When the diaphragm and the external intercostal muscles contract, inspiration occurs. When the diaphragm and intercostal muscles relax, exhalation occurs.
Muscles involved in inspiration ?The respiratory muscles are divided into three functional groups: the diaphragm, the rib cage muscles, and the abdominal muscles. Each group acts on the chest wall and its compartments, which include the lung-apposed rib cage, diaphragm-apposed rib cage, and abdomen.
Muscles involved in Expiration ?The rib cage muscles, which include the intercostals, parasternals, scalene, and neck muscles, primarily act on the upper part of the rib cage (pulmonary rib cage) and are both inspiratory and expiratory in nature. Expiratory abdominal muscles act on the abdomen and abdominal rib cage.
to know more about inspiration , visit ;
brainly.com/question/11779063
#SPJ1
is staphylococcus aureus gram positive or negative
Gram-positive bacteria are known as Staphylococcus aureus. This implies that its cell wall contains a thick peptidoglycan layer that retains the violet crystal stain used in the Gram staining process.
Based on differences in cell wall structure, this property is used to classify bacteria into two general categories: Gram-positive and Gram-negative. Gram-positive bacteria are frequently linked with infections because they can cause skin infections, pneumonia, and sepsis.
The cell wall of Gram-positive bacteria, such as Staphylococcus aureus, is composed of multiple layers of peptidoglycan, which offers structural support as well as protection from the external environment.
The peptidoglycan layer is also related to teichoic acids, which aid in cell wall synthesis and immune system recognition. Gram-negative bacteria, on the other hand, have a thinner layer of peptidoglycan.
Learn more about Bacteria
https://brainly.com/question/8008968
#SPJ4
what is the product of starch hydrolysis by gamma-amylase?
a. Cellobiose
b. Maltose
c. Glucose
d. dextrin
The product of starch hydrolysis by gamma-amylase is called as Maltose which is given by option B.
Maltose, commonly referred to as malt sugar, is a substance produced during the germination of grains that serves as an intermediary in the digestion of starch and glycogen. It is produced by the enzymatic hydrolysis of starch (a homopolysaccharide), which is mediated by the enzyme amylase. The maltase enzyme further hydrolyzes maltose to provide two D-glucose molecules.
Amylase is an enzyme that naturally exists in some animals' and humans' saliva and helps with digestion. It hastens the hydrolysis, or breakdown, of starch into simple sugars. In order to hydrolyze dietary starch into disaccharides and trisaccharides, which are then turned into glucose and consumed as fuel, the pancreas and salivary glands primarily produce amylase.
Learn more about Amylase:
https://brainly.com/question/1894455
#SPJ4
ASAP PLS
Which organism has a distinct central nervous system? 1. starfish 2. jellyfish 3. crayfish 4. clam
A creature with a distinctive central nervous system is the crayfish. In crayfish, the intersegmental axon cables that connect the segmental ganglia form the central nervous system.
What does a human body's organism mean?Millions of minuscule living things, collectively known as the human microbiota, live inside each and every cell of the body. Microbes known as bacteria are most frequently found in the gut, nose, and mouth.
A living thing can it survive on its own?The interaction between different creatures and their surroundings is a topic of study in the ecology of organisms. An individual must rely on other living organisms and the underlying physical environment in order to survive; they cannot exist entirely in isolation from other similar species.
To know more about Organism visit:
https://brainly.com/question/12825206
#SPJ1
What happens when stimulus exceeds the threshold potential?
When stimulus exceeds the threshold potential, it causes an action potential to occur. An action potential is a rapid electrical signal that travels along the axon of a neuron.
It is triggered by a rapid change in the membrane potential, which occurs when stimulus exceeds the threshold potential. The action potential results in the release of neurotransmitters which can then cause an effect in another neuron. A stimulus is something that triggers a response in an organism or a cell. A stimulus could be a change in temperature, pressure, or sound, as well as a chemical substance such as hormones, neurotransmitters, or light energy.
When a stimulus exceeds the threshold potential, an action potential is triggered. The sodium channels in the neuron membrane open when an action potential is triggered, allowing the influx of sodium ions into the cell. As more and more positively charged sodium ions enter the cell, the inside of the neuron membrane becomes more positively charged, depolarizing it. As the inside of the neuron membrane becomes more positively charged than the outside, the potassium channels open, allowing the outflow of positively charged potassium ions from the cell. This outflow of potassium ions helps to restore the negative membrane potential, repolarizing the neuron membrane.
