Answer:
x-intercept is (-3/7, 0) and the y-intercept is at (0, 3)
Step-by-step explanation:
Given the function y = 7x + 3
The x-intercept occurs at y = 0. Substituting y = 0 into the expression, we will have:
0 = 7x + 3
7x + 3 = 0
7x = -3
x = -3/7
Similarly, the y-intercept occurs at x = 0. Substituting x = 0 into the expression, we will have:
y = 7(0) + 3
y = 0 + 3
y = 3
Hence the x-intercept is (-3/7, 0) and the y-intercept is at (0, 3)
Given the following formula, solve for y.
Answer:
b) y=x -2(w+z)
Step-by-step explanation:
multiply both sides, move the terms and write on parametric form
!!!HELPPP PLEASEEE!!! For this problem I thought it meant to subtract 0.1492 - 0.1515 = -0.0023 however my answer was incorrect. How do I solve this problem then? Help Please!
Answer:
0.1492-0.1515= -0.0023
PLEASE HELP!!!!!! (answer in decimal!!!!)
Answer:
0.706....
Step-by-step explanation:
C = ſa²+b² Please describe the Mathematical order of Operation
Step-by-step explanation:
C + ſa6+b5 bescribe the Mathematical order of Operation
Clarissa has abudget of 1,200$ amonth to spend for rent n food she already spent 928 this month which inequality represents the amount she can still spend this month
Answer:
272$
Step-by-step explanation:
You really should be clearer with your questions, but if your looking for the balance she has 272$
answer plz no explanation needed
Answer:
x is 1. i looked it up so that's all you need
Suppose the average commute time of your employees is unknown. The standard deviation of their commute time is estimated as 22.8 minutes. How many employees must be included in a sample to create a 99 percent confidence interval for the average commute time with a confidence interval width of no more than 12 minutes
Answer:
96 employees
Step-by-step explanation:
Given that the standard deviation = 22.8
The width in the question = 12
We solve for the margin of error E.
E = width / 2
= 12/2 = 6
At 99%
Alpha = 1-0.99
= 0.01
Alpha/2 = 0.01/2 = 0.005
Z0.005 = 2.576
Sample size n
= ((2.576x22.8)/2)²
= 95.8
= 96
The number of employees is 96
Thank you!
factor 9-x^2 completely
Answer:
-(x + 3)(x - 3)
Step-by-step explanation:
Using the difference of squares we can factor this expression.
[tex](9 - x^2)\\= (3^2 - x^2)\\= (3 + x)(3 - x)\\= -(3 + x)(-3 + x)\\= -(x + 3)(x - 3)[/tex]
When an individual inherits two identical alleles for the brown eyed gene (BB)which type of individual is this?
If x and y are positive integers such that 5x+3y=100, what is the greatest possible value of xy? please include steps. Thank you!
Answer:
The greatest possible value of xy is 165.
Step-by-step explanation:
help with number 6 please. thank you.
Answer:
See Below.
Step-by-step explanation:
We are given that:
[tex]\displaystyle \frac{dT}{dt} = -k(T - T_0)[/tex]
And we want to show that:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
From the original equation, divide both sides by (T - T₀) and multiply both sides by dt. Hence:
[tex]\displaystyle \frac{dT}{T-T_0}= -k\, dt[/tex]
Take the integral of both sides:
[tex]\displaystyle \int \frac{dT}{T- T_0} = \int -k \, dt[/tex]
Integrate. For the left integral, we can use u-substitution. Note that T₀ is simply a constant. Hence:
[tex]\displaystyle \ln\left|T - T_0\right| = -kt+C[/tex]
Raise both sides to e:
[tex]\displaystyle e^{\ln\left|T-T_0\right|} = e^{-kt+C}[/tex]
Simplify:
[tex]\displaystyle \begin{aligned} \left| T- T_0\right| &= e^{-kt} \cdot e^C \\ \\ &= e^C\left(e^{-kt}\right) \\ \\ &=Ae^{-kt} & \text{Let $e^C = A$}\end{aligned}[/tex]
Since the temperature T will always be greater than or equal to the surrounding medium T₀, we can remove the absolute value. Hence:
[tex]\left(T - T_0\right) = Ae^{-kt}[/tex]
Therefore:
[tex]\displaystyle T = T_0+Ae^{-kt}[/tex]
Mandatory minimum character count of 20.
