Determine the magnitude and direction of the force between two parallel wires 30 m long and 6.0 cm apart, each carrying 30 A in the same direction.

Answers

Answer 1

Answer:

0.09N, attractive

Explanation:

It can be deducted from the question that the currents are arranged in parallel settings, then it is obvious that the force on each of the wire will be attractive toward the other wire.

the magnitude of force can be determined by using below formula;

F2 = (μ₀/2π)(I₁I₂/d)I₂

μ₀ = constant = 4π × 10^-7 H/m,

I₁, I₂ = currents= 30A

L = the length o the wire=30m

d = distance between these two wires= 0.06m

Since the current are arranged in the same direction, they exhibit attractive force on each other.

Then plugging the values Into the formula above we have

F₂ = (4π × 10^-7 T.m/A)/2π) × ((30A)²/ 0.06m)× 30 m

= 0.09 N, attractive

Therefore, the magnitude and direction of the force is 0.09 N, attractive


Related Questions

Which type of psychotherapy would seek to eliminate your fear of spiders by exposing you to pictures of spiders?


Answers

Answer:

cognitive behavioral therapy

Explanation:

Exposure therapy is the answer

A bug on the surface of a pond is observed to move up and down a total vertical distance of 6.5 cm , from the lowest to the highest point, as a wave passes. If the ripples decreaseto 4.7 cm, by what factor does thebug's maximum KE change?

Answers

Answer:

factor that bug maximum KE change is 0.52284

Explanation:

given data

vertical distance = 6.5 cm

ripples decrease to =  4.7 cm

solution

We apply here formula for the KE of particle that executes the simple harmonic motion that is express as

KE = (0.5) × m × A² × ω²     .................1

and kinetic energy is  directly proportional to square of the amplitude.

so

[tex]\frac{KE2}{KE1} = \frac{A2^2}{A1^2}[/tex]      .............2

[tex]\frac{KE2}{KE1} = \frac{4.7^2}{6.5^2}[/tex]

[tex]\frac{KE2}{KE1}[/tex] = 0.52284

so factor that bug maximum KE change is 0.52284

The factor does the bug's maximum KE change should be considered as the 0.52284.

Calculation of the factor:

Since

vertical distance = 6.5 cm

ripples decrease to =  4.7 cm

So here we apply the given formula

KE = (0.5) × m × A² × ω²     .................1

here,

kinetic energy is directly proportional to square of the amplitude.

So,

= 4.7^2/ 6.5^2

= 0.52284

hence, The factor does the bug's maximum KE change should be considered as the 0.52284.

Learn more about distance here: https://brainly.com/question/17802937

A loop of wire in the shape of a rectangle rotates with a frequency of 143 rotation per minute in an applied magnetic field of magnitude 2 T. Assume the magnetic field is uniform. The area of the loop is A = 2 cm2 and the total resistance in the circuit is 7 Ω.
1. Find the maximum induced emf.
e m fmax =
2. Find the maximum current through the bulb.
Imax

Answers

Answer:

1. e m fmax = 0.00598 Volt

2. Imax = 0.000854 Amp

Explanation:

1. Find the maximum induced emf.

e m fmax =

Given that e m fmax = N*A*B*w

N = 1

A = 2 cm^2 = 0.0002 m^2

f = 143 rotation per minute = 143/min

f = (143/min) * (1 min/60 sec) = 2.38/sec

w = 2Πf = 2 * Π * 2.38 = 14.95 rad/sec

B = 2T

e m fmax = N*A*B*w

e m fmax = 1 * 0.0002 * 2 * 14.95

e m fmax = 0.00598 Volt.

2. Find the maximum current through the bulb.

Imax = e m fmax / R

Where R is the total resistance in the circuit is 7 Ω.

Imax = 0.00598/7 = 0.000854 Amp.

Imax = 0.000854 Amp

1) The maximum induced EMF in the loop of wire is; EMF_max = 9.52 × 10^(-4) V

2) The maximum current through the bulb is;

I_max = 1.36 × 10^(-4) A

We are given;

Number of turns; N = 1

Magnitude of magnetic field; B = 2 T

Area; A = 2 cm² = 0.0002 m²

Angular frequency; ω = 143 /min = 2.38 /s

Resistance; R = 7 Ω.

