Consult Interactive Solution 27.18 to review a model for solving this problem. A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 653 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference

Answers

Answer 1

Answer:

Explanation:

In the given case for destructive interference , the condition is,

path difference = (2n+1)λ /2  where n is an integer and λ is wavelength

2 μ d = (2n+1)λ /2

Putting λ = 653 nm

for minimum thickness n = 0

2 μ d = 653 / 2 nm

= 326.5 nm

For constructive interference the condition is

2 μ d = n λ₁

326.5 nm = n λ₁

λ₁ = 326.5 / n  

For n = 1

λ₁ = 326.5 nm ,

or , 326.5nm .

Longest wavelength possible is 326.5


Related Questions

A lens is made with a focal length of -40 cm using a material with index of refraction 1.50. A second lens is made with the SAME GEOMETRY as the first lens, but using a material having refractive index of 2.00. What is the focal length of the second lens

Answers

Answer:

 f = - 20 cm

Explanation:

This exercise asks us for the focal length, which for a lens in air is

                  1 / f = (n₂-n₁) (1 / R₁ - 1 / R₂)

where n₂ is the refractive index of the material, n₁ is the refractive index of the medium surrounding the lens, R₁ and R₂ are the radii of the two surfaces.

In this exercise the medium that surrounds the lens is air n₁ = 1 and the lens material has an index of refraction n₂ = n = 1.50, let's substitute in the expression

                 - 1/40 = (n-1) (1 / R₁ -1 / R₂)

                (1 / R₁ - 1 / R₂) = - 1/40 (n-1)

let's calculate

               (1 / R₁ -1 / R₂) = - 1/40 (1.50 -1)

               (1 / R₁ -1 / R₂) = -1/20

 Now we change the construction material for one with refractive index

n = 2, keeping the radii,

              1 / f = (n-1) (1 / R₁-1 / R₂)

              1 / f = (n-1) (-1/20)

               

let's calculate

             1 / f = (2.00-1) (-1/20)

              1 / f = -1/20

              f = - 20 cm

An inductor is connected to the terminals of a battery that has an emf of 12.0 VV and negligible internal resistance. The current is 4.96 mAmA at 0.800 msms after the connection is completed. After a long time the current is 6.60 mAmA. Part A What is the resistance RR of the inductor

Answers

i

CHECK COMPLETE QUESTION BELOW

inductor is connected to the terminals of a battery that has an emf of 12.0 VV and negligible internal resistance. The current is 4.96 mAmA at 0.800 msms after the connection is completed. After a long time the current is 6.60 mAmA.

Part A)What is the resistance RR of the inductor

PART B) what is inductance L of the conductor

Answer:

A)R=1818.18 ohms

B)L=1.0446H

Explanation:

We were given inductor L with resistance R , there is a connection between the battery and the inductor with Emf of 12V, we can see that the circuit is equivalent to a simple RL circuit.

There is current of 4.96mA at 0.8ms, at the end of the connection the current increase to 6.60mA,

.

a)A)What is the resistance RR of the inductor?

The current flowing into RL circuit can be calculated using below expresion

i=ε/R[1-e⁻(R/L)t]

at t=∞ there is maximum current

i(max)= ε/R

Where ε emf of the battery

R is the resistance

R=ε/i(max)

= 12V/(6.60*10⁻³A)

R=1818.18 ohms

Therefore, the resistance R=1818.18 ohms

b)what is inductance L of the conductor?

i(t=0.80ms and 4.96mA

RT/L = ⁻ln[1- 1/t(max)]

Making L subject of formula we have

L=-RT/ln[1-i/i(max)]

If we substitute the values into the above expresion we have

L= -(1818.18 )*(8.0*10⁻⁴)/ln[1-4.96/6.60)]

L=1.0446H

Therefore, the inductor L=1.0446H

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.

Answers

Answer:

Answer:

A. Increasing the number of lines per length.

In a front-end collision, a 1500 kg car with shock-absorbing bumpers can withstand a maximumforce of 80 000 N before damage occurs. If the maximum speed for a non-damaging collision is4.0 km/h, by how much must the bumper be able to move relative to the car

Answers

Answer:

The bumper will be able to move by 0.01155m.