A BYU-Idaho professor took a survey of his classes and found that 82 out of 90 people who had served a mission had personally met a member of the quorum of the twelve apostles. Of the non-returned missionaries that were surveyed 86 of 110 had personally met a member of the quorum of the twelve apostles. Calculate a 99% confidence interval for the difference in the two proportions.
Answer:
The 99% confidence interval for the difference in the two proportions is (-0.0247, 0.2833).
Step-by-step explanation:
Before building the confidence interval, we need to understand the Central Limit Theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A BYU-Idaho professor took a survey of his classes and found that 82 out of 90 people who had served a mission had personally met a member of the quorum of the twelve apostles.
This means that:
[tex]p_S = \frac{82}{90} = 0.9111[/tex]
[tex]s_S = \sqrt{\frac{0.9111*0.0888}{90}} = 0.045[/tex]
Of the non-returned missionaries that were surveyed 86 of 110 had personally met a member of the quorum of the twelve apostles.
This means that:
[tex]p_N = \frac{86}{110} = 0.7818[/tex]
[tex]s_N = \sqrt{\frac{0.7818*0.2182}{110}} = 0.0394[/tex]
Distribution of the difference:
[tex]p = p_S - p_N = 0.9111 - 0.7818 = 0.1293[/tex]
[tex]s = \sqrt{s_S^2+s_N^2} = \sqrt{0.045^2+0.0394^2} = 0.0598[/tex]
Calculate a 99% confidence interval for the difference in the two proportions.
The confidence interval is:
[tex]p \pm zs[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
99% confidence level
So [tex]\alpha = 0.01[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.01}{2} = 0.995[/tex], so [tex]Z = 2.575[/tex].
The lower bound of the interval is:
[tex]p - zs = 0.1293 - 2.575*0.0598 = -0.0247[/tex]
[tex]p + zs = 0.1293 + 2.575*0.0598 = 0.2833[/tex]
The 99% confidence interval for the difference in the two proportions is (-0.0247, 0.2833).
Suppose that the length of a side of a cube X is uniformly distributed in the interval 9
Answer:
[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]
Step-by-step explanation:
Given
[tex]9 < x < 10[/tex] --- interval
Required
The probability density of the volume of the cube
The volume of a cube is:
[tex]v = x^3[/tex]
For a uniform distribution, we have:
[tex]x \to U(a,b)[/tex]
and
[tex]f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.[/tex]
[tex]9 < x < 10[/tex] implies that:
[tex](a,b) = (9,10)[/tex]
So, we have:
[tex]f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
Solve
[tex]f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]
Recall that:
[tex]v = x^3[/tex]
Make x the subject
[tex]x = v^\frac{1}{3}[/tex]
So, the cumulative density is:
[tex]F(x) = P(x < v^\frac{1}{3})[/tex]
[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex] becomes
[tex]f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.[/tex]
The CDF is:
[tex]F(x) = \int\limits^{v^\frac{1}{3}}_9 1\ dx[/tex]
Integrate
[tex]F(x) = [v]\limits^{v^\frac{1}{3}}_9[/tex]
Expand
[tex]F(x) = v^\frac{1}{3} - 9[/tex]
The density function of the volume F(v) is:
[tex]F(v) = F'(x)[/tex]
Differentiate F(x) to give:
[tex]F(x) = v^\frac{1}{3} - 9[/tex]
[tex]F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}[/tex]
[tex]F'(x) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]
[tex]F(v) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]
So:
[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]
The measure of ∠1 is 39°. What is the measure of ∠2?