1) Formula for maximum induced EMF is;

EMF_max = NAωB

Plugging in the relevant values gives;

EMF_max = 1 × 0.0002 × 2.38 × 2

EMF_max = 9.52 × 10^(-4) V

2) Formula for maximum current through the bulb is given as;

I_max = EMF_max/R

Plugging in the relevant values;

I_max = (9.52 × 10^(-4))/7

I_max = 1.36 × 10^(-4) A

Read more at; https://brainly.com/question/24487261

In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.

Answers

Answer:

1.24Mev

Explanation:

Using

E= hc/lambda

= (6.62x10^-19) x(3x10^8m/s)/(1x10^-12) x 1.602x10^-9

= 1.24Mev

A 2-slit arrangement with 60.3 μm separation between the slits is illuminated with 482.0 nm light. Assuming that a viewing screen is located 2.14 m from the slits, find the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side. A. 24.1 mm B. 34.2 mm C. 68.4 mm D. 51.3 mm

Answers

Answer:

The distance is  [tex]y = 0.03425 \ m[/tex]

Explanation:

From the question we are told that

   The distance of separation is  [tex]d = 60.3 \mu m= 60.3 *10^{-6}\ m[/tex]

   The wavelength is  [tex]\lambda = 482.0 \ nm = 482.0 *10^{-9} \ m[/tex]

    The distance of the screen is [tex]D = 2.14 \ m[/tex]

Generally the distance of a fringe from the central maxima is mathematically represented as

      [tex]y = [m + \frac{1}{2} ] * \frac{\lambda * D}{d}[/tex]

For the first dark fringe m = 0

             [tex]y_1 = [0 + \frac{1}{2} ] * \frac{482*10^{-9} * 2.14}{ 60.3*10^{-6}}[/tex]

             [tex]y_1 = 0.00855 \ m[/tex]

For the second dark fringe m = 1

            [tex]y_2 = [1 + \frac{1}{2} ] * \frac{482*10^{-9} * 2.14}{ 60.3*10^{-6}}[/tex]

            [tex]y_2 = 0.0257 \ m[/tex]

So the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side is

         [tex]y = y_1 + y_2[/tex]

        [tex]y = 0.00855 + 0.0257[/tex]

        [tex]y = 0.03425 \ m[/tex]

Give an example of a fad diet that is not healthy and one that is healthy. Explain how you know the difference.

Answers

Answer:

 Good Diet: ! gallon of water a day, Fruits, Vegetables, White meats(Chicken), Don't eat past 3 PM.

Bad Diet: Pizza, Red meat, Baked goods, Eating at late hours.

Explanation: I know the difference because, When you drink water first thing in the morning it gets your metabolism running. Than means you can digest foods better, you want to feed your body good foods but you should not eat until you feel stuffed. You should eat until you are no longer starving. Than you should drink a cup of water in between meals. I know you should not eat past 3 pm because your body needs time to digest foods because you should never go to sleep with a full stomach. I know the difference between good food and bad food because when you eat healthy food and a balanced diet, your body will have more energy and you wont feel tired afterwards. Eating bad foods and food with artificial sugars will clump up in your kidneys, and your body will have small bursts of energy but you will feel lazy afterwards...Your body is supposed to stay energized from a healthy meal in order to give you the energy your body needs to exercise. If you feel droopy all the time and you don't want to do anything, than you are unhealthy.

Answer:

A vegetarian diet is an example of a good fad diet if you do it correctly. It can help you get lots of veggies and good nutrients from them while still following the non-meat diet you want. This can be effective and good for weight loss becasue you are still eating and getting all the good nutrients and calories from less fatty foods. 

Vegan diet (some can be successful but many people fail and do not do good that is why I choose this) The problem with this fad diet is that it can cause nutritional deficiencies and lead to a host of additional health problems, including negatively impacting hormonal health and metabolism. Many people also struggle to find healthy vegan food and end up eating bad and fatty foods instead. 

Explanation:

Got a 100

A charged particle moving through a magnetic field at right angles to the field with a speed of 25.7 m/s experiences a magnetic force of 2.98 10-4 N. Determine the magnetic force on an identical particle when it travels through the same magnetic field with a speed of 4.64 m/s at an angle of 29.2° relative to the magnetic field.