The action potential propagates along the length of the neuron's axon, causing the release of neurotransmitters from the axon terminal when it reaches the synapse. The neurotransmitters bind to receptor proteins on the surface of the receiving neuron, generating a new electrical signal that continues the process of information transfer.
To know more about Neuron please visit :
https://brainly.com/question/21225122
#SPJ11
Which of the following is the best example of an adaptation that improves an organism's "fitness"?
A. Dark-colored lizards living on light rocks.
B. A thick coat of fur on animals living in the hot desert.
C. Lizards with sticky toe pads live among tall trees.
Answer:
C. Lizards with sticky toe pads live among tall trees. is the best example of an adaptation that improves an organism's "fitness". The adaptation allows the lizards to climb and live in their arboreal habitat, increasing their chances of survival by avoiding predators and accessing resources.
what happened to the e. coli cells you spread on the lb/ampicillin plates that did not contain a pclone plasmid?
The E. coli cells that were spread on the LB/Ampicillin plates that did not contain a pclone plasmid would not have been able to grow properly on the plates.
What is pclone plasmid?
The e. coli cells that were spread on the lb/ampicillin plates but did not contain a pclone plasmid would not have grown on the plates. The pclone plasmid is generally used to generate clones and for research purposes. E. coli cells that contain pclone plasmid are able to grow in the presence of ampicillin antibiotic, while the cells that do not contain pclone plasmid cannot grow in the presence of ampicillin antibiotic.
The growth of the E. coli cells on the LB/ampicillin plates would indicate that the cells have the pclone plasmid. Cells that did not grow on the plates would indicate that they did not have the plasmid.
Learn more about E.coli here:
https://brainly.com/question/29778483
#SPJ11
during prophase i of meiosis, in an individual that is heterozygous for a deletion, pairing of homologous chromosomes results in a looped out structure. which chromosome is looped out?
During prophase I of meiosis, the looped out structure during pairing of homologous chromosomes in an individual that is heterozygous for a deletion occurs on the chromosome that has the deletion.
What happens during prophase I of meiosis?Prophase I is the first stage of meiosis I, and it is broken down into five substages: leptotene, zygotene, pachytene, diplotene, and diakinesis. Prophase I is a complex process that takes place in the nucleus of a cell and is characterized by the following events: Leptotene, a period of condensation, during which the chromosomes become visible under a microscope. Zygotene, which is characterized by the pairing of homologous chromosomes (also known as synapsis). Pachytene, during which homologous chromosomes exchange DNA segments through a process known as recombination.
Diplotene, during which homologous chromosomes begin to separate from one another. Diakinesis, which is characterized by the shortening and thickening of the spindle fibers, as well as the completion of the separation of the homologous chromosomes. The looped-out structure during pairing of homologous chromosomes in an individual that is heterozygous for a deletion happens on the chromosome that has the deletion.
A deletion refers to the loss of genetic material from a chromosome. A deletion may range from a single nucleotide to an entire chromosome. When a chromosome loses a segment of DNA, it can lead to a number of genetic disorders. Deletions can occur naturally or as a result of exposure to radiation or other environmental toxins.
Learn more about Meiosis here:
https://brainly.com/question/29383386
#SPJ11
What does it mean by Peptide bond?
Answer:
A covalent bond is produced by connecting the carboxyl group of one amino acid to the amino group of another while removing a molecule of water.
Explanation:
Brainliest, please!
What are the steps of G protein coupled receptor signaling?
The G protein-coupled receptor signaling system refers to a family of proteins that are interconnected and constitute an intricate signaling system. This system's primary function is to facilitate the transfer of information from external and internal stimuli into the interior of the cell.
The following are the steps in the G protein-coupled receptor signaling.
Activation of the receptor by the ligand: The receptor is activated by the ligand, which binds to it. The receptor is activated in a specific manner and is changed as a result of ligand binding.
G protein activation: Once the receptor is activated, it triggers G protein activation. G proteins are located within the cell membrane and bind to the activated receptor. The G protein becomes activated and undergoes a conformational change as a result of its association with the activated receptor.
