Explanation:
The chemical formula of an ionic compound can be written by using the symbols of the respective cations and anions.
The overall charge on the molecule should be zero.
Hence, the total charge of cations=total charge of anions.
The symbols of the given molecules are shown below:
sodium chloride ---- NaCl
magnesium chloride ---[tex]MgCl_2[/tex]
calcium oxide ---- CaO
lithium phosphide----[tex]Li_3P[/tex]
aluminum sulfide ----- [tex]Al_2S_3[/tex]
calcium nitride---- [tex]Ca_3N_2[/tex]
which of the following is is a chemical property of pure water
Answer:
Pure water has an acidity of about 7 on the pH scale. -is a chemical property of pure water. Pure water has an acidity of about 7 on the pH scale
Answer: không màu , không mùi không vị
Explanation:
Hãy cho biết giá trị và ý nghĩa của số lượng tử n, l, m, ms khi mô tả trạng thái của electron trong nguyên tử?
The shape of a molecule is determined by:
A. All of these
B. The number of electron clouds around the atom.
C. The number of bonds.
D. Mutual repulsion between electrons.
What is Bose Einstein state of matter and their examples
Answer:
A BEC ( Bose - Einstein condensate ) is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero is called BEC.
Examples - Superconductors and superfluids are the two examples of BEC.
Explanation:
A capsule containing 0.500 L of air at 1.00 atm is compressed to 3.25 atm. At that point, what is the volume of the gas in the capsule?
Answer:
V₂ = 0.154 Liters
Explanation:
Pressure => P
Volume => V
Temperature => T
mass (moles) => n
This problem...
P₁ = 1.00 ATM P₂ = 3.25 ATM
V₁ = 0.500L V₂ = ?
T₁ = constant T₂ = T₁ = constant
n₁ = constant n₂= n₁ = constant
P₁V₁/n₁T₁ = P₂V₂/n₂T₂ => V₂ = V₁(P₁/P₂) = 0.500L (1.00ATM/3.25ATM) = 0.154 Liters
Consider the reaction below. How much heat is absorbed if 5.00 moles of nitrogen react
with excess oxygen?
2 N2 (8) + O2(g) → 2 N20 (8) AHrxn- +163.2 kJ
Explanation:
The given chemical reaction is:
[tex]2 N_2 (g) + O_2(g) -> 2 N_20 (g) delta Hrxn= +163.2 kJ[/tex]
When two moles of nitrogen reacts with oxygen, it requires 163.2kJ of energy.
When 5.00 mol of nitrogen requires how much energy?
[tex]5.00 mol x \frac{163.2 kJ }{2 mol} \\=408 kJ[/tex]
Hence, the answer is 408 kJ of heat energy is required.
Which of the following are examples of single replacement reactions? Select all that apply.
Answer:
Na2S(aq)+Cd(No3)2(aq)=CdS(s)+2NaNo3(aq)
Answer: it’s checkbox 2&3
A sample of Kr gas is observed to effuse through a pourous barrier in 8.15 minutes. Under the same conditions, the same number of moles of an unknown gas requires 4.53 minutes to effuse through the same barrier. The molar mass of the unknown gas is ____________ g/mol.
Answer:
25.88 g/mol
Explanation:
Graham's law is a famous law which states that the diffusion rate or the effusion rate of any gas varies inversely to the square root of the molecular weight the gas.
So from Graham's law, we have,
[tex]$\frac{\text{time}}{M^{1/2}}=\text{constant}$[/tex]
Using the sample of Kr gas having M = 83.8
[tex]$\frac{8.15}{(83.8)^{0.5}}= \frac{4.53}{M^{0.5}}$[/tex]
[tex]$M^{0.5}= 5.088$[/tex]
M = 25.88 g/mol
At 445oC, Kc for the following reaction is 0.020. 2 HI(g) <--> H2 (g) + I2 (g) A mixture of H2, I2, and HI in a vessel at 445oC has the following concentrations: [HI] = 1.5 M, [H2] = 2.50 M and [I2] = 0.05 M. Which one of the following statements concerning the reaction quotient, Qc, is TRUE for the above system?
a. Qc = Kc; the system is at equilibrium.
b. Qc is less than Kc; more H2 and I2 will be produced.
c. Qc is less than Kc; more HI will be produced.
d. Qc is greater than Kc; more HI will be produced.
Explanation:
The given balanced chemical equation is:
[tex]2 HI(g) <--> H_2 (g) + I_2 (g)[/tex]
The value of Kc at 445oC is 0.020.
[HI]=1.5M
[H2]=2.50M
[I2]=0.05M
The value of Qc(reaction quotient ) is calculated as shown below:
Qc has the same expression as the equilibrium constant.
