Answer:
The standard deviation is [tex]\sigma = 24.10[/tex]
Step-by-step explanation:
From the question we are told that
The proportion of those that suffer from insomnia is p = 6% = 0.06
The sample size is n = 10300
Generally the proportion of those that do not suffer from insomnia is mathematically represented as
[tex]q = 1-p[/tex]
substituting values
[tex]q = 1 -0.06[/tex]
[tex]q = 0.94[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]\sigma = \sqrt{n * p * q }[/tex]
substituting values
[tex]\sigma = \sqrt{ 10300 * 0.06 * 0.94 }[/tex]
[tex]\sigma = 24.10[/tex]
Using the binomial probability concept, the standard deviation of the number of people who suffer from insomnia is 24.10
Recall :
[tex] standard \: deviation, σ = \sqrt{n \times \: p \: (1 - p)} [/tex] p = probability of success = 6% = 0.061 - p = 1 - 0.06 = 0.94Sample size, n = 10300Substituting the values into the equation :
[tex] standard \: deviation, σ = \sqrt{10300 \times \: 0.06 \: (1 - 0.06)} [/tex]
[tex] standard \: deviation, σ = \sqrt{10300 \times \: 0.06 \: 0.94} [/tex]
[tex] standard \: deviation, σ = \sqrt{580.92} = 24.10[/tex]
Hence, the standard deviation is 24.10.
Learn more : https://brainly.com/question/15929089
Lori buys a $586 certificate of deposit (CD) that earns 6.6% interest that compounds monthly. How much will the CD be worth in 13 years? Express your answer rounded correctly to the nearest cent. Do not include units on your answer.
Answer:
$1344.9Step-by-step explanation:
This problem can be solved using the compound interest formula
[tex]A= P(1+r)^t[/tex]
Given data
A, final amount =?
P, principal = $586
rate, r= 6.6% = 0.066
Time, t= 13 years
Substituting our values into the expression we have
[tex]A= 586(1+0.066)^1^3\\\ A= 586*(1.066)^13\\\ A= 586*2.295\\\ A= 1344.87[/tex]
To the nearest cent the in 13 years the CD will be worth $1344.9
A car enters a turnpike 22 miles north of a town. The car teavels north at an average speed of 64 miles per hour. How far is the car from the town after 4 hours? Explain how you can use linear function to solve this problem. Then, solve the problem.
Answer:
distance traveled can be modeled by a linear functionthe car is 260 miles north of townStep-by-step explanation:
a) When the speed is constant, the distance traveled is proportional to the travel time, a linear relationship. The distance traveled can be added to the initial distance to obtain the total distance (from town). This relation is a linear function. It can be modeled by the equation ...
d(t) = 4 + 64t . . . where t is travel time in hours, d(t) is the distance in miles
b) After 4 hours, the distance north of town is ...
d(4) = 4 +64(4) = 260
The car is 260 miles from the town after 4 hours.
Answer: Distance is a function of time. The constant rate of change is 64. Write the equation y = 64x + 22. Substitute 4 in for x to get 278 miles.
Step-by-step explanation:
If you owe your friend $3 and you have $15, which expression would help you find out how much money you would have left?
Answer:
12
Step-by-step explanation:
15 - 3 = 12
Answer:
both of them are right
Step-by-step explanation:
The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?
Answer:
300.05 miles
Step-by-step explanation:
initial fee= $39.99
final bill = $ 100
cost =$ 0.20 per mile
remaining amount = $ 60.01
solution,
she drive = remaining amount / cost
=60.01/0.20
=300.05 miles
Answer:
500 miles
Step-by-step explanation:
Let us use cross multiplication to find the unknown amount.
Given:
1) Cost for 1 mile=$0.20
2)Cost for x miles=$100
Solution:
No of miles Cost
1) 1 $0.20
2)x $100
By cross multiplying,
100 x 1= 0.20x
x=100/0.20
x=500 miles
Thank you!
7. The General Society Survey asked a sample of 1200 people how much time they spent watching TV each day. The mean number of hours was 3.0 with a standard deviation of 2.87. A sociologist claims that people watch a mean of 4 hours of TV per day. Do the data provide sufficient evidence to disprove the claim? Use α = .05 to test the hypothesis. a. What are your null and alternative hypotheses? b. What test is appropriate here? Why? c. What is your test statistic? d. What is your critical value? e. What is your final decision: do you reject the null or fail to reject the null?