Generation of the second messenger: Following the activation of the G protein, second messengers are generated, which travel to different parts of the cell. Second messengers are intracellular signaling molecules that are activated by G proteins.
Second messenger activation of protein kinases: Second messengers activate a variety of protein kinases in the cytoplasm. The activated protein kinases initiate several signal transduction pathways that lead to the phosphorylation of specific target proteins.
Cellular response: Once the target protein is phosphorylated, it can affect cellular processes such as ion channel opening or closing, cell migration, proliferation, and differentiation.
Therefore, the G protein-coupled receptor signaling system is essential for maintaining normal cellular function. It is responsible for regulating a variety of cellular processes such as cell division, migration, and differentiation. It is also involved in many physiological functions such as hormone release, neurotransmitter release, and immune responses.
To know more about G protein-coupled receptors, refer here:
https://brainly.com/question/30023541#
#SPJ11
The peritoneal fold situated as a "fatty apron" anterior to the small intestine is the _____.A) mesenteryB) falciform ligamentC) lesser omentumD) greater omentum
The peritoneal fold situated as a "fatty apron" anterior to the small intestine is the lesser omentum therefore the correct option is C.
The lesser omentum is a double- layered pack of peritoneum that extends from the stomach to the transverse colon. It's composed of a connective towel layer and an external adipose layer. The lesser omentum functions to store fat, give protection for the organs of the tummy, and act as an immunological barrier.
It's also involved in the immersion of certain substances from the bowel, and helps to maintain a constant temperature in the abdominal depression. It's innervated by the vagus whim-whams and contains the large vessels of the abdominal depression.
Hence the correct option is C.
To know more about peritoneal fold visit:
https://brainly.com/question/28319533
#SPJ4
What stage of production are the cattle kept in large pastures? a. Cow/Calf Production b.Backgrounding C.Feedlot d.Both A & B
a. Cow/Calf Production stage of production are the cattle kept in large pastures
What does "backing cattle on pasture" mean?Growing steers and heifers from weaning until they enter the feedlot for finishing is known as backgrounding. It is appropriate for farmers who do not want to finish cattle or keep a cow herd but still want to add weight to calves after weaning.
the part of the cow-calf industry that generates feeder calves for further feeding or grazing. Recently weaned calves gain body weight during the backgrounding or stocker phase of production, culminating in yearlings that are prepared for feedlots. Cattle are fed during the final phase of production until they achieve market weight.
learn more about cow-calf industry
https://brainly.com/question/30447199
#SPJ1
Frieda is in tenth grade and decides to try out for the track team. Which of the following is anexample of selection?Frieda decides that trying out for the track team is more important than studying for her mathtest.Frieda plans to run four days a week to train for the team.Frieda asks another student on the track team to help her train.Frieda misses one of her training sessions and decides to give up some of her allotted free timeto train
The following is an example of selection: Frieda decides that trying out for the track team is more important than studying for her math test.
Selection is the process of selecting or rejecting an object on the basis of certain criteria. It is defined as the process of choosing or rejecting something based on certain criteria. Thus, in the given question, Frieda decides that trying out for the track team is more important than studying for her math test is an example of selection.Selection is one of the essential tools used in statistics to arrive at a conclusion. In this process, we select a few samples from a population for statistical analysis.Frieda planning to run four days a week to train for the team, Frieda asking another student on the track team to help her train, and Frieda missing one of her training sessions and deciding to give up some of her allotted free time to train are not examples of selection.Learn more about statistical analysis: https://brainly.com/question/17663093
#SPJ11
Which of the following molecules is the lowest-energy donor of electrons to the electron transport chain?
A. NADH
B. water
C. FADH2
D. ATP
The molecule that is the lowest-energy donor of electrons to the electron transport chain is FADH2.
What is the electron transport chain? The electron transport chain (ETC) is a sequence of electron carriers in the inner mitochondrial membrane that facilitate the generation of ATP via oxidative phosphorylation. The final electron acceptor in the electron transport chain is oxygen.
NADH and FADH2 are important electron donors to the electron transport chain. They donate electrons to complex I (NADH) and complex II (FADH2), respectively, which then transfer them through the electron transport chain to complex IV, where oxygen is the final electron acceptor.
