066
Value of b1 = 0.964 which is the unit change in the value of y when x1 changes.
Value b2 = - 0.336 which is the unit change in the value of y when x2 changes
PLEASE FAST 40 POINTS
A box contains four tiles, numbered 1,4.5, and 8 as shown.
Kelly randomly chooses one tile, places it back in the box, then chooses a second tile.
What is the probability that the sum of the two chosen tiles is greater than 7?
A. 1/4
B. 5/16
C. 2/3
D. 11/16
Answer:
[tex]\bold{\dfrac{11}{16}}[/tex]
Step-by-step explanation:
Given four tiles with numbers:
1, 4, 5 and 8
Tile chosen once and then replaced, after that another tile chosen:
All possibilities are:
{(1, 1) ,(1, 4) ,(1, 5) ,(1, 8)
(4, 1) ,(4, 4) ,(4, 5) ,(4, 8)
(5, 1) ,(5, 4) ,(5, 5) ,(5, 8)
(8, 1) ,(8, 4) ,(8, 5) ,(8, 8) }
Total number of possibilities = 16
When the sum is greater than 7, the possibilities are:
{(1, 8)
(4, 4) ,(4, 5) ,(4, 8)
(5, 4) ,(5, 5) ,(5, 8)
(8, 1) ,(8, 4) ,(8, 5) ,(8, 8) }
Number of favorable cases = 11
Formula for probability of an event E is:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
Hence, the required probability is:
[tex]\Rightarrow \bold{\dfrac{11}{16}}[/tex]
Answer:11/16
Step-by-step explanation:i took the test
A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 50 microwaves that are 5 years old, 12% needed repairs at a=.04 can you reject the makers claim that no more than 10% of its microwaves need repair during the first five years of use?
Answer:
We conclude that no more than 10% of its microwaves need repair during the first five years of use.
Step-by-step explanation:
We are given that a maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use.
In a random sample of 50 microwaves that are 5 years old, 12% needed repairs.
Let p = population proportion of microwaves who need repair during the first five years of use.
So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10% {means that no more than 10% of its microwaves need repair during the first five years of use}
Alternate Hypothesis, [tex]H_A[/tex] : p > 10% {means that more than 10% of its microwaves need repair during the first five years of use}
The test statistics that will be used here is One-sample z-test for proportions;
T.S. = [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion of microwaves who need repair during the first 5 years of use = 12%
n = sample of microwaves = 50
So, the test statistics = [tex]\frac{0.12-0.10}{\sqrt{\frac{0.10(1-0.10)}{50} } }[/tex]
= 0.471
The value of z-test statistics is 0.471.
Now, at a 0.04 level of significance, the z table gives a critical value of 1.751 for the right-tailed test.
Since the value of our test statistics is less than the critical value of z as 0.471 < 1.751, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.
Therefore, we conclude that no more than 10% of its microwaves need repair during the first five years of use.
Find the value of x.
Answer:
6x + 6 = 32
6x = 32 - 6
6x = 26
divide both sides by 6
6x/6 = 26/6
6x + 6 = 4.35
9x - 9 = 24
9x = 24 + 9
9x = 33
divide both sides by 9
9x/9 = 24/9
9x + 9 = 2.66
9x + 9 = 2.66
Answer: x=3
Step-by-step explanation:
[tex]\frac{32}{24} =\frac{4}{3} \\\\\frac{4}{3}=\frac{6x+6}{9x-9}\\ x=3[/tex]
Chelsea played her tuba from 4:25 pm until 5:07
Answer:
42 minutes
Step-by-step explanation:
if you are asking how long it takes Chelsea to play her tuba then you do: 67 - 25 = 42
Answer:
Step-by-step explanation:
jhngjnh
Find the area of the shaded regions:
area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$
so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$
$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$
abd there are 2 such arcs, so double the area.
[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]
Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2To FinD:-Find the area of the shaded regions....?How to solve?For solving this question, Let's know how to find the area of a sector in a circle?
[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]
Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.
Solution:-We have,
No. of sectors = 2Angle of sector = 72°By using formula,
⇛ Area of shaded region = 2 × Area of each sector
⇛ Area of shaded region = 2 × Θ/360° × πr²
⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²
⇛ Area of shaded region = 2/5 × 100 × 22/7
⇛ Area of shaded region = 40 × 22/7
⇛ Area of shaded region = 880/7 inch. sq.
⇛ Area of shaded region = 125.71 inch. sq.