Explanation:

The magnitude of deceleration of the car in the front end collision.

[tex]a = \frac{F_m}{m} \\[/tex]

[tex]a = \frac{80000}{1500} \\[/tex]

[tex]a = 53.33[/tex]

This is the deceleration of the car that is generated to stop due to a front end collision.

4 km/h = 1.11 m/s

Now, the initial speed of the bumper in the relation of car, Vi = 0

Now, the initial speed of the bumper in the relation of car, Vf = 1.11 m/s

Use the below equation:

[tex]s = \frac{(Intitial \ speed)^2 – (Final \ speed)^2}{2a} \\[/tex]

[tex]s = \frac{(1.11)^2 – (0)}{2 \times 53.33} \\[/tex]

[tex]s = 0.01155 \\[/tex]

Thus, the bumper can move relative to the car is 0.01155 m .

If the x-position of a particle is measured with an uncertainty of 1.00×10-10 m, then what is the uncertainty of the momentum in this same direction? (Useful constant: h-bar = 1.05×10-34 Js.)

Answers

Answer:

The uncertainty in momentum is 5.25x 10^25Jsm

Explanation:

We know that

h bar = h/2π

So

1.05x 10^34=h/2pπ

h=1.05x 10^ 34(2π)=6.597x 10^-34Js

dp=(6.597x10^-34/4pπ)/(1x10^-10)

=5.25x10^-25 Jsm

hi guys!!! i have no more points, can someone nice guess all of these for me? :)
1.What happens to the ocean water before the precipitation part of the water cycle
2.During which stage of the water cycle does water from the ocean form clouds?
3.what is a runoff??
4.Which statement about oceans is incorrect? A.Evaporation occurs when water is warmed by the sun. B.Most evaporation and precipitation occur over the ocean. C.97 percent of Earth's water is fresh water from the ocean. D.Water leaves the ocean by the process of evaporation
5.How does most ocean water return to the ocean in the water cycle

tysm to u who answers :)

Answers

1. The ocean water collects back in the ocean.

2. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds.

3. an excessive amount of water flowing from downslope along earths surface

4. A.Evaporation occurs when water is warmed by the sun.

5. The water returns into the ocean by the water cycle . It evaporates , then it condensates , then it participates ( Rains ) and then goes back into the ocean.

Hope this answer correct ✌️

Two identical rooms in a house are connected by an open doorway. The temperatures in the two rooms are maintained at different values. Which room contains more air

Answers

Answer:

The room with the lower temperature

Explanation:

Using

PV=nRT

Since both the rooms same volume and are connected, so they will have same pressure

PV=nRT=constant

nT=Constant/R=constant

If T is more n has to be less

Thus, lower the temperature, more the number molecules.

A light beam has a wavelength of 330 nm in a material of refractive index 1.50. In a material of refractive index 2.50, its wavelength will be In a material of refractive index 2.50, its wavelength will be:_________
a. 495 nm .
b. 330 nm .
c. 220 nm .
d. 198 nm .
e. 132 nm .

Answers

Answer:

The wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm

d. 198 mm

Explanation:

Refractive index is given by;

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}}[/tex]

where;

[tex]\lambda_{vacuum}[/tex] is the wavelength of the light beam in vacuum

[tex]\lambda_{medium}[/tex] is the wavelength of the beam in a material

[tex]\mu= \frac{\lambda_{vacuum}}{\lambda _{medium}} \\\\\lambda_{vacuum} = \mu *\lambda _{medium}\\\\\ the \ wavelength \ of \ the \ light \ beam \ is \ constant \ in \ a \ vacuum\\\\ \mu_1 *\lambda _{medium}_1 = \mu_2 *\lambda _{medium}_2\\\\\lambda _{medium}_2 = \frac{ \mu_1 *\lambda _{medium}_1 }{ \mu_2} \\\\\lambda _{medium}_2 =\frac{1.5*330}{2.5} \\\\\lambda _{medium}_2 = 198 \ mm[/tex]