Answers

Answer:

The magnetic force would be:

[tex]F\approx 2.625\,\,10^{-5}\,\,N[/tex]

Explanation:

Recall that the magnetic force on a charged particle (of charge q) moving with velocity (v) in a magnetic field B, is given by the vector product:

F = q v x B

(where the bold represents vectors)

the vector product involves the sine of the angle ([tex]\theta[/tex]) between the vectors, so we can write the relationship between the magnitudes of these quantities as:

[tex]F=q\,v\,B\,sin(\theta)[/tex]

Therefore replacing the known quantities for the first case:

[tex]F=q\,v\,B\,sin(\theta)\\2.98\,\,10^{-4} \,\,N=q\,(25.7\,\,m/s)\,B\,sin(90^o)\\2.98\,\,10^{-4} \,\,N=q\,(25.7\,\,m/s)\,B\\q\,\,B=\frac{2.98\,\,10^{-4} }{25.7} \,\frac{N\,\,s}{m}[/tex]

Now, for the second case, we can find the force by using this expression for the product of the particle's charge times the magnetic field, and the new velocity and angle:

[tex]F=q\,v\,B\,sin(\theta)\\F=q\,(4.64\,\,m/s)\,B\,sin(29.2^o)\\F=q\,B(4.64\,\,m/s)\,\,sin(29.2^o)\\F=\frac{2.98\,\,10^{-4} }{25.7} \,(4.64\,\,m/s)\,\,sin(29.2^o)\\F\approx 2.625\,\,10^{-5}\,\,N[/tex]

By what factor is the intensity of sound at a rock concert louder than that of a whisper when the two intensity levels are 120 dB and 20 dB respectively

Answers

Answer:

The intensity of sound at rock concert is  10¹⁰ greater than that of a whisper.

Explanation:

The intensity of sound is given by;

[tex]I(dB) = 10Log(\frac{I}{I_o} )[/tex]

where;

I is the intensity of the sound

I₀ is the threshold of sound intensity = 1 x 10⁻¹² W/m²

The intensity of sound at a rock concert

[tex]120 = 10Log(\frac{I}{1*10^{-12}} )\\\\12 = Log(\frac{I}{1*10^{-12}} )\\\\\frac{I}{1*10^{-12}} = 10^{12}\\\\I = 1*10^{-12} *10^{12}\\\\I = 1*10^0\\\\I =1 \ W/m^2[/tex]

The intensity of sound of a whisper

[tex]20 = 10Log(\frac{I}{1*10^{-12}} )\\\\2 = Log(\frac{I}{1*10^{-12}} )\\\\\frac{I}{1*10^{-12}} = 10^{2}\\\\I = 1*10^{-12} *10^{2}\\\\I = 1*10^{-10}\\\\I =10^{-10} \ W/m^2[/tex]

Thus, the intensity of sound at rock concert is  10¹⁰ greater than that of a whisper.

A rigid uniform bar of length L and mass m is suspended by a massless wire AC and a rigid massless link BC. Determine the tension in BC immediately after AC breaks.

Answers

Answer:

hello the needed diagram is missing attached below is the diagram and the detailed solution

The tension in BC = [tex]\frac{\sqrt{2} }{4} mg[/tex]

Explanation:

ATTACHED BELOW IS THE DETAILED SOLUTION T THE GIVEN PROBLEM

Ma = mg - T/ [tex]\sqrt{2}[/tex]  equation 1

Ma = 3T / [tex]\sqrt{2}[/tex]   equation 2

equate both equations to determine the tension on BC

A single slit is illuminated by light of wavelengths λa and λb, chosen so that the first diffraction minimum of the λa component coincides with the second minimum of the λb component. (a) If λb = 350 nm, what is λa? For what order number mb (if any) does a minimum of the λb component coincide with the minimum of the λa component in the order number

Answers

Answer:

λ_A = 700 nm ,   m_B = m_a 2

Explanation:

The expression that describes the diffraction phenomenon is

         a sin θ = m λ

where a is the width of the slit, lam the wavelength and m an integer that writes the order of diffraction

a) They tell us that now lal_ A m = 1

         a sin θ = λ_A

coincidentally_be m = 2

          a sin  θ = m λ_b

as the two match we can match

         λ _A = 2 λ _B

         λ_A = 2 350 nm

         λ_A = 700 nm

b)

For lam_B

       a sin  λ_A  = m_B  λ_B

For lam_A

        a sin θ_A = m_ λ_ A

to match they must have the same angle, so we can equal

           m_B  λ_B = m_A  λ_A

           m_B = m_A  λ_A / λ_B

           m_b = m_a 700/350

           m_B = m_a 2

A wire is carrying current vertically downward. What is the direction of the force due to Earth's magnetic field on the wire?