[tex]Qc=\frac{[H_2][I_2]}{[HI]^2} \\Qc=(2.50Mx0.05M)/(1.5M)^2\\Qc=0.055[/tex]
Qc>Kc,
Hence, the backward reaction is favored and the formation of Hi is favored.
Among the given options, the correct answer is option d. Qc is greater than Kc; more HI will be produced.
Give the amino acid sequence in the following tetrapeptide using both 3-letter and 1-letter abbreviations for the amino acids. (Capitalize amino acid abbreviations appropriately.) ball
Answer:
ggggggggggggg
Explanation:
gggggggggggthyjum
In an ELISA, the compound 4-chloro-1-naphthol is used because:_______
a. it turns color in the presence of an enzyme that is bound to the secondary antibody
b. it helps the primary antibody bind to the protein
c. it helps the secondary antibody to bind to the protein
d. all of the choices
Answer:
a. It turns color in the presence of an enzyme that us bound to the secondary antibody.
Explanation:
The compound chloronapthenel is used in the reaction because it changes the color in the presence of an enzyme. It is strong organic compound which is used in biochemical processes.
I need to know what is the median of the data
Answer:
The median is also the number that is halfway into the set. To find the median, the data should be arranged in order from least to greatest. If there is an even number of items in the data set, then the median is found by taking the mean (average) of the two middlemost numbers.
I hope it helps
what characterizes a homogeneous mixture?
Answer:
a mixture that doesn't really show the ingredients or things put into the material or food.
Consider an equilibrium (K1) that is established after 10 mL of compound A and 10 mL of compound B are mixed. Now, imagine the equilibrium (K2) where 1 mL of compound A is added to 100 mL of compound B. How are K1 and K2 related algebraically (read this question VERY carefully, at least one more time)?
K1 and K2 are related algebraically because once the values are inserted into the equilibrium equation, both equations will yield a denominator of 100.
does anyone know how to solve this and what the answer would be?
Dynamic equilibrium is showed at the point at which solid liquid and gas intersect.
At the point at which solid liquid and gas intersect represents a system that shows dynamic equilibrium. There is equal amount of reactants and products at the point of dynamic equilibrium because the transition of substances occur between the reactants and products at equal rates, means that there is no net change. Reactants and products are formed at the rate that no change occur in their concentration.
https://brainly.com/question/24310467
Nucleophilic aromatic substitution involves the formation of a resonance-stabilized carbanion intermediate called a Meisenheimer complex as the nucleophile attacks the ring carbon carrying the eventual leaving group.
a. True
b. False
Answer:
True
Explanation:
Aromatic rings undergo nucleophillic substitution reactions in the presence of a electron withdrawing group which stabilizes the Meisenheimer complex.
When the nucleophile attacks the ring carbon atom carrying the eventual leaving group. A resonance-stabilized carbanion intermediate called a Meisenheimer complex is formed.
Subsequent loss of the leaving group from the intermediate complex yields the product of the reaction.
P.1 is a variant of SARS-CoV2. This is the so-called "Brazil variant". It has the amino acid the substitution N501Y in the spike protein on the virus surface. In cellular fluids at ~pH 7 the wild type spike protein has a net negative charge. This substitution will make the spike protein
more negative
less hydrophobic
able to absorb move UV light
less negative
There are various variants of Cov id virus. The Brazilian variant P also known as Gamma variant is the third variant of the original SARS-CoV2.
The correct answer is more negative
This variant has raised concerns since it has ability to spread more quickly then previous variants and this is more negative variant.
It is assumed that Cov id variant Gamma and Delta has ability to absorb move UV light but this is not proved yet and research is underway.
Learn more at https://brainly.com/question/24319270
Calculate the enthalpy change for the reaction of hydrogen and chlorine using the bond energies below.
"BOND." " BOND ENERGY "
H-H. 436
CL-CL. 242
H-CL. 431
Answer:
final-intial temperature= enthalpy change
A sample of gas is held at constant volume. If the number of moles of this sample of gas is doubled and the pressure of this sample of gas is halved, what happens to the absolute temperature of the gas?
Select one
a. The absolute temperature is doubled.
b. The absolute temperature is halved.
c. The absolute temperature is quadrupled.
d. The absolute temperature is quartered.
e. The absolute temperature stays the same.
Answer:
number of moles of gas increases the volume also increases.
HELP ASAS 15 POINTS
When using the process of evaporation to separate a mixture, what is left behind in the evaporating dish?
A. None of these.
B. The liquid evaporates and the solid is left in the dish.
C. The mixture does not separate, and the entire mixture evaporates.
D. The mixture does not separate, and the entire mixture remains in the dish.
Answer:
liquid will be evaporated while solid remains
How many neutrons does Carbon- 14 and Carbon -15 have? *
Answer: 8 for both
Explanation:
If 50.0 g of sulfuric acid and 40.0 grams of barium chloride are mixed, how many grams of sulfuric acid and how many grams of barium chloride remain after the double replacement reaction is complete?