Therefore, the wavelength of the ligt beam in a material of refractive index 2.50 is 198 mm.

d. 198 mm

You have three resistors: R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω in parallel. Find the equivalent resistance for the combination

Answers

Answer:

4 / 7

Explanation:

1/total resistance = 1/1 + 1/2 + 1/4

= 1¾

total resistance = 1 ÷ 1¾

= 4/7

A fish appears to be 2.00 m below the surface of a pond when viewed almost directly above by a fisherman. What is the actual depth of the fish

Answers

Answer:

2,66

Explanation:

The refractive index= real depth/ apparent depth

real depth = refractive index * apparent depth

Let's assume index for water is 1.33

real depth = 2*1,33 = 2,66

By what length will a slab of concrete that is originally 18 m long contract when the temperature drops from 24°C to -16°C? The coefficient of linear thermal expansion for this concrete is 1.0 × 10-5 C-1.

Answers

Explanation:

According to Thermal Expansion of solids:

[tex]dl = \alpha \times l \times dt[/tex]

[tex]dl = {10}^{ - 5} \times 18 \times 40 [/tex]

[tex]dl = 7.2 \times {10}^{ - 3} [/tex]

A pair of narrow, parallel slits separated by 0.230 mm is illuminated by green light (λ = 546.1 nm). The interference pattern is observed on a screen 1.50 m away from the plane of the parallel slits.
A) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.
B) Calculate the distance between the first and second dark bands in the interference pattern.

Answers

Answer:

A) y = 3.56 mm

B) y = 3.56 mm

Explanation:

A) The distance from the central maximum to the first bright region can be found using Young's double-slit equation:

[tex] y = \frac{m\lambda L}{d} [/tex]

Where:

λ: is the wavelength = 546.1 nm

m: is first bright region = 1

L: is the distance between the screen and the plane of the parallel slits = 1.50 m

d: is the separation between the slits = 0.230 mm

[tex] y = \frac{m\lambda L}{d} = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]  

B) The distance between the first and second dark bands is:

[tex] \Delta y = \frac{\Delta m*\lambda L}{d} [/tex]

Where:

[tex] \Delta m = m_{2} - m_{1} = 2 - 1 = 1 [/tex]

[tex] \Delta y = \frac{1*546.1 \cdot 10^{-9} m*1.50 m}{0.230 \cdot 10^{-3} m} = 3.56 \cdot 10^{-3} m [/tex]      

I hope it helps you!

Changing the speed of a synchronous generator changes A) the frequency and amplitude of the output voltage. B) only the frequency of the output voltage. C) only the amplitude of the output voltage. D) only the phase of the output voltage.

Answers

Answer:

A) the frequency and amplitude of the output voltag

Explanation:

Changing the speed of a synchronous generator changes both the output voltage (amplitude of the wave) and frequency as they tend to increase.

Changing the speed regulator will change the engine throttle setting to maintain the speed.

While the power, torque, current, fuel flow rate and torque angle will have decreased.

A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

Explanation:

A) Vair = 1.3 L

B) Volume is not reasonable

Explanation:

A)

Assume

m to be total mass of the man

mp be the mass of the man that pulled out of the water

m1 be the mass above the water with the empty lung

m2 be the mass above the water with full lung

wp be the weight that the buoyant force opposes as a result of the air.

Va be the volume of air inside man's lungs

Fb be the buoyant force due to the air in the lung

given;

m = 78.5 kg

m1 = 3.2% × 78.5 = 2.5 kg

m2 = 4.85% × 78.5 = 3.8kg

But, mp = m2- m1

mp = 3.8 - 2.5

mp = 1.3kg

So using

Archimedes principle, the relation for formula for buoyant force as;

Fb = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

Fb = wp = 1.3× 9.81

Fb = 12.7N

But

Fb = (ρ_water × V_air × g)

So

Vair = Fb/(ρ_water × × g)

Vair = 12.7/(1000 × 9.81)

V_air = 1.3 × 10^(-3) m³

convert to litres

1 m³ = 1000 L

Thus;

V_air = 1.3× 10^(-3) × 1000

V_air = 1.3 L

But since the average lung capacity of an adult human being is about 6-7litres of air.