Answers

Answer:

The direction of the force will be towards the east

Explanation:

From the question we are told that  

    The direction of the  downward

Generally according to Fleming's right-hand rule(

          Thumb -  direction of force

           Middle finger -  direction of current

           Index finger -  direction of the magnetic field

) and the fact that the earth magnetic field acts  from south to north with respect to the four cardinal points then the direction of the  force will be toward the east with respect to the four cardinal point on the earth

The intensity level 10 m from a point sound source is 85 dB. What is the intensity level 50 m away from the same source

Answers

Answer:

425dB

Explanation:

Given the intensity level 10 m from a point sound source is 85 dB, then;

L1 = 10m, I1= 85dB ...1

The intensity level 50 m away from the same source cal be calculated using the equivalent expression;

when L2 = 50m, I2 = ? ... 2

Solving equation 1 nad 2;

10m = 85db

50m = x

Cross multiplying;

50 * 85 = 10 * x

10x = 50*85

10x = 4250

Divide both sides by 10

10x/10 = 4250/10

x = 425 dB

Hence, the intensity level 50 m away from the same source is 425dB

Why are the meters squared in the formula to calculate acceleration?

Answers

Answer:

During acceleration, you are moving across a distance over a time, but also increasing how fast we are doing it. Therefore, it means by how many meters per second the velocity changes every second

Explanation:

A car travels down the road for 535 m in 17.3 s. What is the velocity of the car in m/s and in km/h?

Answers

Answer:

30.92m/s

Explanation:

[tex]Distance = 535m\\Time = 17.3s\\\\Velocity = \frac{Distane}{Time} \\\\V = \frac{535m}{17.3s} \\\\Velocity = 30.92m/s[/tex]

[tex]Distance = 535m\\\\535m \:to \: km=0.535km\\\\Time = 17.3s\\\\17.3s = 0.004805556hours\\\\Velocity = \frac{Distance}{Time}\\\\ V= \frac{0.535}{0.004805556} \\\\ V=111.329469472\\\\=111.33km/h[/tex]

If a transformer has 50 turns in the primary winding and 10 turns on the secondary winding, what is the reflected resistance in the primary if the secondary load resistance is 250 W?

Answers

Answer:

The reflected resistance in the primary winding is 6250 Ω

Explanation:

Given;

number of turns in the primary winding, [tex]N_P[/tex] = 50 turns

number of turns in the secondary winding, [tex]N_S[/tex] = 10 turns

the secondary load resistance, [tex]R_S[/tex] = 250 Ω

Determine the turns ratio;

[tex]K = \frac{N_P}{N_S} \\\\K = \frac{50}{10} \\\\K = 5[/tex]

Now, determine the reflected resistance in the primary winding;

[tex]\frac{R_P}{R_S} = K^2\\\\R_P = R_SK^2\\\\R_P = 250(5)^2\\\\R_P = 6250 \ Ohms[/tex]

Therefore, the reflected resistance in the primary winding is 6250 Ω



48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?

Answers

Answer:

the interation blood veins

Explanation:

You slip a wrench over a bolt. Taking the origin at the bolt, the other end of the wrench is at x=18cm, y=5.5cm. You apply a force F? =88i^?23j^ to the end of the wrench. What is the torque on the bolt?

Answers

Answer:

The torque on the wrench is 4.188 Nm

Explanation:

Let r = xi + yj where is the distance of the applied force to the origin.

Since x = 18 cm = 0.18 cm and y = 5.5 cm = 0.055 cm,

r = 0.18i + 0.055j

The applied force f = 88i - 23j

The torque τ = r × F

So, τ = r × F = (0.18i + 0.055j) × (88i - 23j) = 0.18i × 88i + 0.18i × -23j + 0.055j × 88i + 0.055j × -23j

= (0.18 × 88)i × i + (0.18 × -23)i × j + (0.055 × 88)j × i + (0.055 × -22)j × j  

= (0.18 × 88) × 0 + (0.18 × -23) × k + (0.055 × 88) × (-k) + (0.055 × -22) × 0   since i × i = 0, j × j = 0, i × j = k and j × i = -k

= 0 - 4.14k + 0.0484(-k) + 0

= -4.14k - 0.0484k

= -4.1884k Nm

≅ -4.188k Nm

So, the torque on the wrench is 4.188 Nm

A uniform narrow tube 1.90 m long is open at both ends. It resonates at two successive harmonics of frequencies 280 Hz and 294 Hz.(a) What is the fundamental frequency?_____Hz(b) What is the speed of sound in the gas in the tube?________ m/s

Answers

Answer:

a)14Hz

b)26.6m/s

Explanation:

a)we were given

the first harmonics frequencies as 280 Hz

The second harmonic frequency as 294 Hz.