☄ Your Required answer is 125.71 inch. sq(approx.)
━━━━━━━━━━━━━━━━━━━━
Which expression is equivaleny to 0.7 + p + 0.86p?
A.1 + 1.56p
B.p + 1.56
C.2.56p
D. -0.84p
Answer:
None of the above.
1.86p + 0.7
Step-by-step explanation:
Step 1: Write expression
0.7 + p + 0.86p
Step 2: Combine like terms
0.7 + 1.86p
None of those answer choices are correct unless you wrote the problem incorrectly.
Which values of x are point(s) of discontinuity for this function? Function x = –4 x = –2 x = 0 x = 2 x = 4
Answer:
x=0 and x=2
Step-by-step explanation:
We need to check at each point where the function changes definition
At x= -2
On the left side -4 on the right side = -( -2)^2 = -4 continuous
At x=0
The point is not defined since neither side has an equals sign
discontinuous
x =2
on the left side 2^2 =4 on the right side 2
It is discontinuous
Answer:
x = 0
x = 2
Step-by-step explanation:
Edge 2020
~theLocoCoco
can you please help me with this
Answer:
[tex]\displaystyle A=\dfrac{1}{2}\int_\pi^{\frac{7\pi}{6}}{(\cos{\theta}+\sin{2\theta})^2}\,d\theta[/tex]
Step-by-step explanation:
The shaded area is the area of the curve bounded by θ = π and θ = 7π/6.* A differential of area in polar coordinates is ...
dA = (1/2)r^2·dθ
So, the shaded area is ...
[tex]\displaystyle\boxed{A=\dfrac{1}{2}\int_\pi^{\frac{7\pi}{6}}{(\cos{\theta}+\sin{2\theta})^2}\,d\theta}[/tex]
_____
* We found these bounds by trial and error using a graphing calculator to plot portions of the curve.
Shawna finds a study of American men that has an equation to predict weight (in pounds) from
height (in inches): y = -210 + 5.6x. Shawna's dad's height is 72 inches and he weighs 182 pounds.
What is the residual of weight and height for Shawna's dad?
a. 11.2 pounds
b. -11.2 pounds
c. 193.2 pounds
d. 809.2 pounds
Answer:
-11.2 pounds
Step-by-step explanation:
It is given that,
Shawna finds a study of American men that has an equation to predict weight (in pounds) from height (in inches):
y = -210 + 5.6x
Height of Shawna's dad is 72 inches
Weight is 182 pounds
We need to find the residual of weight and height for Shawna's dad.
Predicted weight of 72 inches men,
y' = -210 + 5.6(72)
y' = 193.2 pounds
So, residual is :
Y = 182 - 193.2
Y = -11.2 pounds
So, the residual of weight and height for Shawna's dad is -11.2 pounds.
Answer:
-11.2 pounds
Step-by-step explanation:
Got it right on the test.
60feet to meters plaese with work
Answer:
60 Feet = 18.288 Meters
Step-by-step explanation:
foot = 12 inch = 0.3048 m
0.3047 × 60
18.288 meters
All human blood can be "ABO-typed" as O, A, B, or AB, but the distribution of the types varies a bit among groups of people. Here are the distributions of blood types for a randomly chosen person in China and in the United States:The probability O A B ABChinese 0.35 0.27 0.26 0.12American 0.45 0.4 0.11 0.04Suppose we randomly select an American and a Chinese, independently of each other, apply multiplication and addition probability rules, compute:a. Pr(They both have type O)b. Pr( they both have the same blood type)c. Pr( at least one person has type O)
Answer:
a. Pr(They both have type O)
= Pr(They both have type O)
= 0.35 x 0.45
= 0.1575 = 15.75%
b. Pr( they both have the same blood type)
= Pr( they both have the same blood type)
= 2/8
= 0.25 = 25%
c. Pr( at least one person has type O)
= Pr (at least one person has type O)
= 1 - 0.3575
= 0.6425 = 64.25%
Step-by-step explanation:
a) Data:
O A B AB
Chinese 0.35 0.27 0.26 0.12
American 0.45 0.4 0.11 0.04
b) Calculations:
i. Pr(They both have type O)
= Probability of Chinese with O multiplied by Probability of American with O
= 0.35 * 0.45
= 0.1575 = 15.75%
ii. Pr( they both have the same blood type)
= Probability of two out of 8 outcomes
= 2/8
= 0.25 = 25%
iii. Pr( at least one person has type O)
= Probability of (1 – p(none) )
The probability of none = p(none O blood type)
= p(none)
for Chinese = (0.27 + 0.26 + 0.12) * for American ( 0.4 + 0.11 + 0.04)
= 0.65 * 0.55 = 0.3575
Pr (at least one person has type O) = 1 - 0.3575
= 0.6425
A nutrition laboratory tested 25 "reduced sodium" hotdogs of a certain brand, finding that the mean sodium content is 310 mg with a standard deviation of 36 mg.