The energy produced by electron transfer is used to pump protons across the inner mitochondrial membrane, forming a proton gradient that drives ATP synthesis via ATP synthase. Therefore, NADH and FADH2 are important contributors to ATP synthesis via oxidative phosphorylation.
What is FADH2? FADH2 is a type of reduced flavin adenine dinucleotide (FAD), a cofactor involved in redox reactions in cells. FADH2 is created when FAD accepts two electrons and two protons. FADH2 is a substrate for succinate dehydrogenase (complex II) in the electron transport chain, where it donates electrons to the chain via its flavin group.
Since the reduction potential of FADH2 is lower than that of NADH, fewer protons are pumped across the mitochondrial membrane when FADH2 donates electrons to the chain. Therefore, NADH donates more energy to the electron transport chain than FADH2 does.
To know more about FADH2, refer here:
https://brainly.com/question/30420322#
#SPJ11
where in the cell does the electron transport chain that is part of the fourth stage of aerobic respiration take place?
The electron transport chain that is part of the fourth stage of aerobic respiration occurs in the mitochondria of eukaryotic cells. It takes place in the inner membrane of the mitochondria, where the electron transport chain is located.
The electron transport chain consists of a series of protein complexes and molecules that move electrons from one complex to another. The electrons come from NADH and FADH2, which are produced in the previous stages of aerobic respiration. As the electrons move through the electron transport chain, they release energy that is used to pump protons across the inner membrane of the mitochondria. This creates a proton gradient that is used to generate ATP through chemiosmosis. Ultimately, the electrons combine with oxygen to form water, which is the final product of aerobic respiration. The electron transport chain is a critical step in aerobic respiration because it is responsible for generating the majority of the ATP that is produced during this process.
To learn more about Aerobic respiration ;
https://brainly.com/question/11691469
#SPJ11
13. A change in a gene causes a polar bear cub that lives in a snowy climate to be born
with a black coat instead of a white one, making it more vulnerable to predators.
This is an example of which type of Mutation.
Polar bears can stay warm because of their extremely thick fur. They have two fur layers: 1. A covering of guard hairs, or long hairs, that acts as their raincoat, and 2. A layer of thick, fuzzy, downy material is directly adjacent to their skin.
What is mutation?A mutation is a change in the genome's nucleic acid sequence, whether it be in a living thing, a virus, or extrachromosomal DNA. Viral genomes are made up of either DNA or RNA.Mutations result from mistakes made during DNA or viral replication, mitosis, meiosis, or other types of DNA damage (such as pyrimidine dimers brought on by exposure to ultraviolet radiation), which may then undergo error-prone repair (especially microhomology-mediated end joining), bring about a mistake during other forms of repair, or bring about a mistake during replication (translesion synthesis). Due to mobile genetic elements, mutations can also be caused through the insertion or deletion of DNA segments. The observable traits (phenotype) of an organism may or may not change as a result of a mutation.To learn more about Mutation, refer to:
https://brainly.com/question/14438201
17. Which Of These Partial Proteins Was Most Likely Assembled By A Thermophile? A. Gly-Gly-Pro-Arg-Arg-Cys-Cys-Gly B. Cys-Met-Met-Arg-Asp-Asp-Asp-Pro C. Pro-Pro-Arg-His-Pro-Pro-Pro-Gly D. Met-Gly-Cys-Pro-Arg-Arg-Pro-Arg
The answer is option D: Met-Gly-Cys-Pro-Arg-Arg-Pro-Arg. This is due to the fact that the thermophile's body temperature is raised, and the enzymes and proteins required for the survival of the organism must work optimally in this environment.
A thermophile is an organism that can survive and flourish in hot environments. Such organisms are able to generate proteins that can endure high temperatures. To cope with the high temperatures, thermophiles produce specialized proteins, such as heat shock proteins, which are effective at ensuring the structural stability of other proteins within the organism. Due to the strong intermolecular forces and lower entropy, the bonds that maintain the three-dimensional shape of the protein are more likely to be preserved. The organism is then able to function optimally in this hot environment, and the protein is known as a thermostable protein.
However, Met-Gly-Cys-Pro-Arg-Arg-Pro-Arg this Partial Proteins Was Most Likely Assembled By A Thermophile.