Answer:
141
Step-by-step explanation:
if the sum of the two angles equals 180 subtract 39 from 180 to get the remainder of 141 which is angle 2
3-6÷12
simplyfication
Substituting the equation y = 4x + 1 into the equation 2y = -x – 1 will produce the equation ________.
Answer:
Step-by-step explanation:
Substituting y = 4x+1 into 2y = -x-1 gives the equation
2(4x+1) = -x-1
Solve the equation:
8x+2 = -x-1
9x = -3
x = -⅓
Substituting y = 4x+1 into 2y = -x-1 will produce the equation 2(4x+1) = -x-1
What are the equations?A mathematical statement known as an equation is made up of two expressions joined together by the equal sign. Based on the degree, there are four different main types of equations. Equations that are linear, quadratic, cubic, and polynomial
Given, the equation y = 4x + 1 and another equation 2y = -x – 1.
Substituting equation 1 into equation 2 we will get
2(4x+1) = -x-1
Solve the equation:
8x+2 = -x-1
9x = -3
x = -⅓
Therefore, The equation 2(4x+1) = -x-1 is created when y = 4x+1 is substituted into 2y = -x-1.
Learn more about equations here:
https://brainly.com/question/16255566
#SPJ2
Find the solution to the system of equations.
You can use the interactive graph below to find the solution.
\begin{cases} y=-2x+7 \\\\ y=5x-7 \end{cases}
⎩
⎪
⎪
⎨
⎪
⎪
⎧
y=−2x+7
y=5x−7
x=x=x, equals
y=y=y, equals
Answer:
x=2
y=3
Step-by-step explanation:
y=−2x+7
y=5x−7
Set the two equations equal since they are both equal to y
−2x+7 =5x−7
Add 2x to each side
-2x+7+2x = 5x-7+2x
7 = 7x-7
Add 7 to each side
7+7 = 7x-7+7
14 =7x
Divide by 7
14/7 = 7x/7
2 =x
Now find 7
y = 5x-7
y = 5(2) -7
y = 10-7
y = 3
Given that y=y=y,
→ -2x+7 = 5x-7
Let's find the value,
→ -2x+7 = 5x-7
→ 7 = 5x+2x-7
→ 7 = 7x-7
→ 7+7=7x
→ 14 = 7x
→ x = 14/7
→ [x = 2]
Then we can find 7,
→ y = 5x-7
→ y = 5(2) -7 y = 10-7
→ [y = 3]
This is required answer.
Not sure whether the answer is 9 or -11, so please help
how many models does the following set have? 5,5,5,7,8,12,12,12,150,150,150
The three modes are 5, 12, and 150 since they occur the most times and they tie one another in being the most frequent (each occurring 3 times).
Only the 7 and 8 occur once each, and aren't modes. Everything else is a mode. It's possible to have more than one mode and often we represent this as a set. So we'd say the mode is {5, 12, 150} where the order doesn't matter.
Given the function
f(x)=7x2−2x+5.Calculate the following values:
f(−2)=
f(−1)=
f(0)=
f(1)=
f(2)=
This is the answers and their coordinates
Which function below has the following domain and range?
Domain: {-7, - 5,2, 6, 7}
Range: {0, 1,8}
Answer:
{(2,0),(-5,1),(7,8),(6,0),(-7,1)
CAN SOMEONE PLEASE ANSWER MY QUESTION?!
Answer:
0.02 m/sec
Step-by-step explanation:
26/30=0.89 —> 0.89 min —> 53.4 sec
42/50=0.84 meters
speed=0.84 / 53.4 = 0.015 m/sec = 0.02 m/sec
can someone please help me?
Step-by-step explanation:
D. RAMONA SAVED THE MOST IN 2006
D. Ramona saved the most in 2006
Hi, hiw do we do this question?
