Solution :
Let the probability laser works = p
The probability that the system works = [tex]$P(\text{all three component works}) = p^3 $[/tex]
= 0.99
Therefore, p = 0.9967
Now for the above probability critical z = -2.72
Hence, the mean life is equal to = [tex]10,000 + 2.72 \times 600[/tex]
= [tex]10,000+1632[/tex]
[tex]=11,632[/tex]
According to the Fundamental Theorem of Algebra, which polynomial function has exactly 8 roots?
PLS HELP IM TIMED
Answer:
Option (1)
Step-by-step explanation:
Fundamental theorem of Algebra states degree of the polynomial defines the number of roots of the polynomial.
8 roots means degree of the polynomial = 8
Option (1)
f(x) = (3x² - 4x - 5)(2x⁶- 5)
When we multiply (3x²) and (2x⁶),
(3x²)(2x⁶) = 6x⁸
Therefore, degree of the polynomial = 8
And number of roots = 8
Option (2)
f(x) = (3x⁴ + 2x)⁴
By solving the expression,
Leading term of the polynomial = (3x⁴)⁴
= 81x¹⁶
Therefore, degree of the polynomial = 16
And number of roots = 16
Option (3)
f(x) = (4x² - 7)³
Leading term of the polynomial = (4x²)³
= 64x⁶
Degree of the polynomial = 6
Number of roots = 6
Option (4)
f(x) = (6x⁸ - 4x⁵ - 1)(3x² - 4)
By simplifying the expression,
Leading term of the polynomial = (6x⁸)(3x²)
= 18x¹⁰
Degree of the polynomial = 10
Therefore, number of roots = 10
It's camping season! Ernie and Bert set up their tents 15 m from
each other. Ernie has Tent 1 and Bert has Tent 2. The angle
between the line of sight from Bert's tent to the shower and the
line of sight from Bert's tent to Ernie's tent is 78 degrees. If
Ernie's tent is 19m away from the shower, is Bert 's tent closer or
further away from the shower and by how much? In your
calculations, round your angles to the nearest whole degree and
side measurements to the nearest tenth of a metre.
1
2
Answer:
The answer is "21.6".
Step-by-step explanation:
Let A stand for tent 1
Let B stand for tent 2
Let C be a shower
Using cosine formula:
[tex]c= \sqrt{b^2 +a^2 - 2ab\cdot \cos(C)}\\\\[/tex]
[tex]= \sqrt{(19)^2 + (15)^2 - 2\cdot 19 \cdot 15 \cdot \cos(78^{\circ})}\\\\= \sqrt{361 + 225 - 570\cdot \cos(78^{\circ})}\\\\ = \sqrt{586- 570\cdot \cos(78^{\circ})}\\\\= 21.6\\\\[/tex]
Therefore, you need to reduce the similarity from B to C which is the length from tent 2 to shower:
Tent 2 Distance to Dusk = 21.6m
Bert's tent is 21.6m away from the shower
Write the equation of the line for the graph shown below, please
Answer:
Given the proposed interrogate, as well as the graph provided, the correct answer is B. Y = 1/2 x + 4
Step-by-step explanation:
To evaluate such, a comprehension of linear Cartesian planes are obligated:
Slopes = rise/run
X- intercept: The peculiar point in which linear data is observed to intersect the x-axis.
Y- intercept: The peculiar point in which linear data is observed to intersect the y-axis.
Slope: 1/2 as for every individual space endeavored, a space of 2 to the right is required.
Y- intercept: (4,0)
Thus, the ameliorated answer to such interrogate is acknowledged as B. Y = 1/2 x + 4.
*I hope this helps.
For this question it’s asking for it in slope intercept form. So all you need to find is the slope and the y intercept.To find the y int look at where the line passes y. In this case it is y=4, then find slope by finding change in y/ change once which is 1/2, so you get y=1/2x+4
David can receive one of the following two payment streams:
i. 100 at time 0, 200 at time n, and 300 at time 2n
ii. 600 at time 1 0
At an annual effective interest rate of i, the present values of the two streams arc equal. Given v^n = 0.75941.
Determine i.