To know more about Thermophile please visit :
https://brainly.com/question/28562366
#SPJ11
in the marine trophic pyramid at which trophic level do you find small fish, crustaceans, and sea stars?
In the marine trophic pyramid, small fish, crustaceans, and sea stars are found at the second trophic level.
The marine trophic pyramid is an essential concept in the ocean’s food chain. Trophic levels in the marine ecosystem illustrate the role of different species in the food chain. These levels depict the energy transfer from one organism to another in an ecosystem.
In the marine trophic pyramid, the trophic level that represents small fish, crustaceans, and sea stars is at the second trophic level. This trophic level consists of organisms that consume primary producers as their main source of energy. These organisms are commonly referred to as herbivores or primary consumers. Animals in this category include small fish such as anchovies and sardines, sea stars, lobsters, and crabs.
Since the food chain in the marine ecosystem is interrelated, these organisms play a significant role in the survival of other animals in the food chain.
Learn more about trophic pyramid at https://brainly.com/question/16411688
#SPJ11
How do prokaryote phylogenies differ from mammal phylogenies?
The phylogenetic reconstruction process is much simpler for prokaryotes than for mammals because prokaryotes are much smaller.
There is a high degree of lateral gene transfer in mammals, but not in prokaryote phylogenies.
There is a high degree of lateral gene transfer in prokaryotes, but not in mammals.
Mammal phylogenies are constructed from evidence based in DNA, whereas prokaryote phylogenies are based in RNA.
Mammal phylogenies are constructed from evidence based in RNA, whereas prokaryote phylogenies are based in DNA.
There is a high degree of lateral gene transfer in prokaryotes, but not in mammals. This is the main difference between prokaryote and mammal phylogenies.
Lateral gene transfer is the transfer of genetic material between organisms that are not parent and offspring, and it can occur frequently in prokaryotes, allowing for the rapid acquisition of new traits. In contrast, mammals and other eukaryotes typically have more restricted mechanisms of genetic transfer, such as sexual reproduction, which makes lateral gene transfer less common.
Phylogenetic reconstructions for both prokaryotes and mammals are typically based on DNA evidence. However, the process of reconstructing prokaryote phylogenies can be more complex due to lateral gene transfer events, which can sometimes make it difficult to accurately determine the evolutionary relationships between different prokaryotic lineages.
Learn more about prokaryotes
https://brainly.com/question/15329345
#SPJ4
___ happens when a bud is formed on the outside of a spongebuddingfragmentationregenerationmolting
When cell divide at a specific location to form a new organism from an outgrowth or bud, the process is known as asexual reproduction, or budding or blastogenesis.
As an illustration, the term "bud" refers to the tiny, bulbous protrusion that develops from the yeast cell. With the exception of mutations, asexual reproduction produces clone of the parent organism that are genetically identical to the original. In order to reproduce, creatures like hydras need regenerative cells during the budding process.
As a result of repeated cell division at one specific location, a bud develops as a protrusion. These buds develop into little individuals after they are fully matured, and these new, independent individuals eventually separate from the parent body.
Learn more about budding process here:
https://brainly.com/question/9913270
#SPJ4
Researchers have identified a series of speciation events that have created a new group of organisms. Which of the following terms best describes what has occurred?
A) Macroevolution
B) Biogeography
C) Microevolution
D) Geologic time scale
The term that best describes what occurred when researchers identified a series of speciation events that have created a new group of organisms is Macroevolution. So option A is the correct answer.
Macroevolution refers to the major evolutionary developments that have taken place over long periods of time. Macroevolution is the process by which an organism evolves over a long period of time, leading to the development of new species, classes, and phyla. The study of macroevolution focuses on the big picture, such as the origins of new groups, as well as the relationships between groups that emerged over millions of years. The term macroevolution is used in opposition to microevolution, which refers to small changes in the gene pool of a population over a brief period of time.
Learn more about macroevolution: https://brainly.com/question/1686357
#SPJ11
In the context of conservation biology, what does genetic diversity mean? a. The total number of species in a given region. b. Number and relative frequency of alleles in a population, species, or lineage. c. A quantity summarzing the average genetic difference between two randomly chosen individuals in a population. d. The number and relative frequency of species in a given region.
In the context of conservation biology, genetic diversity refers to the number and relative frequency of alleles in a population, species, or lineage. So, option B is correct.
