Answer:
the amount of a substance that will dissolve in a given amount of solvent.
Explanation:
Solubility is a term used to describe how readily a substance can be dissolved in a solvent to form a solution. Thus, a substance is said to be soluble if it dissolves completely in a solvent and insoluble if it doesn't dissolve or only dissolves partially.
For example, sodium chloride (NaCl) when mixed with water dissociates into sodium and chloride ions. Thus, salt (sodium chloride) is said to be soluble because it dissolves completely in water.
Furthermore, a compound that dissolves completely in water to produce an aqueous solution is said to be soluble in water.
In conclusion, solubility is simply the amount of a substance such as salt, that will dissolve in a given amount of solvent. A solvent is any liquid such as water, coffee, tea, etc., that dissolves a liquid, gaseous, or solid solute to produce a solution.
What size volumetric flask would you use to create a 1.00M solution using 166.00 g of KI?
Answer:
A 1 liter volumetric flask should be used.
Explanation:
First we convert 166.00 g of KI into moles, using its molar mass:
Molar mass of KI = Molar mass of K + Molar mass of I = 166 g/mol
166.00 g ÷ 166 g/mol = 1 mol KIThen we calculate the required volume, using the definition of molarity:
Molarity = moles / litersLiters = moles / molarity
1 mol / 1.00 M = 1 Lstudy the reaction given below in which excess magnesium ribbon (Mg)reacts with 50cm of a diluted sulphuric acid solution at room temperature
Questions
what Changes can be made to the following substance to increase the rate of reaction?
5.1.1 Magnesium
5.1.2 Sulphuric acid
Answer:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is ... One student can add the magnesium ribbon to the acid and stopper the flask, ... 50 cm3 of 1M hydrochloric acid is a six-fold excess of acid.
Question 1 of 10
What happens when a solid becomes a liquid?
Answer:it dissolves and evaporates
Explanation:
Can someone help me answer this please
Answer:
A) 1.3 × 10⁻⁵ mol/L
Explanation:
Step 1: Write the balanced equation for the solution of AgCl
AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)
Step 2: Make an ICE Chart
AgCl(s) ⇄ Ag⁺(aq) + Cl⁻(aq)
I 0 0
C +S +S
E S S
If we replace the solubility (S) in the Ksp expression, we get,
Ksp = [Ag⁺] [Cl⁻] = S × S = S²
S = √Ksp = √1.8 × 10⁻¹⁰ = 1.3 × 10⁻⁵ mol/L
g Suppose 0.0350 g M g is reacted with 10.00 mL of 6 M H C l to produce aqueous magnesium chloride and hydrogen gas. M g ( s ) + 2 H C l ( a q ) → M g C l 2 ( a q ) + H 2 ( g ) What is the limiting reactant in this reaction?
Answer:
Mg will be the limiting reagent.
Explanation:
The balanced reaction is:
Mg + 2 HCl → MgCl₂ + H₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
Mg: 1 moleHCl: 2 molesMgCl₂: 1 moleH₂: 1 moleBeing the molar mass of each compound:
Mg: 24.3 g/moleHCl: 36.45 g/moleMgCl₂: 95.2 g/moleH₂: 2 g/moleBy reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
Mg: 1 mole* 24.3 g/mole= 24.3 gHCl: 2 moles* 36.45 g/mole= 72.9 gMgCl₂: 1 mole* 95.2 g/mole= 95.2 gH₂: 1 mole* 2 g/mole= 2 g0.0350 g of Mg is reacted with 10.00 mL (equal to 0.01 L) of 6 M HCl.
Molarity being the number of moles of solute that are dissolved in a certain volume, expressed as:
[tex]Molarity=\frac{number of moles of solute}{volume}[/tex]
in units [tex]\frac{moles}{liter}[/tex]
then, the number of moles of HCl that react is:
[tex]6 M=\frac{number of moles of HCl}{0.01 L}[/tex]
number of moles of HCl= 6 M*0.01 L
number of moles of HCl= 0.06 moles
Then you can apply the following rule of three: if by stoichiometry 2 moles of HCl react with 24.3 grams of Mg, 0.06 moles of HCl react with how much mass of Mg?
[tex]mass of Mg=\frac{0.06 moles of HCl* 24.3 grams of Mg}{2 moles of HCl}[/tex]
mass of Mg= 0.729 grams
But 0.729 grams of Mg are not available, 0.0350 grams are available. Since you have less mass than you need to react with 0.06 moles of HCl, Mg will be the limiting reagent.