The fundamental frequency is equal to the gap which means the distance that exist between the harmonics, then

the fundamental frequency=(294 - 280 = 10 Hz)

= 14Hz

b) We know the frequency and the wavelength of the sound wave (

We were told that the wavelength must be twice the length of the tube then, velocity can be calculated as

And fundamental frequency= 14Hz, and distance of 1.90 m then

v = f*2L = (14Hz)*2*(1.90 m) = 26.6m/s

Therefore, the speed of sound in the gas in the tubes is 26.6m/s

which is example of radiation

Answers

Answer:

Ultraviolet light from the sun.

Explanation:

This is an example of radiation.

Answer:

X-Ray

Explanation:

x-Ray is an example of radiation.

A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the horizontal. The ball leaves her hand 1.0 m above the ground and the fence is 2.0 m high. The ball just clears the fence while still traveling upwards and experiences no significant air resistance. How far is the child from the fence?

Answers

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

[tex]x - x_o = u_xt[/tex]

[tex]\mathtt{x = u_xt \ \ \ since (x_o = 0)}[/tex]  ---- (1)

the equation of the motion y is :

[tex]\mathtt{y - y_o =u_yt - 0.5 gt^2}[/tex]

[tex]\mathtt{y = u_yt-4.9t^2 \ \ \ since (y_o =0)}[/tex]

[tex]\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2 }[/tex]

[tex]\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}[/tex]

[tex]\mathtt{1 = 5.14t - 4.9t^2}[/tex]

[tex]\mathtt{4.9t^2 - 5.14t +1 = 0}[/tex]

By using the quadratic formula, we have;

[tex]\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}} }[/tex]

where;

a = 4.9,   b = -5.14     c = 1

[tex]= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8} \ \ OR \ \ \dfrac{ 5.14- \sqrt{6.8196}}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8} \ \ OR \ \ \dfrac{ 5.14- 2.6114}{9.8}} }[/tex]

[tex]= \mathtt{ \dfrac{ 7.7514}{9.8} \ \ OR \ \ \dfrac{ 2.5286}{9.8}} }[/tex]

[tex]= \mathbf{ 0.791 \ \ OR \ \ 0.258} }[/tex]

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

[tex]\mathtt{x = u_x(0.258)}[/tex]

[tex]\mathtt{x = ucos 40^0 (0.258)}[/tex]

[tex]\mathtt{x = 8 \ cos 40^0 (0.258)}[/tex]

[tex]\mathbf{x = 1.581 \ m}[/tex]

Thus, the child is 1.581 m far from the fence

which objects would have a greater gravitational force between them, Objects A and B, or Objects B and C

Answers

Answer:

Objects that are closer together have a stronger force of gravity between them.

Explanation:

For example, the moon is closer to Earth than it is to the more massive sun, so the force of gravity is greater between the moon and Earth than between the moon and the sun.

A uniform bar has two small balls glued to its ends. The bar is 2.10 m long and with mass 3.70 kg , while the balls each have mass 0.700 kg and can be treated as point masses.

Required:
Find the moment of inertia of this combination about an axis
a. perpendicular to the bar through its center.
b. perpendicular to the bar through one of the balls.
c. parallel to the bar through both balls.
d. parallel to the bar and 0.500 m from it.

Answers

Answer:

Explanation:

a )

moment of inertia in the first case will be sum of moment of inertia of two balls + moment of inertia of bar

= 2 x .700 x (2.1 / 2 )² + 3.7 x 2.1² / 12

= 1.5435 + 1.35975

= 2.90325 kg m²

b )

moment of inertia required

= moment of inertia of bar + moment of inertia of the other ball

= 3.70 x (2.1² / 3 )  + .7 x 2.1²

= 5.439 + 3.087

= 8.526 kg m²

c )

In this case moment of inertia of the combination = 0 as distance of masses from given axis is zero .

d )

masses = 3.7 + .7 = 4.4 kg

distance from axis = .5 m  

moment of inertia about given axis

= 4.4 x .5²

= 1.1 kg m².