Answer:
3.51%
Step-by-step explanation:
From the given information:
For the first stream, the present value can be computed as:
[tex]= 100 +\dfrac{200}{(1+i)^n}+ \dfrac{300}{(1+i)^{2n}}[/tex]
Present value for the second stream is:
[tex]=\dfrac{600}{(1+i)^{10}}[/tex]
Relating the above two equations together;
[tex]100 +\dfrac{200}{(1+i)^n}+ \dfrac{300}{(1+i)^{2n}} =\dfrac{600}{(1+i)^{10}}[/tex]
consider [tex]v = \dfrac{1}{1+i}[/tex], Then:
[tex]\implies 100+200v^n + 300v^{2n} = 600 v^{10}[/tex]
where:
[tex]v^n = 0.75941[/tex]
Now;
[tex]\implies 100+200(0.75941) + 300(0.75941))^2 = 600 (v)^{10}[/tex]
[tex](v)^{10} = \dfrac{100+200(0.75941) + 300(0.75941))^2 }{600}[/tex]
[tex](v)^{10} = 0.7082[/tex]
[tex](v) = \sqrt[10]{0.7082}[/tex]
v = 0.9661
Recall that:
[tex]v = \dfrac{1}{1+i}[/tex]
We can say that:
[tex]\dfrac{1}{1+i} = 0.9661[/tex]
[tex]1 = 0.9661(1+i) \\ \\ 0.9661 + 0.9661 i = 1 \\ \\ 0.9661 i = 1 - 0.9661 \\ \\ 0.9661 i = 0.0339 \\ \\ i = \dfrac{0.0339}{0.9661} \\ \\ i = 0.0351 \\ \\ \mathbf{i = 3.51\%}[/tex]
Which table has a constant of proportionality between y and x equal to 0.3?
Answer:
C
Step-by-step explanation:
you can divide y/x
1.2/4= 0.3
2.4/8= 0.3
3.9/13= 0.3
please answer quickly!! and no links please!
Step-by-step explanation:
here are the answers for your problems
Find the missing length indicatedOk
Answer:
x = 135
Step-by-step explanation:
The gradient of a straight line passes through points (6,0) and (0,q) is -3/2. Find the value of q
Answer:
Step-by-step explanation:
gradient is essentially the slope of a straight line.
Use (y2-y1)/(x2-x1):
(q-0)/(0-6) = -3/2
q = 9
Refer to the picture above
Answer:
3.14
Step-by-step explanation:
First find the circumference of the circle:
[tex]2\pi r[/tex] = Circumference.
[tex]2 * \pi * 6[/tex] = [tex]12\pi[/tex]
Find the ratio of the angle in relation to the entire circle:
[tex]30^o[/tex] is what we have. So:
[tex]\frac{30^o}{360^o} = \frac{1}{12}[/tex]
Use the ratio and multiply the circumference to find the length:
[tex]12\pi * \frac{1}{12}[/tex] = [tex]\pi[/tex]
Round answer to the hundredth:
[tex]\pi = 3.14[/tex]
Determine the type of quadrilateral given the following coordinates. Show and explain all steps to prove your answer. A(2, 3) B(-1, 4) C(0, 2) D(-3, 3)
Answer:
The quadrilateral is a parallelogram
Step-by-step explanation:
If you plot the points on the graph it resembles the shape of a parallelogram. It prove this you need to check if the lengths are correct. The slope between point A and point B is 1/3 and the slope between point C and point D is also 1.3. The slope between point B and D is 1/2 and the slope between point A and point C is also 1/2
hope this helps
The quadrilateral is a parallelogram from the graph and the coordinates formed are parallel and the opposite sides have equal length.
What is a parallelogram?A parallelogram is a quadrilateral whose opposite sides are parallel and equal in length. The opposite angles of a parallelogram are equal. The diagonals of a parallelogram bisect each other.
For the given situation,
The coordinates are A(2, 3) B(-1, 4) C(0, 2) D(-3, 3).
The graph below shows these points on the coordinates and the points ABDC forms the parallelogram.
This can be proved by finding the distance between these points.