Thus, the calculated lung volume is not reasonable

Explanation:

Sammy is 5 feet and 5.3 inches tall.tall.what is sammy's height in metres?

Answers

Answer:

65.3

Explanation:

1 foot = 12 inches

Sammy is 5 feet tall.

5 feet = ? inches

Multiply the feet value by 12 to find in inches.

5 × 12

= 60

Add 5.3 inches to 60 inches.

60 + 5.3

= 65.3

Answer:

It will be 》》》》1.664716m

Consider two parallel wires where the magnitude of the left currentis 2 I0(io) and that of the right current is I0(io). Point A is midway between the wires,and B is an equal distance on the other side of the wires.
The ratio ofthe magnitude of the magnetic field at point A to that at point Bis________

Answers

Answer:

Explanation:

At the point midway between wires

magnetic field due to wire having current 2I₀

= 10⁻⁷ x 2 x2I₀ / r     where 2r is the distance between wires .

magnetic field due to wire having current I₀

= 10⁻⁷ x 4 I₀ / r

magnetic field due to wire having current I₀

= 10⁻⁷ x 2I₀ / r    

= 10⁻⁷ x 2 I₀ / r     where 2r is the distance between wires .

these fields are in opposite direction as direction of current is same in both .

net magnetic field = (4 - 2 )x 10⁻⁷ x I₀ / r

= 2 x 10⁻⁷ x  I₀ / r

At point A net magnetic field = 2 x 10⁻⁷ x  I₀ / r

At point B , we shall calculate magnetic field

magnetic field due to nearer wire having current  2 I₀ = 10⁻⁷ x 4 I₀ / r

magnetic field due to wire far away = 10⁻⁷ x 2 I₀ / 3r

These magnetic fields act in the same direction so they will add up

net magnetic field = [ (4 I₀ / r)  + (2 I₀ / 3r) ] x 10⁻⁷

= (14 I₀ / 3r ) x 10⁻⁷

Magnetic field at point B = (14 I₀ / 3r ) x 10⁻⁷

Ratio of field at A and B

= 3 / 7 . Ans

The ratio of the magnitude of the magnetic field at point A to point B is :

3 / 7

Given data :

Magnitude of the left current is  2I₀

Magnitude of the right current is  I₀

First step : Determine the magnetic field at point A  

The magnetic field due to the left current ( 2I₀ )

10⁻⁷ * 2 * 2I₀ / r       ( 2r = distance between wires )

The magnetic field due to the right current ( I₀ )

10⁻⁷ * 2 I₀ / r

From the expressions above the magnetic fields are in  opposite direction

∴ Net magnetic field = (4 - 2 )* 10⁻⁷ * I₀ / r =   2 * 10⁻⁷ *  I₀ / r

Hence The magnetic field at point A = 2 * 10⁻⁷ *  I₀ / r

Next step : determine the magnetic field at point B

Magnetic field due to the closest wire to point B ( i.e.2I₀ ) = 10⁻⁷ * 4 I₀ / r

Magnetic field due to the wire away from point A = 10⁻⁷ * 2 I₀ / 3r

Since the fields acts in the same directions

The net magnetic field =  (4 I₀ / r)  + (2 I₀ / 3r) ] * 10⁻⁷ = ( 14 I₀ / 3r ) * 10⁻⁷

Hence The magnetic field at point A = ( 14 I₀ / 3r ) * 10⁻⁷

Therefore the ratio of the magnitude of the magnetic field at point A to point B  =  3/ 7

Hence we can conclude that the ratio of the magnitude of the magnetic field at point A to point B  = 3 / 7

Learn more : https://brainly.com/question/22403676

A laser emits photons having an energy of 3.74 × 10–19 J. What color would be expected for the light emitted by this laser? (c = 3.00 × 108 m/s, h = 6.63 × 10–34 J ⋅ s)

Answers

Answer:

The wavelength of the emitted photons 532 nm, corresponds to a visible light having GREEN color.