The variety in genetic material within and between populations of a species is reflected by genetic diversity, which is a crucial component of biodiversity. Populations with genetic diversity can adapt to shifting environmental conditions, fend off disease, and avoid the detrimental consequences of inbreeding, genetic drift, and other factors that can make populations less fit. For species and ecosystems to survive over the long term, genetic diversity must be preserved.
Option (b) correctly defines genetic diversity as the number and relative frequency of alleles in a population, species, or lineage, while the other options are incorrect.
To know more about genetic diversity
brainly.com/question/14696671
#SPJ4
whenever a molecule is oxidized, another molecule must be reduced. T/F
The statement is True. Whenever a molecule is oxidized, another molecule must be reduced.
Molecules are essential to life because they are involved in many important biological processes, such as metabolism, respiration, and photosynthesis. They also play a critical role in the structure and function of cells and tissues.
Biological molecules can be classified into four major groups: carbohydrates, lipids, proteins, and nucleic acids. Carbohydrates provide energy for the body, while lipids serve as a major component of cell membranes and play a role in energy storage. Proteins are involved in a wide range of biological functions, including enzymatic reactions, cell signaling, and structural support. Finally, nucleic acids are responsible for storing and transmitting genetic information.
To learn more about Molecules visit here:
brainly.com/question/19595631
#SPJ4
what the meaning of vocabulay ?
Vocabulary is a set of words that are familiar to a person or a language. Vocabulary is the foundation of language learning, and it is essential to know a good amount of vocabulary to read, write, and speak in any language.
Vocabulary is an essential part of language learning, It enables people to communicate their thoughts and ideas effectively. There are different types of vocabulary:
Learn more about Vocabulary: https://brainly.com/question/514128
#SPJ11
The two main classes of molecules that function as hormones are steroid hormones and hormones that are derived from
A. long-chain fatty acids
B. mucleaic acids
C. cholesterol
D. carbohydrates
E. amino acids
Option E. The The two main classes of molecules that function as hormones are steroid hormones and hormones that are derived from
What are amino acid?The two main classes of molecules that function as hormones are steroid hormones and hormones that are derived from amino acids.
Steroid hormones are derived from cholesterol, while hormones derived from amino acids include peptides, proteins, and amines.
Long-chain fatty acids and carbohydrates are not typically involved in hormone signaling.
Read more on Amino acid here:https://brainly.com/question/28362783
#SPJ1
_________ enzymes are stable in part because they contain relatively low amounts of the amino acid glycine.
a. Psychrophilic b. Acidophilic c. Thermophilicd. Halophilice. Barophilic
The answer is C - Thermophilic enzymes are stable in part because they contain relatively low amounts of the amino acid glycine. Thermophilic enzymes are able to survive and remain active at high temperatures due to the low amounts of glycine they contain, which gives them increased stability and allows them to remain functional.
Enzymes- Enzymes are protein-based substances produced by living organisms. The metabolism of living things requires enzymes to function correctly. Enzymes can speed up chemical reactions by reducing the activation energy of the reaction, enabling it to proceed at a much faster rate.
Amino acids- Amino acids are the building blocks of proteins. They are organic compounds that are both basic and acidic. There are 20 common amino acids that are found in proteins. They all have an amino group (-NH2) and a carboxyl group (-COOH) that combine to form an α-amino acid.
"enzymes", https://brainly.com/question/31134969
#SPJ11
what is shift in vaginal flora suggestive of bacterial vaginosis meaning?
In bacterial vaginosis, the vaginal flora shifts from normal aerobic flora to anaerobic one.
Bacterial vaginosis is the condition where bacterial growth becomes excessive. The vagina normally harbors a variety of bacteria, but in limited quantities. This condition is characterized by the flow of vaginal discharge which has a distinct odor.
Vaginal flora refers to the bacteria living inside the vagina of females. These bacteria usually belong to the Lactobacillus species. The shift in there population occurs when the normal pH of the vagina is disturbed. This causes the bacteria to overgrow anaerobically and cause the disease.