The formula of distance between two points is
[tex]AB=\sqrt{(x2-x1)^{2}+ (y2-y1)^{2}}[/tex]
Distance AB is
⇒ [tex]AB=\sqrt{(-1-2)^{2}+ (4-3)^{2}}[/tex]
⇒ [tex]AB=\sqrt{(-3)^{2}+ (1)^{2}}[/tex]
⇒ [tex]AB=\sqrt{9+ 1}[/tex]
⇒ [tex]AB=\sqrt{10}[/tex]
Distance BD is
⇒ [tex]BD=\sqrt{(-3+1)^{2}+ (3-4)^{2}}[/tex]
⇒ [tex]BD=\sqrt{(-2)^{2}+ (-1)^{2}}[/tex]
⇒ [tex]BD=\sqrt{4+ 1}[/tex]
⇒ [tex]BD=\sqrt{5}[/tex]
Distance DC is
⇒ [tex]DC=\sqrt{(0+3)^{2}+ (3-2)^{2}}[/tex]
⇒ [tex]DC=\sqrt{(3)^{2}+ (1)^{2}}[/tex]
⇒ [tex]DC=\sqrt{9+ 1}[/tex]
⇒ [tex]DC=\sqrt{10}[/tex]
Distance CA is
⇒ [tex]CA=\sqrt{(2-0)^{2}+ (3-2)^{2}}[/tex]
⇒ [tex]CA=\sqrt{(2)^{2}+ (1)^{2}}[/tex]
⇒ [tex]CA=\sqrt{4+ 1}[/tex]
⇒ [tex]CA=\sqrt{5}[/tex]
Thus the lengths of the opposite sides are equal, the given points forms the parallelogram.
Hence we can conclude that the quadrilateral is a parallelogram from the graph and the coordinates formed are parallel and the opposite sides have equal length.
Learn more about parallelogram here
https://brainly.com/question/16056863
#SPJ2
if √3CosA = sin A , find the acute angle A
Answer:
Here is your answer.....
Hope it helps you....
If you have a right triangle with legs a =6 and b= 8, what is the value of the hypotenuse? show work.
Answer:
10
Step-by-step explanation:
1. [tex]6^{2} + 8^{2} = c^{2}[/tex]
2 [tex]100 = c^{2}[/tex]
3. c = 10
Camille is attending a fundraiser. She pays for her admission and buys raffle tickets for $5dollar each. If she buys 10 raffle tickets, then she would spend a total of $135 at the fundraiser.
The number S of dollars Camille spends at the fundraiser is a function of r, the number of raffle tickets she buys.
Write the function's formula.
Answer:
50r + a = 135
Admission cost was $85
Step-by-step explanation:
We are missing a crucial amount of information here. It is how much she spent on her admission. We can create an equation symbolizing this problem.
5r + a = 135
We know that she purchases 10 tickets so we can substitute that in r and solve for a.
50 + a = 135
a = 85
Best of Luck!
If in 1 month you can make 6 carpets, how many days will it take for making 10 carpets?
Si en 1 mes puedes hacer 6 alfombras, ¿cuántos días se necesitarán para hacer 10 alfombras?
Step-by-step explanation:
6 carpets=1month
10 carpets=?
1month=31 days
10 /6*31
51
Step-by-step explanatio
How long will it take for a home improvement loan for 22,800to earn interest of 608.00at 8 %ordinary interest
9514 1404 393
Answer:
120 days
Step-by-step explanation:
Using the formula for simple interest, we can solve for t:
I = Prt
t = I/(Pr) = 608/(22800×.08) = 608/1824 = 1/3 . . . . year
For "ordinary interest", a year is considered to be 360 days, so 1/3 year is ...
(1/3)(360 days) = 120 days
It will take 120 days for the loan to earn 608 in interest.
Absolute Value Equations
Answer:
4 is E, 5 is A
Step-by-step explanation:
4) Divide both sides by 5 to get |2x + 1| = 11, then solve for x to get 5 and -6.
5) Add 7 to both sides to get ½|4x - 8| = 10. Multiply both sides by 2 to get |4x - 8| = 20, then solve for x to get 7 and -3.
PLZZZZZZ HELP WILL GIVE BRAIN THING AND EXTRA POINTS !What is the least common denominator of the rational expressions below?
Answer:
D is the least common denominator
Solve the equation 10 + y√ = 14
9514 1404 393
Answer:
y = 16
Step-by-step explanation:
Perhaps you want to solve ...