Explanation:

Given;

energy of the emitted photons, E = 3.74 x 10⁻¹⁹ J

speed of light, c = 3 x 10⁸ m/s

Planck's constant, h = 6.63 x 10⁻³⁴ J.s

The wavelength of the emitted light will be calculated by applying energy of photons;

[tex]E = hf[/tex]

where;

E is the energy emitted light

h is Planck's constant

f is frequency of the emitted photon

But f = c / λ

where;

λ is the wavelength of the emitted photons

[tex]E = \frac{hc}{\lambda} \\\\\lambda = \frac{hc}{E} \\\\\lambda = \frac{6.63*10^{-34} *3*10^{8}}{3.74*10^{-19}} \\\\\lambda = 5.318 *10^{-7} \ m\\\\\lambda = 531.8 *10^{-9} \ m\\\\\lambda = 531.8 \ nm[/tex]

λ ≅ 532 nm

the wavelength of the emitted photons is 532 nm.

Therefore, the wavelength of the emitted photons 532 nm, corresponds to a visible light having GREEN color.

We've seen that for thermal radiation, the energy is of the form AVT4, where A is a universal constant, V is volume, and T is temperature. 1) The heat capacity CV also is proportional to a power of T, Tx. What is x

Answers

Answer:

this raise the temperature is x = 3

Explanation:

Heat capacity is the relationship between heat and temperature change

          C = Q / ΔT

if the heat in the system is given by the change in energy and we carry this differential formulas

          [tex]c_{v}[/tex] = dE / dT

In this problem we are told that the energy of thermal radiation is

        E = A V T⁴

Let's look for the specific heat

        c_{v} = AV 4 T³

the power to which this raise the temperature is x = 3

A fireperson is 50 m from a burning building and directs a stream of water from a fire hose at an angle of 300 above the horizontal. If the initial speed of the stream is 40 m/s the height that the stream of water will strike the building is

Answers

Answer:

We can think the water stream as a solid object that is fired.

The distance between the fireperson and the building is 50m. (i consider that the position of the fireperson is our position = 0)

The angle is 30 above the horizontal. (yo wrote 300, but this has no sense because 300° implies that he is pointing to the ground).

The initial speed of the stream is 40m/s.

First, using the fact that:

x = R*cos(θ)

y = R*sin(θ)

in this case R = 40m/s and θ = 30°

We can use the above relation to find the components of the velocity:

Vx = 40m/s*cos(30°) = 34.64m/s

Vy = 20m/s.

First step:

We want to find the time needed to the stream to hit the buildin.

The horizontal speed is 34.64m/s and the distance to the wall is 50m

So we want that:

34.64m/s*t = 50m

t = 50m/(34.64m/s) = 1.44 seconds.

Now we need to calculate the height of the stream at t = 1.44s

Second step:

The only force acting on the water is the gravitational one, so the acceleration of the stream is:

a(t) = -g.

g = -9.8m/s^2

For the speed, we integrate over time and we get:

v(t) = -g*t + v0

where v0 is the initial speed: v0 = 20m/s.

The velocity equation is:

v(t) = -g*t + 20m/s.

For the position, we integrate again over time:

p(t) = -(1/2)*g*t^2 + 20m/s*t + p0

p0 is the initial height of the stream, this data is not known.

Now, the height at the time t = 1.44s is

p(1.44s) = -5.9m/s^2*(1.44s)^2 + 20m/s*1.44s + po

             = 16.57m + p0

So the height at wich the stream hits the building is 16.57 meters above the initial height of the fire hose.

You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.11 mm and place your screen 8.63 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.71 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength lambda expressed in nanometers?

Answers

Answer:

 λ = 605.80 nm

Explanation:

These double-slit experiments the equation for constructive interference is

          d sin θ = m λ

where d is the distance between the slits, λ the wavelength of light and m an integer that determines the order of interference.