A charged particle enters a magnetic field with an angle theta If theta equals 90 degrees what bath it will follow - If theta larger than zero and less than 90 degrees what path will it follow?​

Answers

Given that,

A charged particle enters a magnetic field with an angle theta .

If [tex]\theta=90^{\circ}[/tex]

We know that,

If the angle is 90° then the charged particle enters perpendicular to the B.

B is magnetic field.

The charged particle will be follow of the circular path.

If the angle is greater than 0 and less than 90° then the charged particle will be show the helical path.

Hence, This is required answer.

What is the average value of the magnitude of the Poynting vector (intensity) at 1 meter from a 100-watt light bulb radiating in all directions

Answers

Answer:

 I = 7.96 W / m²

Explanation:

The light bulb emits a power of P = 100W, this power is distributed over the surface of a sphere, thus the emission is in all directions.

Intensity is defined by power per unit area

            I = P / A

The area of ​​a sphere is

         A = 4π r²

we substitute

         I = P / (4π r²)

in this case it tells us that the distance is r = 1 m

let's calculate

        I = 100 / (4π 1²)

        I = 7.96 W / m²

A single-slit diffraction pattern is formed on a distant screen. Assume the angles involved are small. Part A By what factor will the width of the central bright spot on the screen change if the wavelength is doubled

Answers

Answer:

If the wavelength is doubled, the width of the central bright spot on the screen will increase by a factor of 2 (that is, it will also double).

Explanation:

For a single-slit diffraction, diffraction patterns are found at angles θ for which

w sinθ = mλ

where w is the width

λ is wavelength

m is an integer, m = 1,2,3, ....

From the equation, w sinθ = mλ

For the first case, where nothing was changed

w₁ = mλ₁ / sinθ

Now, If the wavelength is doubled, that is, λ₂ = 2λ₁

The equation becomes

w₂ = mλ₂ / sinθ

Then, w₂ = m(2λ₁) / sinθ

w₂ = 2(mλ₁) / sinθ

Recall that, w₁ = mλ₁ / sinθ

Therefore, w₂ = 2w₁

Hence, If the wavelength is doubled, the width of the central bright spot on the screen will increase by a factor of 2 (that is, it will also double).

How do you measure potential and kinetic energy?

Answers

Answer:

potential energy is a stored energy or energy of position (gravitational).

Kinetic energy is a energy of motion.

Explanation:

in the formula K is for the kinetic and the P stand for the potential.

What is the difference between matter and energy

Answers

Answer:

Everything in the Universe is made up of matter and energy. Matter is anything that has mass and occupies space. ... Energy is the ability to cause change or do work. Some forms of energy include light, heat, chemical, nuclear, electrical energy and mechanical energy.

Explanation:

A ball is thrown upward from a height of 432 feet above the​ ground, with an initial velocity of 96 feet per second. From physics it is known that the velocity at time t is v (t )equals 96 minus 32 t feet per second. ​a) Find​ s(t), the function giving the height of the ball at time t. ​b) How long will the ball take to reach the​ ground? ​c) How high will the ball​ go?

Answers

Answer;

A)S(t)=96t-16t² +432

B)it will take 9 seconds for the ball to reach the ground.

C)864feet

Explanation:

We were given an initial height of 432 feet.

And v(t)= 96-32t

A) we are to Find​ s(t), the function giving the height of the ball at time t

The position, or heigth, is the integrative of the velocity. So

S(t)= ∫(96-32)dt

S(t)=96t-16t² +K

S(t)=96t-16t² +432

In which the constant of integration K is the initial height, so K= 432

b) we need to know how long will the ball take to reach the​ ground

This is t when S(t)= 0

S(t)=96t-16t² +432

-16t² +96t +432=0

This is quadratic equation, if you solve using factorization method we have

t= -3 or t= 9

Therefore, , t is the instant of time and it must be a positive value.

So it will take 9 seconds for the ball to reach the ground.

C)V=s/t

Velocity= distance/ time

=96=s/9sec

S=96×9

=864feet

By applying the integrations,

(a) [tex]S = 96t-16t^2+432[/tex]

(b) Time will be "t = 9".

(c) Height will be "576"

Given:

Height,

423 feet

Initial velocity,

96 feet/sec

According to the question,

(a)

Integrate v:

[tex]S = 96t-16t^2+C[/tex]

Initial Condition,

→ [tex]S = 96t-16t^2+432[/tex]

(b)

Hits the ground when,

S = 0

→ [tex]0=96t-16t^2+432[/tex]

→ [tex]t =9[/tex]

(c)

Maximum height when,

v = 0

→ [tex]0 = 96-32 t[/tex]

→ [tex]t = 3[/tex]

Now,

→ [tex]S = 96\times 3-16\times 3^2+432[/tex]

      [tex]= 576[/tex]

Thus the answer above is correct.