The limiting reactant in the reaction is Magnesium (Mg)
From the question,
We are to determine the limiting reactant in the reaction.
The given balanced chemical equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
This means
1 mole of Mg is required to react completely with 2 moles of HCl
Now, we will determine the number of moles of each reactant present
For Magnesium (Mg)Mass = 0.0350 g
Using the formula
[tex]Number\ of\ moles = \frac{Mass}{Atomic\ mass}[/tex]
Atomic mass of Mg = 24.305 g/mol
∴ Number of moles of Mg present = [tex]\frac{0.0350}{24.305}[/tex]
Number of moles of Mg present = 0.00144 mole
For HClConcentration = 6M
Volume = 10.00 mL = 0.01 L
Using the formula
Number of moles = Concentration × Volume
∴ Number of moles HCl present = 6 × 0.01
Number of moles HCl present = 0.06 mole
Since,
1 mole of Mg is required to react completely with 2 moles of HCl
Then
0.00144 mole of Mg is required to react completely with 2×0.00144 mole of HCl
2×0.00144 = 0.00288
∴ The number of moles of HCl required to react completely with the Mg is 0.00288 mole
Since the number of moles of HCl present is more than 0.00288 mole, then HCl is the excess reactant and Mg is the limiting reactant.
Hence, the limiting reactant in the reaction is Magnesium (Mg)
Learn more here: https://brainly.com/question/13979150
You pre-weigh a glass vial to hold your sample and find its mass to be 5.010 g. You add your sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. What is the mass of the sample in grams
When we pre-weigh a glass vial to hold our sample and find its mass to be 5.010 g. Then we add our sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. The mass of the sample in grams is 1.12 g.
What is mole concept?Avogadro's number is the number of units in one mole of any substance and equals to 6.02214076 × 10²³. The units can be electrons, atoms, ions, or molecules.
No. of moles is defined as a particular no. of particles that we can calculate with the help of Avogadro’s number.
Mass of a particular product is also find out by stoichiometry of a reaction as per the no. of mole given in the reaction.
Mass is generally can be represented by units like Kg, g etc.
Given,
weigh of glass vial = 5.010 g
weigh of glass vial with sample = 6.130 g
Therefore, When we pre-weigh a glass vial to hold our sample and find its mass to be 5.010 g. Then we add our sample to the vial and reweigh it on the same balance and find that the mass has increased to 6.130 g. The mass of the sample in grams is 1.12 g.
Learn more about mass, here:
https://brainly.com/question/19694949
#SPJ2
HELP ME PLZ AND THANKS I WILL MARK YOU AS BRAINLIEST!!!
Answer:
See explanation.
Explanation:
Hello there!
In this case, since this problem is about gas laws, more specifically about the Gay-Lussac's one since the volume is said to be constant, we can use the following equation for its solution for the final pressure, P2:
[tex]\frac{P_2}{T_2} = \frac{P_1}{T_1}[/tex]
[tex]P_2= \frac{P_1T_2}{T_1}\\\\P_2 =\frac{12.0atm*450K}{300K}\\\\P_2= 18.0atm[/tex]
Thus, we fill in the table as follows:
Initial Final
Pressure 12.0 atm 18.0 atm
Volume 4.0 L 4.0 L
Temperature 300K 450K
Regards!
which effect of long-term environmental change is the driving force behind evolution?
Answer:
climate change
Explanation:
climate change is driving force of evolution because when the climate is changed the animal and human need to adapt to it's natural change.
Which of the following is considered a standard unit of length in the United States?
O square inch
O acre
O cubic yard
O yard
Answer:
Yard . I hope this helped:))
How many atoms are in 7.0 g of Ne?
Answer:
2.11×10²³ atoms.
Explanation:
From the question given above, the following data were obtained:
Mass of Ne = 7 g
Number of atoms =?
Recall:
1 mole of Ne = 6.02×10²³ atoms
1 mole of Ne = 20 g
Thus,
20 g of Ne = 6.02×10²³ atoms
Finally, we shall determine the number of atoms in 7 g of Ne. This can be obtained as follow:
20 g of Ne = 6.02×10²³ atoms
Therefore,
7 g of Ne = (7 × 6.02×10²³) / 20
7 g of Ne = 2.11×10²³ atoms
Thus, 7 g of Ne contains 2.11×10²³ atoms.
In the following reaction, Zn is Zn(s) H2SO4(aq) --> ZnSO4(aq) H2(g) A.Reduced B.Oxidized C.This is not a redox reaction D.An oxidizing agent
Answer: The correct option is B) oxidized
Explanation:
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously.