After the double replacement reaction is complete 0 grams of BaCl₂ and 31.16 grams of H₂SO₄ will remain.
First, we will write the balanced equation for the reaction
H₂SO₄ + BaCl₂ → BaSO₄ + 2HCl
This means 1 mole of BaCl₂ is needed to react completely with 1 mole of H₂SO₄ to give 1 mole of BaSO₄ and 2 moles of HCl
From the question, 50.0g of sulfuric acid is mixed with 40.0 grams of barium chloride. To determine the quantity of each substance remaining after the complete reaction, we will first determine the number of moles present in each of the reactant.
For H₂SO₄
mass = 50.0g
Molar mass = 98.079 g/mol
From the formula
Number of moles = Mass / Molar mass
∴ Number of moles of H₂SO₄ = 50.0g / 98.079 g/mol
Number of moles of H₂SO₄ = 0.5098 mol
For BaCl₂
mass = 40.0 g
Molar mass = 208.23 g/mol
∴ Number of moles of BaCl₂ = 40.0g / 208.23 g/mol
Number of moles of BaCl₂ = 0.1921 mol
Since the number of moles of H₂SO₄ is more than that of BaCl₂, then H₂SO₄ is the excess reagent and BaCl₂ is the limiting reagent (that is, it will be used up completely during the reaction)
From the equation, 1 mole of H₂SO₄ is needed to completely react with 1 mole of BaCl₂
∴ 0.1921 mol of H₂SO₄ will be needed to completely react with 0.1921 mol of BaCl₂.
Therefore, after the reaction is complete, 0 mole (i.e 0 grams) of BaCl₂ will remain and (0.5098 mole - 0.1921 mole) of H₂SO₄ will remain.
Number of moles H₂SO₄ that will remain = 0.5098 mole - 0.1921 mole = 0.3177 moles
Now, we will convert this to grams
From the formula
Mass = Number of moles × Molar mass
Mass of H₂SO₄ that will remain = 0.3177 moles × 98.079 g/mol
Mass of H₂SO₄ that will remain = 31.1597 g
Mass of H₂SO₄ that will remain ≅ 31.16 g
Hence, after the double replacement reaction is complete 0 grams of BaCl₂ and 31.16 grams of H₂SO₄ will remain.
Learn more here: https://brainly.com/question/6857557
4. A sample of ammonia, NH3, contains 3.3 x 1021 hydrogen atoms. How many NH; molecules are in this sample?
Answer:
1.1 × 10²¹ NH₃ molecules
Explanation:
From the given information:
We were being told that the number of the hydrogen (H) atoms present in the sample of NH3 = 3.3 × 10²¹ hydrogen.
However, it signifies that each molecule of ammonia harbors 3hydrogen (H) atoms.
Hence, the number of molecules of NH₃ present;
[tex]\mathsf{=\dfrac{3.3\times 10^{21}}{3} \ molecules \ of \ {NH_3}}[/tex]
= 1.1 × 10²¹ NH₃ molecules
Tech A says that hydrocarbons are a result of complete combustion. Tech B says that a catalytic converter creates a chemical reaction, changing carbon monoxide and hydrocarbons to water and carbon dioxide. Who is correct
Answer:
Neither Tech A nor B is correct
Explanation:
Combustion is a chemical reaction that occurs when a chemical molecule(s) interacts quickly with oxygen and produces heat.
When hydrocarbon undergoes a complete combustion reaction, they produce water and CO2.
Tech B is also incorrect because the main purpose of a catalytic converter is to accelerate and speed up the chemical reaction rates, Hence, they are not involved in chemical reaction formation. Catalytic converters are utilized as a control device in exhaust emission to lessen the effect of toxic gas fumes.
The specific heat capacity of lead is 0.13 J/g-K. How much heat (in J) is required to raise the temperature of 15 g of lead from 22 °C to 37 °C? a. 5.8 × 10-4 J b. 0.13 J c. 29 J d. 2.0 J e. -0.13 J
Answer:
c. 29 J
Explanation:
Step 1: Given data
Specific heat capacity of Pb (c): 0.13 J/g.K (= 0.13 J/g.°C)Mass of Pb (m): 15 gInitial temperature: 22 °CFinal temperature: 37 °CStep 2: Calculate the temperature change
ΔT = 37 °C - 22 °C = 15 °C
Step 3: Calculate the heat (Q) required to raise the temperature of the lead piece
We will use the following expression.