Learn more:

https://brainly.com/question/16105731

In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could

Answers

Answer:

halve the slit separation

Explanation:

As we know that

In YDS experiment, the equation of fringe width is as follows

[tex]\beta = \frac{\lambda D}{d}[/tex]

where,

D denotes the separation in the middle of screen and slits

d denotes the distance in the middle of two slits

And to increase the Δx we have to decrease the d i.e, the distance between the two slits

Hence, the first option is correct

We observe that a moving charged particle experiences no magnetic force. From this we can definitely conclude that:_______

a. no magnetic field exists in that region of space.
b. the particle must be moving parallel to the magnetic field.
c. the particle is moving at right angles to the magnetic field.
d. either no magnetic field exists or the particle is moving parallel to the magnetic field.
e. either no magnetic field exists or the particle is moving perpendicular to the magnetic field.

Answers

Answer:

b. the particle must be moving parallel to the magnetic field.

Explanation:

The magnetic force on a moving charged particle is given by;

F = qvBsinθ

where;

q is the charge of the particle

v is the velocity of the particle

B is the magnetic field

θ is the angle between the magnetic field and velocity of the moving particle.

When is the charge is stationary the magnetic force on the charge is zero.

Also when the charge is moving parallel to the magnetic field, the magnetic force is zero.

Therefore, when a moving charged particle experiences no magnetic force, we can definitely conclude that the particle must be moving parallel to the magnetic field.

b. the particle must be moving parallel to the magnetic field.

Other Questions
When onAdrienne believes that she is good in math because she does all of the homework and studies hard for all the tests. Adrienne most likely has...e engages in an activity because of its inherent satisfaction or enjoyment, one is exhibiting what kind of achievement motivation? is the basic unit of structure and function of living things. Help I dont understand thisIdentify any transformations that are used in each image below. Some images may have multiple answers so make sure to include them all.-Reflections - how many lines of symmetry and what specific type: vertical (y-axis), horizontal (x-axis), diagonal (y=x or y=-x)-Rotations - of which order or how many degrees/angle of rotation g what constitutes a healthy or normal bmi? what are some of the reasons it is useful to have a single number, such as a bmi, to describe a height/weight relationship? what are the drawbacks? What is the slope of the line? x + 3 y = 10 x+3y=10x, plus, 3, y, equals, 10 Choose 1 answer: Choose 1 answer: (Choice A) A 1 3 3 1 start fraction, 1, divided by, 3, end fraction (Choice B) B 1 10 10 1 start fraction, 1, divided by, 10, end fraction (Choice C) C 1 10 10 1 minus, start fraction, 1, divided by, 10, end fraction (Choice D) D 1 3 3 1 Cmo se llama los versos que siguen todas las reglas gramaticales y la versificacin A line passes through point (4,-3) and has a slope of 5/4. Write an equation in Ax + By = C y= -14x + 1.2 5 can be x or y Many have noticed that the U.S. economy seems increasingly focused on producing and managing information, rather than on making things. What term or concept could describe this shift? Legolas shoots 3 arrows at once from his bow. He has 177 arrows. How many times can Legolas shoot his bow before he needs more arrows? What alternate form of genes do nucleic acids have that allows them to offer variability allele codon nucleotide chromosome The local resale store buys used designer jeans for $15. Thestore increases their purchase price by 400%. What is thesale price of the designer jeans? write a speech to be delivered at your morning assemble on the need for a good study habits for successful performance in examination The number of moles of H2O which contains 4g of oxygen? The type of evaporator that has all saturated liquid entering the evaporator and saturated liquid throughout the evaporator is commonly known as a If h(x)=-2x-10 ,find h(-4) Which type of engineering design uses an already existing design?A. top-down designB. spiral designC. bottom-up designD.incremental design Reese is getting ready for his soccer game. Which warm-up would be most effective? Jogging and lunging Running on a treadmill Sprinting and jumping rope Walking in place calculate the pH of 500cm3 of 0.2mol/dm3 Ca(OH2), assume complete ionisation HELP ASAP PLEASE!!!!!!!!!!!!!!!!!