Construct a 95% confidence interval for the mean sodium content of this brand of hot dog and interpret a 95% level of confidence. Show all work
Answer:
The 95% confidence interval is [tex]295.9 < \mu< 324.1[/tex]
A 95% level of confidence mean that there is 95% chance that the true population mean will be in this interval
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 25[/tex]
The mean is [tex]\= x = 310 \ mg[/tex]
The standard deviation is [tex]\sigma = 36 \ mg[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 95[/tex]
=> [tex]\alpha = 5\%[/tex]
=> [tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the value is
[tex]Z_{\frac{\alpha }{2} } =Z_{\frac{0.05 }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{36 }{\sqrt{25} }[/tex]
[tex]E = 14.1[/tex]
The 95% level of confidence interval is mathematically represented as
[tex]\= x - E < \mu<\ \= x - E[/tex]
substituting values
[tex]310- 14.1 < \mu< 310+ 14.1[/tex]
[tex]295.9 < \mu< 324.1[/tex]
The 95% level of confidence mean that there is 95% chance that the true population mean will be in this interval
Line k has a slope of 2/3. Find the slope of a line parallel to line k.
Answer:
We have to remember
slope = m
if the slope of line is parellel so it will be the same with other slope
m1= m2
2/3= 2/3
so the answer is 2/3
hope it helps ^°^
Answer:
2/3
Step-by-step explanation:
Parallel lines have the same slopes. Therefore,
[tex]m_{k} =m_{p}[/tex]
The slope of line k ([tex]m_{k}[/tex]) will be equal to the slope of the line parallel to k ([tex]m_{p}[/tex]).
We know that the slope of line k is 2/3.
[tex]m_{k}=\frac{2}{3}[/tex]
Therefore, the slope of the line parallel to line k is also 2/3.
[tex]\frac{2}{3}=m_{p}[/tex]
The slope of a line parallel to line k is 2/3.
the temperature at which water freezes on the celsius scale is 0 degrees C. It freezes at 32 degrees F on the Fahrenheit scale, write opposites fo these two numbers as integers.
Answer:
If we have an integer number N, the opposite of N will be:
-1*N = -N.
Then, the opposite of 0°C is:
-1*0°C = 0°C.
The number 0 is it's own opposite.
And for 32F, the opposite is:
-1*32F = -32F
So, while the numbers 0°C and 32F physically represent the same thing (the same temperature), mathematically, they behave differently.
Factor the expression completely. 6×3- 4×2 – 16x A. 0 B. 2x(3×2 – 2x – 8) C. 2x(3x + 4)(x – 2) D. 4x(2x + 1)(x – 4) E. 2x(2×2 + 7x – 4) ill give brainliest
Answer:
The answer is option CStep-by-step explanation:
6x³ - 4x² - 16x
To factorize the expression first factor out the GCF out
The GCF in the expression is 2x
That's
2x( 3x² - 2x - 8)
Next Factorize the terms in the bracket
To factorize write - 2x as a difference
that's
2x( 3x² + 4x - 6x - 8)
Factor out x from the expression
2x [ x( 3x + 4) - 6x - 8 ]
Next factor out - 2 from the expression
2x [ x ( 3x + 4) - 2( 3x + 4) ]
Factor out 3x + 4 from the expression
We have the final answer as
2x( 3x + 4)( x - 2)Hope this helps you
Cybil flips a coin and rolls a fair number cube at the same time. What is the probability that she will toss tails and roll a number less than 3? A. 1/6 B. 1/3 C. 2/5 D. 1/2 Please include ALL work! <3
[tex]|\Omega|=2\cdot6=12\\|A|=1\cdot2=2\\\\P(A)=\dfrac{2}{12}=\dfrac{1}{6}[/tex]
what is 12x^3-9x^2-4x+3 in factored form?