In this case, the distance between the slits is d = 1.11 mm = 1.11 10⁻³ m, the distance to the screen is L = 8.63 m, the range number m = 10 and ay = 4.71 cm

Let's use trigonometry to find the angle

         tan θ = y / L

as the angles are very small

          tan θ = sin θ / cos θ = sin θ

we substitute

         sin θ = y / L

we substitute in the first equation

         d y / L = m λ          

          λ = d y / m L

let's calculate

           λ = 1.11 10⁻³ 4.71 10⁻²/ (10 8.63)

           λ = 6.05805 10⁻⁷ m

let's reduce to nm

          λ = 6.05805 10⁻⁷ m (10⁹ nm / 1m)

          λ = 605.80 nm

Types of friction in physics ​

Answers

-- static friction

-- kinetic friction

-- fluid friction

-- sliding friction

-- air resistance

-- drag

-- professional debate

Coherent light that contains two wavelengths, 660 nm (red) and 470 nm (blue), passes through two narrow slits that are separated by 0.310 mm. Their interference pattern is observed on a screen 4.40 m from the slits. What is the disatnce on the screen between the first order bright fringe for each wavelength?

Answers

Answer:

0.002699 m or 2.699 mm

Explanation:

y = Fringe distance

d= Distance between slits = 0.310mm

L = Screen distance = 4.40m

λ= Wavelength

Given from question

λ₁= 660 nm = 6.6 x 10^-9 m

λ₂= 470 nm = 4.7 x 10^-9 m

d = 0.340 mm = 3.4 x 10^-3 m

L = 4.40 m

In the case of constructive interference, we use below formula

y/L = mλ/d

For first order wavelength

(y₁/4.40) =(1×660x10⁻⁹)/(0.310*10⁻³)

y₁= (0.310*10⁻³)×(4.40)/(0.310*10⁻³)

y₁=0.00937m

(y2/4.40) =(1×470x10⁻⁹)/(0.310*10⁻³)

y2= =(1×470x10⁻⁹)×(4.40)/(0.310*10⁻³)

y2=0.00667m

distance between the fringes is given by (y₁ -y2)

=0.00937-0.00667=0.002699m

Therefore, distance on the screen between the first-order bright fringes for the two wavelengths is 0.002699 m or 2.699 mm

An atom in the ground state has a collision with an electron, then emits a photon with a wavelength of 1240 nm. What conclusion can you draw about the initial kinetic energy of the electron

Answers

Answer:

attached below is the free body diagram of the missing  illustration

Initial kinetic energy of the electron = 3 eV

Explanation:

The conclusion that can be drawn about the kinetic energy of the electron is

[tex]E_{e} = E_{3} - E_{1}[/tex]

E[tex]_{e}[/tex] = initial kinetic energy of the electron

E[tex]_{1}[/tex] = -4 eV

E[tex]_{3}[/tex] = -1 eV

insert the values into the equation above

[tex]E_{e}[/tex] = -1 -(-4)  eV

   = -1 + 4 = 3 eV

Which notation is better to use? (Choose between 4,000,000,000,000,000 m and 4.0 × 1015 m)

Answers

Answer:

4 x 10¹⁵

Explanation:

Give an example of hypothesis for an experiment and then identify its dependent and independent variables. Write all the steps of the scientific method. Explain why it is good to limit an experiment to test only one variable at a time whenever possible ?


Please somebody !!!!

Answers

An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”

Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”

Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”

Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.


Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)

Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?

You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.

Hope this helps!

Experiment to find ways to make rainbows.
a) Insert at least one setup where light passing through a prism gives a rainbow and describe why a rainbow is formed.
b) Explain why only some types of light will yield rainbows.

Answers

Answer:

Explanation:

a) To get a rainbow from a prism arrangement, we will need

A triangular prismA black cardboard boxA source of white light (light from the window will suffice)A pocket knife

First, you cut a slit in one end of the cardboard with the pen knife.

Next you open up a space on top of the cardboard through which you can observe the experiment and its result.

Next, you place the triangular prism with its slant face facing the the cut slit.

Finally, position the slit to face the light from the open window, and adjust the prism till the projected bands of colored light (rainbow) is very much obvious on the other end of the box, opposite the slit.

b) For a light to yield rainbow, it most be composed of different component colors of light. The colors of light is due to the difference in wavelength, and dispersion is due to the different in the wavelengths of the component light. So to get rainbow from a light source, the light must not be monochromatic. This means that only light composed of component light of different colors can produce rainbow. Light from the sun for example is composed of 7 distinct colors of light, and white light can be created with just three colors; blue, green, and red light.