The oxidation reaction is defined as the reaction in which a chemical species loses electrons in a chemical reaction. It occurs when the oxidation number of a species increases.
A reduction reaction is defined as the reaction in which a chemical species gains electrons in a chemical reaction. It occurs when the oxidation number of a species decreases.
For the given chemical reaction:
[tex]Zn+H_2SO_4+S\rightarrow ZnSO_4+H_2[/tex]
On the reactant side:
Oxidation number of H = +1
Oxidation number of Zn = 0
Oxidation number of S = +6
Oxidation number of O = -2
On the product side:
Oxidation number of H = 0
Oxidation number of Zn = +2
Oxidation number of S = +6
Oxidation number of O = -2
As the oxidation number of Zn is increasing from 0 to +2. Thus, it is getting oxidized. Similarly, the oxidation number of H is decreasing from +1 to 0. Thus, it is getting reduced.
Hence, the correct option is B) oxidized
How many milliliters of a 0.40%(w/v) solution of nalorphine must be injected to obtain a dose of 1.5 mg?
Answer:
0.375mL of solution of nalorphine must be injected
Explanation:
A solution of 0.40% (w/v) contains 0.40g of solute (In this case, nalorphine), in 100mL of solution. To obtain 1.5mg of nalorphine = 1.5x10⁻³g of nalorphine are needed:
1.5x10⁻³g * (100mL / 0.40g) =
0.375mL of solution of nalorphine must be injectedDetermine the mass in grams of 3.27 × 10²¹ atoms of arsenic. (The mass of one mole of arsenic is 74.92 g.)
Explanation:
74.92 g.
(The mass of one mole of arsenic is 74.92 g.
ACTUAL YIELD VS THEORETICAL YIELD?
Actual yield over theoretical yield, then multiply by 100
What are the lengths of the diagonals of the kite?
The answer ( 13 and 8 )
x²=5²+12²
x²=25+144
x²=169
x=13
x²=5²+6²
x²=25+36
x²=61
x=7.8
x=8
When an electron moves up to higher energy levels, the atom Choose... a photon of light whereas the atom Choose... a photon of light when an electron drops to a lower energy level. The photons emitted from an atom appear as
Answer:
Explanation:
When an electron moves from a lower energy level to a higher energy level, energy is absorbed by the atom. When an electron moves from a higher to a lower energy level, energy is released and photon is emitted.
this emitted photon is depicted as a small wave-packet being expelled by the atom in a well-defined direction.
Consider an atom that has an electron in an excited state. The electron falls to a lower energy level. What effect does that have on the electron?
A.The electron releases energy in the form of light.
B.The electron absorbs energy in the form of light.
C.The electron retains its energy without any change.
D.The electron transfers its energy to other electrons.
Answer:
c it does not change the energy state
Explanation:
A scientist collects a sample that has 2.00 × 1014 molecules of carbon dioxide gas.How many grams is this, given that the molar mass of CO2 is 44.01 g/mol?
Answer:
1.46 × 10⁻⁸ g
Explanation:
Step 1: Given data
Molecules of CO₂: 2.00 × 10¹⁴ molecules
Step 2: Convert molecules to moles
We need a conversion factor: Avogadro's number. There are 6.02 × 10²³ molecules in 1 mole of molecules.
2.00 × 10¹⁴ molecules × 1 mol/6.02 × 10²³ = 3.32 × 10⁻¹⁰ mol
Step 3: Convert moles to mass
We need a conversion factor: the molar mass. The molar mass of CO₂is 44.01 g/mol.
3.32 × 10⁻¹⁰ mol × 44.01 g/mol = 1.46 × 10⁻⁸ g
Organic compounds undergo a variety of different reactions, including substitution, addition, elimination, and rearrangement. An atom or a group of atoms in a molecule is replaced by another atom or a group of atoms in a substitution reaction. In an addition reaction, two molecules combine to yield a single molecule. Addition reactions occur at double or triple bonds. An elimination reaction can be thought of as the reverse of an addition reaction. It involves the removal of two atoms or groups from a molecule. A rearrangement reaction occurs when bonds in the molecule are broken and new bonds are formed, converting it to its isomer. Classify the following characteristics of the organic reactions according to the type of organic reaction.
a. Reactions involving the replacement of one atom or group of atoms.
b. Reactions involving removal of two atoms or groups from a molecule.
c. Products show increased bond order between two adjacent atoms.
d. Reactant requires presence of a π bond.
e. Product is the structural isomer of the reactant.