Q = c × m × ΔT
Q = 0.13 J/g.°C × 15 g × 15 °C = 29 J
Tapeworm is grouped in the phylum Platyhelminthes
Answer:
Tapeworm, also called cestode, any member of the invertebrate class Cestoda (phylum Platyhelminthes), a group of parasitic flatworms containing about 5,000 species. ... Tapeworms also lack a circulatory system and an organ specialized for gas exchange.
Hydrogengasand oxygengas react to form water vapor. Suppose you have of and of in a reactor. Calculate the largest amount of that could be produced. Round your answer to the nearest .
The question is incomplete. The complete question is :
Hydrogen [tex](H_2)[/tex] gas and oxygen [tex](O_2)[/tex] gas react to form water vapor [tex](H_2O)[/tex]. Suppose you have 11.0 mol of [tex]H_2[/tex] and 13.0 mol of [tex]O_2[/tex] in a reactor. Calculate the largest amount of [tex]H_2O[/tex] that could be produced. Round your answer to the nearest 0.1 mol .
Solution :
The balanced reaction for reaction is :
[tex]$2H_2(g) \ \ \ \ + \ \ \ \ \ O_2(g)\ \ \ \rightarrow \ \ \ \ 2H_2O(g)$[/tex]
11.0 13.0
11/2 13/1 (dividing by the co-efficient)
6.5 mol 13 mol (minimum is limiting reagent as it is completely consumed during the reaction)
Therefore, [tex]H_2[/tex] is limiting reagent. It's stoichiometry decides the product formation amount from equation above it is clear that number of moles for [tex]H_2O[/tex] will be produced = number of moles of [tex]H_2[/tex]
= 11.0 mol
If you add a solution of NaOH to a solution of H₂CO₃, two reactions occur, one after the other. Write the chemical equations for these two reactions. (Hint: NaOH dissociate into Na+ and OH-, and the hydroxide ion is the actual base).
We have a solution of NaOH and H₂CO₃
First, NaOH will dissociate into Na⁺ and OH⁻ ions
The Na⁺ ion will substitute one of the Hydrogen atoms on H₂CO₃ to form NaHCO₃
The H⁺ released from the substitution will bond with the OH⁻ ion to form a water molecule
If there were to be another NaOH molecule, a similar substitution will take place, substituting the second hydrogen from H₂CO₃ as well to form Na₂CO₃
The Nernst equation at 20oC is:
Eion= 58 millvolts/z. [log10 (ion)out/(ion)in]
Calculate the equilibrium potential for Cl- if the concentration of Cl- outside of the cell is 100 and the concentration inside of the cell is 10 mmol/liter.
a. 58 millivolts
b. +58 millivolts
c. -116 millivolts
d. 0
Answer:
a. -58 millivolts
Explanation:
The given Nernst equation is:
[tex]E_{ion} = 58 millivolts /z \Big[ log_{10} \Big( \dfrac{[ion]_{out}}{[ion]_{in}}\Big) \Big]}[/tex]
The equilibrium potential given by the Nernst equation can be determined by using the formula:
[tex]E_{Cl^-} = \dfrac{2.303*R*T}{ZF} \times log \dfrac{[Cl^-]_{out}} {[Cl^-]_{in}}[/tex]
where:
gas constant(R) = 8.314 J/K/mol
Temperature (T) = (20+273)K
= 298K
Faraday constant F = 96485 C/mol
Number of electron on Cl = -1
[tex]E_{Cl^-} = \dfrac{2.303*8.314*298} {(-1)*(96845)} \times log \dfrac{100} {10}[/tex]
[tex]E_{Cl^-} = - 0.05814 \ volts[/tex]
[tex]\mathsf{E_{Cl^-} = - 0.05814 \times 1000 \ milli volts}[/tex]
[tex]\mathsf{E_{Cl^-} \simeq - 58\ milli volts}[/tex]
The sample concentration was measured at 50mg/ml. The loading concentration needs to be 10mg/ml. The final volume needs to be 25ul. What is the volume of sample needed and the amount of buffer needed to reach 25ul
Answer:
a) [tex]V_1=5ul[/tex]
b) [tex]v=20ul[/tex]
Explanation:
From the question we are told that:
initial Concentration [tex]C_1=50mg/ml[/tex]
Final Concentration [tex]C_2=10mg/ml[/tex]
Final volume needs [tex]V_2 =25ul[/tex]
Generally the equation for Volume is mathematically given by
[tex]C_1V_1=C_2V_2[/tex]
[tex]V_1=\frac{C_1V_1}{C_2}[/tex]
[tex]V_1=\frac{10*25}{50}[/tex]
[tex]V_1=5ul[/tex]
Therefore
The volume of buffer needed is
[tex]v=V_2-V_1\\\\v=25-5[/tex]
[tex]v=20ul[/tex]