A Van de Graaff generator produces a beam of 2.02-MeV deuterons, which are heavy hydrogen nuclei containing a proton and a neutron.
A) If the beam current is 10.0 μA, how far apart are the deuterons?
B) Is the electrical force of repulsion among them a significant factor in beam stability? Explain.

Answers

Answer:

A)  The distance of the deuterons from one another  = 2.224× 10⁻⁷ m

B)  The electrical force of repulsion among them shows a small effect  in beam stability.

Explanation:

Given that:

A Van de Graaff generator produces a beam of 2.02-MeV deuterons

If the beam current is 10.0 μA, the distance of the deuterons from one another can be determined by using the concept of kinetic energy of the generator.

[tex]\mathtt{K.E = \dfrac{1}{2}mv^2}[/tex]

2 K.E = mv²

[tex]\mathtt{v^2 = \dfrac{2 K.E }{m}}[/tex]

[tex]\mathtt{v =\sqrt{ \dfrac{2 K.E }{m}}}[/tex]

so, v is the velocity of the deuterons showing the distance of the deuterons apart from one another.

[tex]\mathtt{v =\sqrt{ \dfrac{2 (2.02 \ MeV) \times \dfrac{10^6 \ eV}{ 1 \ MeV} \times \dfrac{1.60 \times 10^{-19} \ J }{1 \ eV} }{ 3.34 \times 10^ {-27} \ kg}}}[/tex]

[tex]\mathtt{v =\sqrt{ \dfrac{6.464 \times 10^{-13} \ J }{ 3.34 \times 10^ {-27} \ kg}}}[/tex]

v = 13911611.49  m/s

v = 1.39 × 10⁷ m/s

So, If the beam current is 10.0 μA.

We all know that:

[tex]I = \dfrac{q}{t}[/tex]

[tex]t = \dfrac{q}{I}[/tex]

[tex]\mathtt{ t = \dfrac{1.6 * 10 ^{-19} \ C}{10.0 * 10^{-6} \ A}}[/tex]

t = 1.6 × 10⁻¹⁴ s

Finally, the distance of the deuterons from one another  = v × t

the distance of the deuterons from one another  = (1.39 × 10⁷ m/s × 1.6 × 10⁻¹⁴ s)

the distance of the deuterons from one another  = 2.224× 10⁻⁷ m

B) Is the electrical force of repulsion among them a significant factor in beam stability? Explain.

The electrical force of repulsion among them shows a small effect  in beam stability. This is because, one nucleus tends to put its nearest neighbor at potential V = (k.E × q) / r = 7.3e⁻⁰³ V. This is very small compared to the 2.02-MeV accelerating potential, Thus, repulsion within the beam is a small effect.

What is the frequency of the fundamental mode of vibration of a steel piano wire stretched to a tension of 440 N? The wire is 0.630 m long and has a mass of 5.69 g.

Answers

Answer:

220.698Hz

Explanation:

The fundamental frequency f₀ is expressed as f₀ =V/2L where;

V is the speed of the string = [tex]\sqrt{\frac{T}{M} }[/tex]

m is the mass of the string

L is the length of the string

T is the tension in the string

f₀ = [tex]\frac{1}{2L} \sqrt{\frac{T}{m} }[/tex]

Given datas

m = 5.69g = 0.00569 kg

T = 440N

L = 0.630 m

Required

Fundamental frequency of the steel piano wire f₀

[tex]f_0 = \frac{1}{2(0.630)}\sqrt{\frac{440}{0.00569} } \\ \\f_0 = \frac{1}{1.26}\sqrt{77,328.65 } \\\\f_0 = \frac{1}{1.26} * 278.08\\\\f_0 = 220.698Hz[/tex]

Hence the frequency of the fundamental mode of vibration of the steel piano wire stretched to a tension of 440N is 220.698Hz

Calculate the density of the following material.