Answer: (3x^2-1)(4x-3)
============================
Work Shown:
Use the factor by grouping method
12x^3-9x^2-4x+3
(12x^3-9x^2)+(-4x+3)
3x^2(4x-3)-1(4x-3)
(3x^2-1)(4x-3)
Which equation is equivalent to StartRoot x EndRoot + 11 = 15?
Answer:
D [tex]\sqrt{x} +11=15[/tex]
Step-by-step explanation:
Edge 2020
For the given expression √x + 11 = 15 the value of x will be equal to 16.
The mathematical expression combines numerical variables and operations denoted by addition, subtraction, multiplication, and division signs.
Mathematical symbols can be used to represent numbers (constants), variables, operations, functions, brackets, punctuation, and grouping. They can also denote the logical syntax's operation order and other properties.
Given that the expression √x + 11 =15. The expression will be solved as below,
√x + 11 =15
√x = 15 - 11
√x = 4
Squaring on both sides of the equation,
x = 4²
x = 16
To know more about an expression follow
https://brainly.com/question/25968875
#SPJ6
Which is a perfect square? 6 Superscript 1 6 squared 6 cubed 6 Superscript 5 What is the length of the hypotenuse, x, if (20, 21, x) is a Pythagorean triple
Answer:
Step-by-step explanation:
Hello, by definition a perfect square can be written as [tex]a^2[/tex] where a in a positive integer.
So, to answer the first question, [tex]6^2[/tex] is a perfect square.
(a,b,c) is a Pythagorean triple means the following
[tex]a^2+b^2=c^2[/tex]
Here, it means that
[tex]x^2=20^2+21^2=841=29^2 \ \ \ so\\\\x=29[/tex]
Thank you.
Answer:
Its B
Step-by-step explanation:
In the following equation, when x=3, what is the value of y? -4x + 3y = 12 A. 9 B. 3 C. 0 D. 8 PLZ HURRY IM TIMED WILL MARK BRAINLIEST
Answer:
[tex]\huge\boxed{y = 8}[/tex]
Step-by-step explanation:
-4x + 3y = 12
Given that x = 3
-4 (3) + 3y = 12
-12 + 3y = 12
Adding 12 to both sides
3y = 12+12
3y = 24
Dividing both sides by 3
y = 8
Answer:
y =8
Step-by-step explanation:
-4x + 3y = 12
Let x = 3
-4(3) +3y = 12
-12+3y = 12
Add 12 to each side
-12+12+3y =12+12
3y =24
Divide each side by 3
3y/3 = 24/3
y =8
The length of a rectangle is a inches. Its width is 5 inches less than the length. Find the area and the perimeter of the rectangle.
Answer:
[tex]Area = 5a - a^2[/tex] [tex]inches\²[/tex]
[tex]Perimeter = 10\ inches[/tex]
Step-by-step explanation:
Given
Length = a
Width = 5 - a
Required
Determine the Area and Perimeter;
Calculating Area
Area is calculated as thus;
[tex]Area = Length * Width[/tex]
Substitute values for Length and Width
[tex]Area = a * 5 - a[/tex]
[tex]Area = a * (5 - a)[/tex]
Open Bracket
[tex]Area = 5a - a^2[/tex]
Calculating Perimeter
Perimeter is calculated as thus;
[tex]Perimeter = 2 (Length + Width)[/tex]
Substitute values for Length and Width
[tex]Perimeter = 2 (a + 5 - a)[/tex]
Collect Like Terms
[tex]Perimeter = 2 (5 + a- a)[/tex]
[tex]Perimeter = 2 (5)[/tex]
Open Bracket
[tex]Perimeter = 10\ inches[/tex]
Please help with this
The shape has 11 sides.
Using the angle formula for polygons:
The sum of all the interior angles is:
11-2 x 180 = 9 x 180 = 1,620 degrees.
For one angle divide the total by number of sides:
1620 / 11 = 147.27 which rounds to 147.2
The answer is D.
IM GIVING BRAINLIEST TO THE FIRST PERSON TO ANSWER!
Show ALL work please! <3
Answer:
B
Step-by-step explanation:
What work is there to show? you basically isolate x. add 2 to both sides. and you get x is greater than or equal to 5. So the answer is B.
x-2[tex]\geq[/tex]3
+2 +2
x[tex]\geq[/tex]5
Factor: 2(4-y)-j(4-y)
Answer:
(2-j)(4-y)
Step-by-step explanation:
Factoring using grouping,
(2-j)(4-y)