Answer:
a) and b) Look step by step explanation
c) z(s) = - 12,07
d) z(c) = - 1,64
e) Final decision: Reject H₀
Step-by-step explanation:
We assume Normal Distribution
Data:
Sample population n = 1200
Sample mean μ = 3
Sample Standard deviation 2,87
Claim mean μ₀ = 4
α = 0,05 then from z-table we find z(c) = 1,64 ( critical value )
We need to develop a one tail-test to the left
Test Hypothesis
The General Society developed a survey ( in all cases that is an indication of a sample)
Null hypothesis H₀ μ = μ₀
Alternative hypothesis Hₐ μ < μ₀
To calculate the z(s)
z(s) = ( μ - μ₀ )/ 2,87/√n
z(s) = ( 3 - 4 )/ 2,87/√1200
z(s) = -1 * 34,64 / 2,87
z(s) = - 12,07
To compare z(s) and z(c)
z(s) < z(c) - 12,07 < - 1,64
z(s) is in the rejection region (quite far away) we reject H₀
Data provide enough evidence to disprove the claim
How many solutions does the following system have x+y=3, 2x+2y-5
Answer:
Step-by-step explanation:
x + y = 3
2x + 2y = 5
-2x - 2y = -6
2x + 2y = 5
0 not equal to -1
no solution
BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER
Answer:
The first picture's answer would be (6, 21)
Step-by-step explanation:
You have to find the points on the 8th and the 9th day, and then you would add them together, and then divide by two finding the average, which would be 24 and 18, so when added, you get 42, divided by 2 you get 21. You look on the graph for the point with 21, and you find it is on 6.
Select the correct answer from each drop-down menu.
A cross section is the intersection of a
Solid or point and a plane or plane. Helpp
Answer:
solid, plane
Step-by-step explanation:
A cross section is the intersection of a solid and a plane.
Answer:
A cross section is the intersection of a solid and a plane.
Step-by-step explanation:
Got this right on plato, hope it helps :P
The monthly cost (in dollars) of water use is a linear function of the amount of water used (in hundreds of cubic feet, HCF). The cost for using 15 HCF of water is 32.84, and the cost for using 43 HCF is 79.04. What is the cost for using 36 HCF of water?
Answer:
67.49
Step-by-step explanation:
Let the number of HCF be x.
Let the cost be y.
You are given 2 points of a line: (15, 32.84) and (43, 79.04).
Now we find the equation of the line that passes through those points.
y - y1 = m(x - x1)
y - 32.84 = [(79.04 - 32.84)/(43 - 15)](x - 15)
y - 32.84 = (46.2/28)(x - 15)
y - 32.84 = 1.65(x - 15)
y = 1.65x - 24.75 + 32.84
y = 1.65x + 8.09
Now we let x = 36 and solve for y.
y = 1.65(36) + 8.09
y = 67.49
plzzzzzzzzz someone help
Answer: 4
Step-by-step explanation:
Since this inequality gives us a list, we want to choose the greatest number shown because x≤?. Because x has to be less than or equal to a number, it makes the most sense to put the greatest number there. In the list, 4 is the greatest number.
(Algebra) HELP ME ASAP PLZ
Answer:
no solution because the answer will be p=2
10 - [ 8p + 3 ] = 9 [ 2p - 5 ]
10 - 8p - 3 = [ 2p - 5 ]
-8p + 10 - 3 = [ 2p - 5 ]
p = 2 We need to get rid of expression parentheses.
If there is a negative sign in front of it, each term within the expression changes sign.
Otherwise, the expression remains unchanged.
In our example, the following 2 terms will change sign:
8p, 3
Step-by-step explanation:
Given that the sum of squares for error is 60 and the sum of squares for regression is 140, then the coefficient of determination is:
Answer:
0.7Step-by-step explanation:
The coefficient of determination which is also known as the R² value is expressed as shown;
[tex]R^{2} = \frac{sum\ of \ squares \ of \ regression}{sum\ of \ squares \ of total}[/tex]
Sum of square of total (SST)= sum of square of error (SSE )+ sum of square of regression (SSR)
Given SSE = 60 and SSR = 140
SST = 60 + 140
SST = 200
Since R² = SSR/SST
R² = 140/200
R² = 0.7
Hence, the coefficient of determination is 0.7. Note that the coefficient of determination always lies between 0 and 1.
The coefficient of determination of the dataset is 0.7
The given parameters are:
[tex]SSE = 60[/tex] --- sum of squared error
[tex]SSR = 140[/tex] --- sum of squared regression
Start by calculating the sum of squared total (SST)
This is calculated using
[tex]SST =SSE + SSR[/tex]
So, we have:
[tex]SST =60 +140[/tex]
[tex]SST =200[/tex]
The coefficient of determination (R^2) is then calculated using
[tex]R^2 = \frac{SSR}{SST}[/tex]
So, we have:
[tex]R^2 = \frac{140}{200}[/tex]
Divide
[tex]R^2 = 0.7[/tex]
Hence, the coefficient of determination is 0.7
Read more about coefficient of determination at:
https://brainly.com/question/15804563
1. What happened when you had a negative plus a negative, (-a) + (-b)?
I
2. What happened when you had a positive plus a negative, a + (-b)?
***Is this the same as a positive minus a positive, a - b?
3. What happened when you had a positive minus a negative, a - (-b)?
4. What happened when you had a negative minus a negative, (-a) - (-b)?
Answer:
See Explanation
Step-by-step explanation:
1.