1. Substitution reaction
2. Addition reaction
3. Elimination reaction
4. Rearrangement reaction
Answer:
Reactions involving the replacement of one atom or group of atoms. - Substitution reaction
Reactions involving removal of two atoms or groups from a molecule - Elimination reaction
Products show increased bond order between two adjacent atoms - Elimination reaction
Reactant requires presence of a π bond - Addition reaction
Product is the structural isomer of the reactant - Rearrangement reaction
Explanation:
When an atom or a group of atoms is replaced by another in a reaction, then such is a substitution reaction. A typical example is the halogenation of alkanes.
A reaction involving the removal of two atoms or groups from a molecule resulting in increased bond order of products is called an elimination reaction. A typical example of such is dehydrohalogenation of alkyl halides.
Any reaction that involves a pi bond is an addition reaction because a molecule is added across the pi bond. A typical example is hydrogenation of alkenes.
Rearrangement reactions yield isomers of a molecule. Rearrangement may involve alkyl or hydride shifts in molecules.
Reactions involving the replacement of one atom or group of atoms is substitution reaction, reactions involving removal of two atoms or groups from a molecule and products show increased bond order between two adjacent atoms is elimination reaction, reactant requires presence of a π bond in addition reaction and product is the structural isomer of the reactant is rearrangement reaction.
What is chemical reaction?Chemical reactions are those reactions in which reactants undergoes through a variety of changes for the formation of new product.
Substitution reaction: In this reaction any atom or molecule of reactant is replaced by any outside atom or molecule.Addition reaction: In this reaction addition of any reagent takes place across the double or triple bond of any reactant for the formation of product.Elimination reaction: In this reaction any molecule or two atoms will eliminate from the reactant as a result of which we get a bond order increased product.Rearrangement reaction: In this reaction atoms or bonds of a reactant get rearranged for the formation of new product.Hence, classification of above points are done according to their characteristics.
To know more about chemical reactions, visit the below link:
https://brainly.com/question/26018275
This question is concerned with the following oxides
• Sulfur dioxide
• Carbon monoxide
• Lithium oxide
• Aluminum (III) oxide
Which of the above oxides will not react with hydrochloric acid but will react with aqueous
sodium hydroxide?
Answer:
hi I used your code you got it
the mixture of base and acid
Answer:
Mixture of a Strong Acid and a Strong Base
On mixing a strong acid and strong base neutralization (pH = 7) takes place. The resulting solution may be an acid or base depending on the Concentration. Say, N1, V1 is the strength and volume of the strong acid and N2, V2 is the strength and volume of the strong base
Explanation:
Most introductory chemistry books will teach that the reaction between an acid and a base is called neutralization, and the products formed are water and a salt
If the Air Pressure on a mountain Is 0.3 atm what is this value mmHg? 1atm = 760mmHg = 101kPa
Answer:
IS IT MULTIPLE CHOICE
Explanation:
The value of keq for the following reaction is 0.25
SO2(g) + NO2(g) _ SO3(g) + NO(g)
What is the value of at the same temperature if we multiply the reaction by 2
you have 4.600x 10^1 ml of a kcl solution which has been made up in 6.0000x10^-1 g/ml solution.you are asked to determine the %v/v/v of the kcl solution.
Answer: The %v/v of the given KCl solution is 7.6%.
Explanation:
Given: Volume of solute = [tex]4.6 \times 10^{1} ml[/tex]
Volume of solution = [tex]6.0 \times 10^{-1} g/ml[/tex]
Formula used to calculate %v/v is as follows.
[tex]\frac{volume of solute}{volume of solution} \times 100[/tex]
Substitute the values into above formula as follows.
[tex]\frac{volume of solute}{volume of solution} \times 100\\\frac{4.6 \times 10^{1}}{6.0 \times 10^{-1}} \times 100\\= 7.6[/tex]
Thus. we can conclude that the %v/v of the given KCl solution is 7.6%.
A tank at is filled with of sulfur tetrafluoride gas and of sulfur hexafluoride gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction of each gas. Round each of your answers to significant digits.
The question is incomplete, the complete question is:
A 7.00 L tank at [tex]21.4^oC[/tex] is filled with 5.43 g of sulfur hexafluoride gas and 14.2 g of sulfur tetrafluoride gas. You can assume both gases behave as ideal gases under these conditions. Calculate the mole fraction and partial pressure of each gas. Round each of your answers to significant digits.