To know more about bacterial vaginosis, here
brainly.com/question/28478235
#SPJ4
Some behaviors such as mating and caring for young are genetically
determined in certain species of birds. The presence of these behaviors is
most likely due to the fact that
A) birds do not have the ability to learn
B) individual birds need to learn to survive and reproduce
C) these behaviors helped birds to survive in the past
D) within their lifetimes, birds developed these behaviors
The behaviors such as mating and caring for young are genetically determined in certain species of birds. The presence of these behaviors is most likely due to the fact that these behaviors helped birds to survive in the past.
The correct option is C)
Certain behaviors such as mating and caring for young are genetically determined in certain species of birds. The presence of these behaviors is most likely due to the fact that these behaviors helped birds to survive in the past. Over time, many bird species have developed and passed on behaviors that aid in their survival and reproduction. These innate behaviors enable birds to adapt and respond to their environment with efficiency and precision. Birds that display these behaviors, such as mating and caring for young, are more likely to produce offspring, ensuring the survival of their species. The genetic predisposition for these behaviors is thus passed down to future generations, perpetuating the cycle of survival and reproduction.
For more such questions on Birds, click on:
https://brainly.com/question/30028464
#SPJ11
Which substances cause an immune response?
Substances that cause an immune response are called antigens. The immune system recognizes and destroys, or tries to destroy, substances that contain antigens.
Antigens can also include non-infectious items like pollen, food fragments, and medications. Antigens are often foreign substances that infiltrate the body, such as viruses, bacteria, fungi, and parasites. Antigens can also be found on the surface of aberrant or mutant protein-containing body cells, such as cancer cells.
The immune system can identify an antigen as foreign when it enters the body, at which point it begins an attack to get rid of it. To identify and eliminate the antigen, this immune response involves the creation of antibodies and the activation of immune cells such T cells and B cells.
To know more about Antigens
brainly.com/question/24384193
#SPJ4
Lesson 4 Invertebrate Evolution and Diversity 1
I need help with this lesson if anyone could help me today
Invertebrate don't have or develop a vertebral column, also known as a backbone or chine. Insects, spiders, prawns, draggers, oysters, squids, octopuses, earthworms, moochers, and doormat are all exemplifications of pets.
Elaboration of Invertebrate
The first bitsy critter appeared in the ocean3.5 billion times agone . The first pets were born in the water. Cambrians, for illustration, were soft- bodied creatures with a carapace or shell.
Brute bracket
The elaboration of pets has established numerous abecedarian characteristics of advanced organisms, from the foremost sponger species to the more recent echinoderms.
What's biodiversity, and why is it important?
Biodiversity refers to the cornucopia and diversity of life on the earth, and it's our earth's most complicated and vital characteristic. Life couldn't live without biodiversity.
Biodiversity bracket
Diversity is classified into three orders
inheritable Biodiversity
Species Biodiversity
Ecological Biodiversity
Learn more about biodiversity
brainly.com/question/29765125
#SPJ4
Complete Question:
What are Evolution of Invertebrates: Symmetry & Specialization? Also mention what is biodiversity?
explain the difference between a deletion, duplication, inversion, translocation and nondisjunction.
The difference between a deletion, duplication, inversion, translocation, and nondisjunction are explained in the explation below.
Deletion: It is a genetic alteration caused by the removal of a segment of DNA from a chromosome. When part of the genetic material is absent, the remaining fragment is insufficient to provide the genetic instructions needed to construct a fully functioning individual.
Duplication: It occurs when a portion of a chromosome is replicated, resulting in the presence of two or more identical copies of a region of DNA. Duplication mutations can have either beneficial or harmful effects, or they may have no impact at all.
Inversion: An inversion is a chromosomal abnormality that occurs when a chromosome segment is turned 180 degrees in the opposite direction. Inversions can occur when part of a chromosome breaks off, rotates 180 degrees, and then reattaches to the same chromosome in the reverse direction.
Translocation: Translocation is a chromosomal abnormality that occurs when part of one chromosome breaks off and becomes attached to a different chromosome. Two types of translocation are balanced translocation and unbalanced translocation.
Nondisjunction: A genetic mutation that occurs when a pair of homologous chromosomes or sister chromatids fail to separate during meiosis or mitosis, resulting in the creation of aneuploid cells with an extra or missing chromosome. Nondisjunction can cause a variety of genetic diseases and conditions.
Learn more about Translocation at https://brainly.com/question/29511403
#SPJ11