1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³

Answers

Answer:

[tex]density \: = \frac{mass}{volume} [/tex]

1 / 5.587 is equal to 0.179 kg/m³

Hope it helps:)

Answer:

The answer is

0.179 kg/m³

Explanation:

Density of a substance is given by

[tex]Density \: = \frac{mass}{volume} [/tex]

From the

mass = 1 kg

volume = 5.583 m³

Substitute the values into the above formula

We have

[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]

We have the final answer as

Density = 0.179 kg/m³

Hope this helps you

Other Questions
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula. A. Which skater, if either, has the greater momentum after the push-off? Explain.B. Which skater, if either, has the greater speed after the push-off? Explain. 50 POINTS!!! Use the quadratic formula above to solve for h(t) = -4.9t^2 + 8t + 1 where h is the height of the ball in meters and t is time in seconds. Round to the nearest hundredth second! what is the radius for a circle whose equation is x2 + y2 = 64 Three resistors, each having a resistance, R, are connected in parallel to a 1.50 V battery. If the resistors dissipate a total power of 3.00 W, what is the value of R A bike wheel. A bike wheel is 26 inches in diameter. What is the bike wheel's diameter in millimeters (1 inch = 25.4 millimeters)? a grandfather purchased a brand new car in 1958 for $2500.the car depreciated $325 a year. what would the car be worth 4 years after it was bought? Unless otherwise posted, the speed limit for cars in a residential area isA: 25 milesperhourB: 30 miles per hour.C: 35 miles per hour. Chemical A, 12.062 g of chemical B, and 7.506 g of chemical C to make 5 doses of medicine. a. About how much medicine did he make in grams? Estimate the amount of each chemical by rounding to the nearest tenth of a gram before finding the sum. Show all your thinking. What did the term Grantism refer to?XO A. A commitment to civil rights and equality during ReconstructionB. A system of military strategies developed by GrantC. Political corruption during Grant's term as presidentO D. The economic changes that occurred after the Civil War Solve. 1/2(-4 2n) = -17 Please explain it to me if you can I dont really understand how to do these types of problems so it would be much appreciated! Chelsi has talked to her artist friends about how much money they earn each year from working in the arts. She gathers these values from seven people: [$1,500; $6,700; $2,200; $8,100; $50,500; $12,000; $2,200].What is the median of this data set? The function g(x) = x2 is transformed to obtain function h:h(x) = g(x) 5.Which statement describes how the graph of his different from the graph of g?A.The graph of h is the graph of g horizontally shifted right 5 units.B.The graph of h is the graph of g vertically shifted up 5 units.C.The graph of h is the graph of g vertically shifted down 5 units.OD.The graph of h is the graph of ghorizontally shifted left 5 units. The biome pictured has the second lowest annual average temperature of the terrestrial biomes and a mean annual precipitation range of 2075 cm. It is the largest terrestrial biome and is only found in the Northern hemisphere, where its largest areas are found in Canada and Russia. What biome is this? In concert with quality management programs, _______ controls help monitor the quality of goods or services at each step in the production process to alert managers to problems. feedforward concurrent feedback bureaucratic clan A process of making decisions by constructing simplified models that extract the essential features from problems without capturing all their complexity is known as The diameter of a large lawn ornament in the shape of a sphere is 16 inches. What is the approximate volume of the ornament? Use 3.14 for Pi. Round to the nearest tenth of a cubic inch. Recall the formula V = four-thirds pi r cubed. Last winter, I had / was having a nasty accident while I skied / was skiing. I was with my friend Joe, It was a beautiful morning. The sun shone / was shining and lots of people skied / were skiing. Suddenly, Joe lost / was losing control as he was going round a corner and crashed / was crashing into me. I fell / was falling and broke my leg. An air ambulance arrived / was arriving and took / was taking me to hospital. I was in hospital for two weeks! Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other instrument A company is making a new label for one of their containers. The container is a cylinder that is 9 inches tall and 5 inches in diameter. What is the area of the label that needs to be printed to go around the new container? Use = 3.14. How is the relationship between Jewish Orthodox and mainstream American culture?