Answer: The mole fraction of sulfur hexafluoride is 0.221 and that of sulfur tetrafluoride is 0.779
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
For sulfur hexafluoride:Given mass of sulfur hexafluoride = 5.43 g
Molar mass of sulfur hexafluoride = 146.06 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of sulfur hexafluoride}=\frac{5.43g}{146.06g/mol}=0.0372mol[/tex]
For sulfur tetrafluoride:Given mass of sulfur tetrafluoride = 14.2 g
Molar mass of sulfur tetrafluoride = 108.07 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of sulfur tetrafluoride }=\frac{14.2g}{108.07g/mol}=0.1314mol[/tex]
Total moles of gas in the tank = [0.0372+ 0.1314] mol = 0.1686 mol
Mole fraction is defined as the moles of a component present in the total moles of a solution. It is given by the equation:
[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex] .....(2)
where n is the number of moles
Putting values in equation 2, we get:
[tex]\chi_{SF_6}=\frac{0.0372}{0.1686}=0.221[/tex]
[tex]\chi_{SF_4}=\frac{0.1314}{0.1686}=0.779[/tex]
Hence, the mole fraction of sulfur hexafluoride is 0.221 and that of sulfur tetrafluoride is 0.779
Which of the following is NOT likely to cause a change in average annual temperatures on Earth?
a. Human activity. b. Solar eclipses.
c. Photosynthesis by plants and algae. d. Strength of solar radiation.
Answer:
i think C is the answer
Explanation:
The change in average annual temperatures on earth will be due to "photosynthesis by plants and algae".
What is photosynthesis?Photosynthesis can be defined as a process in which plants, as well as other organisms, as well as other organisms, utilize to transform sunlight into chemical energy which can then be released to power the organism's activities using cellular respiration.
What is plants?
Plants seem to be mostly photosynthetic eukaryotes belonging to the plantae kingdom.
Therefore, photosynthesis cannot change in average annual temperature on Earth.
To know more about photosynthesis.
https://brainly.com/question/1388366
#SPJ2
At 50.0 oC, a reinforced tank contains 675.5 grams of gaseous argon and 465.0 g of gaseous molecular chlorine with a total pressure of 4.00 atm. Calculate the following:
a. How many moles of Ar are in the tank?
b. How many moles of Cl, are in the tank?
c. Total moles of gas in the tank.
d. The mole fraction of Ar.
e. The mole fraction of Cl2.
f. The Partial Pressure of Ar.
g. The Partial Pressure of Cl2.
Answer:
For (a): The moles of Ar is 16.94 moles
For (b): The moles of [tex]Cl_2[/tex] is 16.94 moles
For (c): The total number of moles in a tank is 23.47 moles
For (d): The mole fraction of Ar is 0.722
For (e): The mole fraction of [tex]Cl_2[/tex] is 0.278
For (f): The partial pressure of Ar is 2.888 atm
For (g): The partial pressure of [tex]Cl_2[/tex] is 1.112 atm
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
For (a):Given mass of Ar = 675.5 g
Molar mass of Ar = 39.95 g/mol
Plugging values in equation 1:
[tex]\text{Moles of Ar}=\frac{675.5g}{39.95g/mol}=16.91 mol[/tex]
For (b):Given mass of [tex]Cl_2[/tex] = 465.0 g
Molar mass of [tex]Cl_2[/tex] = 70.9 g/mol
Plugging values in equation 1:
[tex]\text{Moles of }Cl_2=\frac{465.0g}{70.9g/mol}=6.56 mol[/tex]
For (c):Total moles of gas in the tank = [16.91 + 6.56] mol = 23.47 mol
Mole fraction is defined as the moles of a component present in the total moles of a solution. It is given by the equation:
[tex]\chi_A=\frac{n_A}{n_A+n_B}[/tex] .....(2)
where n is the number of moles
For (d):Moles of Ar = 16.94 moles
Total moles of gas in the tank = 23.47 mol
Putting values in equation 2, we get:
[tex]\chi_{Ar}=\frac{16.94}{23.47}\\\\\chi_{Ar}=0.722[/tex]
For (e):Total mole fraction of the system is always 1
Mole fraction of [tex]Cl_2[/tex] = [1 - 0.722] = 0.278
Raoult's law is the law used to calculate the partial pressure of the individual gases present in the mixture.