[tex]\displaystyle \int\sec x\:dx = \ln |\sec x + \tan x| + C[/tex]
Step-by-step explanation:
[tex]\displaystyle \int\sec x\:dx=\int\sec x\left(\frac{\sec x+ \tan x}{\sec x + \tan x}\right)dx[/tex]
[tex]\displaystyle = \int \left(\dfrac{\sec x\tan x + \sec^2x}{\sec x + \tan x} \right)dx[/tex]
Let [tex]u = \sec x + \tan x[/tex]
[tex]\:\:\:\:\:\:du = (\sec x\tan x + \sec^2x)dx[/tex]
where
[tex]d(\sec x) = \sec x\tan x\:dx[/tex]
[tex]d(\tan x) = \sec^2x\:dx[/tex]
[tex]\displaystyle \Rightarrow \int \left(\frac{\sec x\tan x + \sec^2x}{\sec x + \tan x}\right)\:dx = \int \dfrac{du}{u}[/tex]
[tex]= \ln |u| + C = \ln |\sec x + \tan x| + C[/tex]
Nick nas cup of syrup. He uses cup of syrup to make a bont of granota
PartA: How many bow's or granola can Nick make with cup of syrup? (4 points)
Part 8: on your own paper, draw a fraction model that shows the total number of bouts of granola that Nick can make with cup of syrup. Make sure to label the model seks
explain your model in detail to descnbe how this model visually shows the solution for Part A. (6 points). I’ll make u brainless if u help
Answer:
Step-by-step explanation:
its easyk
Multiply the following and combine terms where possible. -a(a-b-3)
Answer:
-a^2 +ab +3a
Step-by-step explanation:
-a(a-b-3)
Distribute
-a*a -a*(-b) -a *(-3)
-a^2 +ab +3a
Please look at the file below. (No links will give brainiest)
Answer:
3.564 m^2
Step-by-step explanation:
The area of the original garden is
A = 5.4 * 1.5 = 8.1
The new garden is
5.4*1.2 = 6.48 by 1.5*1.2 =1.8
The area is
A = 6.48*1.8=11.664
The increase in area is
11.664-8.1=3.564
The given information is,
To find the increase in area of the garden.
Formula we use,
→ Area = Length × Width
Area of the real garden is,
→ 5.4 × 1.5
→ 8.1 m
The new garden will be,
→ 5.4 × 1.2 = 6.48 m
→ 1.5 × 1.2 = 1.8 m
The area of the new garden is,
→ 6.48 × 1.8
→ 11.664
Then the increase in area of the garden,
→ 11.664 - 8.1
→ 3.564 m²
Hence, 3.564 m² is the increase in area.
What system of equations is shown on the graph below
Answer:
A.
Step-by-step explanation:
x-2y=4 has a x-intercept of 4, a slope of 1/2, and a y-intercept of -2. 2x+y=4 has a x-intercept of -2, a slope of 2, and a y-intercept of -4.
Find the product :
1) 6/10 × 10/6 × 5/9
2) 6/10 × 4/3 × 10/20
Hello!
1) 6/10 × 10/6 × 5/9 = 1/10 × 10 × 5/9 = 1 × 5/9 = 5/9 or 0,5
2) 6/10 × 4/3 × 10/20 = 6 × 4/3 × 1/20 = 2 × 4 × 1/20 = 2 × 1/5 = 2/5 or 0,4
Good luck! :)
Answer:
1) 5/9
2) 2/5
Explanation:
1) 6/10 × 10/6 × 5/9=
Multiply all the denominators and all the numerators then simplify= 300/540 = 5/9
2) 6/10 × 4/3 × 10/20=
Multiply all the denominators and all the numerators then simplify= 240/600 = 2/5
Lakisha wants to buy some bitcoins. The exchange rate is $1 USD to 0.004 bitcoin. How many bitcoins can she buy with $400?
Answer:
1.6 Bitcoins
Step-by-step explanation:
Given data
We have the rate as
$1 USD to 0.004
Hence $400 will buy x bitcoins
Cross multiply to find the value of x
1*x= 400*0.004
x=1.6
Hence $400 will get you 1.6 Bitcoins