10 +√y = 14
√y = 4 . . . . . . subtract 10
y = 4² = 16 . . . square both sides
Danielle needs to walk 3 miles. If she wants to reach her destination in 45
minutes ( hour), how fast does she need to walk?
A. 135 miles
per hour
B. 2.25 miles per hour
C. 15 miles per hour
D. 4 miles per hour
Answer:
4 miles per hour
Step-by-step explanation:
3 miles
Change the 45 minutes to hours
45 minutes * 1 hour/60 minutes = 3/4 hour
3 miles ÷ 3/4 hour
Copy dot flip
3 * 4/3
4 miles per hour
Two containers designed to hold water are side by side, both in the shape of a
cylinder. Container A has a diameter of 10 feet and a height of 8 feet. Container B has
a diameter of 12 feet and a height of 6 feet. Container A is full of water and the water
is pumped into Container B until Container A is empty.
To the nearest tenth, what is the percent of Container B that is empty after the
pumping is complete?
Container A
play
Container B
10
d12
8
h6
O
Answer: Volume of Cylinder A is pi times the area of the base times the height
π r2 h = (3.1416)(4)(4)(15) = 753.98 ft3
Volume of Cylinder B is likewise pi times the area of the base times the height
π r2 h = (3.1416)(6)(6)(7) = 791.68 ft3
After pumping all of Cyl A into Cyl B
there will remain empty space in B 791.68 – 753.98 = 37.7 ft3
The percentage this empty space is
of the entire volume is 37.7 / 791.68 = 0.0476 which is 4.8% when rounded to the nearest tenth
.
Step-by-step explanation: I hope that help you.
Note: you may not need to type in the percent sign.
===========================================================
Explanation:
Let's find the volume of water in container A.
Use the cylinder volume formula to get
V = pi*r^2*h
V = pi*5^2*8
V = 200pi
The full capacity of tank A is 200pi cubic feet, and this is the amount of water in the tank since it's completely full.
We have 200pi cubic feet of water transfer to tank B. We'll keep this value in mind for later.
-----------------------
Now find the volume of cylinder B
V = pi*r^2*h
V = pi*6^2*6
V = 216pi
Despite being shorter, tank B can hold more water (since it's more wider).
-----------------------
Now divide the results of each section
(200pi)/(216pi) = 200/216 = 25/27 = 0.9259 = 92.59%
This shows us that 92.59% of tank B is 200pi cubic feet of water.
In other words, when all of tank A goes into tank B, we'll have tank B roughly 92.59% full.
This means the percentage of empty space (aka air) in tank B at this point is approximately 100% - 92.59% = 7.41%
Then finally, this value rounds to 7.4% when rounding to the nearest tenth of a percent.
Select the correct answer.
The Richter scale measures the magnitude, M, of an earthquake as a function of its intensity, I, and the intensity of a reference earthquake,
M= log (I/I)
.Which equation calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake?
Answer:
[tex]M = \log(10000)[/tex]
Step-by-step explanation:
Given
[tex]M = \log(\frac{I}{I_o})[/tex]
[tex]I = 10000I_o[/tex] ---- intensity is 10000 times reference earthquake
Required
The resulting equation
We have:
[tex]M = \log(\frac{I}{I_o})[/tex]
Substitute the right values
[tex]M = \log(\frac{10000I_o}{I_o})[/tex]
[tex]M = \log(10000)[/tex]
The equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Since the magnitude of an earthquake on the Richter sscale is M = ㏒(I/I₀) where
I = intensity of eartquake and I₀ = reference earthquake intensity.Since we require the magnitude when the intensity is 10,000 times the reference intensity, we have that I = 10000I₀.
Magnitude of earthquakeSo, substituting these into the equation for M, we have
M = ㏒(I/I₀)
M = ㏒(10000I₀./I₀)
M = ㏒10000
So, the equation that calculates the magnitude of an earthquake with an intensity 10,000 times that of the reference earthquake is A. M = ㏒10000
Learn more about magnitude of an earthquake here:
https://brainly.com/question/3457285
How far can you travel in 19 hours at 63 mph
Answer:
1197 miles.