The equation for Raoult's law follows:
[tex]p_A=\chi_A\times p_T[/tex] .....(3)
where [tex]p_A[/tex] is the partial pressure of component A in the mixture and [tex]p_T[/tex] is the total partial pressure of the mixture
For (f):We are given:
[tex]\chi_{Ar}=0.722\\p_T=4.00atm[/tex]
Putting values in equation 3, we get:
[tex]p_{Ar}=0.722\times 4.00atm\\\\p_{Ar}=2.888atm[/tex]
For (g):We are given:
[tex]\chi_{Cl_2}=0.278\\p_T=4.00atm[/tex]
Putting values in equation 3, we get:
[tex]p_{Cl_2}=0.278\times 4.00atm\\\\p_{Cl_2}=1.112atm[/tex]
Ammonium sulfate (NH4)2SO4 is made by reacting 25.0 L of 3.0 mol/L H2SO4 with 3.1× 103 L of NH3 at a pressure of 0.68 atm and a temperature of 298 K according to the following reaction .
NH3(g) + H2SO4(aq) → (NH4)2SO4 (aq)
How many grams of ammonium sulfate are produced?
Answer: The mass of [tex](NH_4)_2SO_4[/tex] produced is 9910.5 g
Explanation:
For [tex]H_2SO_4[/tex]:Molarity is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Moles}}{\text{Volume}}[/tex] ......(1)
Molarity of [tex]H_2SO_4[/tex] = 3.0 M
Volume of solution = 25.0 L
Putting values in equation 1, we get:
[tex]\text{Moles of }H_2SO_4=(3.0mol/L\times 25.0L)=75mol[/tex]
For [tex]NH_3[/tex]:The ideal gas equation is given as:
[tex]PV=nRT[/tex] .......(2)
where,
P = pressure of the gas = 0.68 atm
V = volume of gas = [tex]3.1\times 10^3L[/tex]
n = number of moles of gas = ? moles
R = Gas constant = 0.0821 L.atm/mol.K
T = temperature of the gas = 298 K
Putting values in equation 2, we get:
[tex]0.68atm\times 3.1\times 10^3L=n\times 0.0821L.atm/mol.K\times 298K\\\\n=\frac{0.68\times 3.1\times 10^3}{0.0821\times 298}=86.16mol[/tex]
For the given chemical equation:
[tex]NH_3(g)+H_2SO_4(aq)\rightarrow (NH_4)_2SO_4(aq)[/tex]
By stoichiometry of the reaction:
If 1 mole of [tex]H_2SO_4[/tex] reacts with 1 mole of [tex]NH_3[/tex]
So, 75 moles of [tex]H_2SO_4[/tex] will react with = [tex]\frac{1}{1}\times 75=75mol[/tex] of [tex]NH_3[/tex]
As the given amount of [tex]NH_3[/tex] is more than the required amount. Thus, it is present in excess and is considered as an excess reagent
Thus, [tex]H_2SO_4[/tex] is considered a limiting reagent because it limits the formation of the product.
By the stoichiometry of the reaction:
If 1 mole of [tex]H_2SO_4[/tex] produces 1 mole of [tex](NH_4)_2SO_4[/tex]
So, 75 moles of [tex]H_2SO_4[/tex] will produce = [tex]\frac{1}{1}\times 75=75mol[/tex] of [tex](NH_4)_2SO_4[/tex]
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
We know, molar mass of [tex](NH_4)_2SO_4[/tex] = 132.14 g/mol
Putting values in above equation, we get:
[tex]\text{Mass of }(NH_4)_2SO_4=(75mol\times 132.14g/mol)=9910.5g[/tex]
Hence, the mass of [tex](NH_4)_2SO_4[/tex] produced is 9910.5 g
an element E forms a hydride EH3, which contains 90% of E by mass. what is the relative atomic mass ?
Answer:
27 g/mol of E
Explanation:
Note that percentage by mass= mass of each element present. So, since there is 90% of E, there is 90g of E present. By implication, there are 10g of H corresponding to 10%H. Note that there is 100g of EH3
1 moles of E corresponds to 90 g of E
Mole ratio of E: H= 1:3
Thus
Number of moles of H = 10g/ 1g/ mol = 10 moles of H
Since E contains 1/3 the number of moles of H
Number of moles of E = 1/3 × 10 = 3.33 moles of E
Molar mass of E= mass of E/ number of moles of E
Since mass of E = 90 g
Molar mass of E = 90g/3.33 moles
Molar mass of E = 27 g/mol
What is the speed of a wave with a frequency of 2 Hz and a wavelength of 87m (subject is science) pls answer fast
Answer:
43.5
Explanation:
Hope that helps