Step by step explanation:Speed(s) = 63 mph
Time(t) = 19 hours
Distance(d) = ?
We know,
D = S × T
= 63 × 19
= 1197 miles
What is the equation of the line that passes through the point (-4, 2) and has a
slope of -2?
Step-by-step explanation:
use the equation of the straight line
y-y1=m (x-x1)
y-2=-2(x+4)
y-2= -2x-8
y= -2x-8+2
y= -2x-6
I hope this helps
Please answer this question. Will give brainiest fast
Answer: The answer is C the one you chose
the expectation students often have when doing the coin flip experiment is that thye will flip exactly 5 heads and 5 tails because there is 50% chance of flipping each. Is this a realistic expectation
Answer:
No
Explanation:
A coin which has a head and a tail has 1/2 probability of each which is a 50% chance of getting either a head or a tail. This means that given two sides of a coin, probability looks at the number of favorable outcomes and total number of outcomes, a formula that reflects a pattern seen in past experiences. Probability isn't absolute but relative. When we say there is a 50% chance of getting a head in a coin flip, it is relative to past experiences but doesn't assure of particular future occurrences regarding the coin flip.
I need help with this
Answer: 13.5 Okay! Here's the method count the legs of the right triangle
The formula we'll use will be
A^2 + B^2 = C^2
In this case we're counting by twos
The base is 11 so we times it by itself =110
The leg is 8.5 so we going to times itself to make 72.25 add those together so 110+ 72.25 = 182.25 then we \|-----
182.25
Then you have got ur answer of 13.5
Step-by-step explanation:
ng and
Segme
се
ne Ruler Postulate to find segment lengths.
e the Segment Addition Postulate to find segm
copy segments and compare segments for cong
find the length indicated.
1.
?
20
T.
U
V
93
trả :lờingu
Step-by-step explanation:
What would you do to isolate the variable in the equation below, using only one
step?
X + 9 = - 12
O Subtract 9 from both sides of the equation.
O Add 9 to both sides of the equation.
का
O Subtract 12 from both sides of the equation.
O Add 12 to both sides of the equation.
Answer:
O Subtract 9 from both sides of the equation.
Step-by-step explanation:
Notice that on the left hand side of the equation, you have two parts: X and 9. The variable is X, so we must do something to the 9 to remove it. Remember that we can cancel things by adding the negative of it. For example, 47+(-47)=0. Therefore, the opposite of 9 is -9. That essentially means subtracting 9.
A cone has a volume of 4000cm3
. Determine the height of the cone if the diameter of the cone
is 30 cm.
Answer:
17cm
Step-by-step explanation:
Given that the Volume of a cone is 4,000 cm³. And we need to determine the height of the cone , if the diameter is 30cm .
Diagram :-
[tex]\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(17.5,1.6){\sf{15cm }}\put(9.5,10){\sf{17\ cm }}\end{picture} [/tex]
Step 1: Using the formula of cone :-
The volume of cone is ,
[tex]\rm\implies Volume_{(cone)}=\dfrac{1}{3}\pi r^2h [/tex]
Step 2: Substitute the respective value :-
[tex]\rm\implies 4000cm^3 =\dfrac{1}{3}(3.14) ( h ) \bigg(\dfrac{30cm}{2}\bigg)^2 [/tex]
As Radius is half of diameter , therefore here r = 30cm/2 = 15cm .
Step 3: Simplify the RHS :-
[tex]\rm\implies 4000 cm^3 = \dfrac{1}{3}(3.14) ( h ) (15cm)^2\\ [/tex]
[tex]\rm\implies 4000 cm^3 = \dfrac{1}{3}(3.14) ( h ) 225cm^2\\ [/tex]
Step 4: Move all the constant nos. to one side
[tex]\rm\implies h =\dfrac{ 4000 \times 3}{ (3.14 )(225 )} cm \\[/tex]
[tex]\implies \boxed{\blue{\rm Height_{(cone)}= 16.98 \approx 17 cm }}[/tex]
Hence the height of the cone is 17cm .
The following data show the number of candies in 15 different bags.
35, 48, 36, 48, 43, 37, 43, 39, 45, 46, 40, 35, 50, 38, 48
Answer:
How should we proceed with this question