What happens when negative adds to negative; e.g (-a) + (-b)
First, we need to simplify the expression
[tex](-a) + (-b)[/tex]
Open the brackets
[tex]-a - b[/tex]
Factorize
[tex]-(a+b)[/tex]
So, what happens is that: the two numbers are added together and the result is negated;
E.g.
[tex](-5) + (-3) = -(5 + 3) = -8[/tex]
2.
What happens when positive is added to negative; e.g. a + (-b)
First, we need to simplify the expression
[tex]a + (-b)[/tex]
Open the brackets
[tex]a - b[/tex]
So, what happens is that: the negative number is subtracted from the positive number
And Yes; [tex]a + (-b)[/tex] is the same as [tex]a - b[/tex] (As shown above)
E.g.
[tex]5 + (-3) = 5 - 3 =2[/tex]
3.
What happens when to positive minus a negative; e.g. a - (-b)
First, we need to simplify the expression
[tex]a - (-b)[/tex]
Open the brackets
[tex]a + b[/tex]
So, what happens is that; the two numbers are added together.
E.g.
[tex]5 - (-3) = 5 + 3 = 8[/tex]
4.
What happens when negative minus a negative; e.g. (-a) - (-b)
First, we need to simplify the expression
[tex](-a) - (-b)[/tex]
Open the brackets
[tex]-a + b[/tex]
Reorder
[tex]b - a[/tex]
So, what happens is that; the first number is subtracted from the second.
E.g.
[tex](-5) - (-3) = 3-5 = -2[/tex]
Andrea is buying fruit for a fruit salad. Strawberries cost $2 a pound, and blueberries cost $6 a pound. She plans to buy at least 5 pounds of berries and spend no more than $30. Which of the following is a possible combination for the number of pounds of berries she can buy?
6 pounds of strawberries and 1 pound of blueberries
I did the quiz
In a triangle ABC,AB=9 and BC =12 which of the following Cannot be the length of AC.
Step-by-step explanation:
mark it as the brainliest
Answer:
i need help with this too
Step-by-step explanation:
Calculate two iterations of Newton's Method for the function using the given initial guess. (Round your answers to four decimal places.) f(x) = x2 − 8, x1 = 2
Answer:
The first and second iteration of Newton's Method are 3 and [tex]\frac{11}{6}[/tex].
Step-by-step explanation:
The Newton's Method is a multi-step numerical method for continuous diffentiable function of the form [tex]f(x) = 0[/tex] based on the following formula:
[tex]x_{i+1} = x_{i} -\frac{f(x_{i})}{f'(x_{i})}[/tex]
Where:
[tex]x_{i}[/tex] - i-th Approximation, dimensionless.
[tex]x_{i+1}[/tex] - (i+1)-th Approximation, dimensionless.
[tex]f(x_{i})[/tex] - Function evaluated at i-th Approximation, dimensionless.
[tex]f'(x_{i})[/tex] - First derivative evaluated at (i+1)-th Approximation, dimensionless.
Let be [tex]f(x) = x^{2}-8[/tex] and [tex]f'(x) = 2\cdot x[/tex], the resultant expression is:
[tex]x_{i+1} = x_{i} -\frac{x_{i}^{2}-8}{2\cdot x_{i}}[/tex]
First iteration: ([tex]x_{1} = 2[/tex])
[tex]x_{2} = 2-\frac{2^{2}-8}{2\cdot (2)}[/tex]
[tex]x_{2} = 2 + \frac{4}{4}[/tex]
[tex]x_{2} = 3[/tex]
Second iteration: ([tex]x_{2} = 3[/tex])
[tex]x_{3} = 3-\frac{3^{2}-8}{2\cdot (3)}[/tex]
[tex]x_{3} = 2 - \frac{1}{6}[/tex]
[tex]x_{3} = \frac{11}{6}[/tex]
Find the solution set of the inequality and the number: 12 − 6x > 24 A. , C. ≤, D. ≥, E. =
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
Subtract 12 from each side
12-12 − 6x > 24-12
-6x > 12
Divide each side by -6, remembering to flip the inequality
-6x/-6 < 12/-6
x < -2
Answer:
x < -2
Step-by-step explanation:
12 − 6x > 24
12 - 12 − 6x > 24 - 12
-6x > 12
-6x/(-6) < 12/(-6)
x < -2
Compute the least-squares regression line for the given data set. Use a TI-84 calculator. Round final answers to four decimal places, as needed.
x 5 7 6 2 1
y 4 3 2 5 1
Regression line equation: ŷ = _______ + _______ x.
Answer:
Y = 2.843+ 0.037 X
Step-by-step explanation:
Let the equation of the straight line to be fitted to the data , be Y = a+b X where a and b are to be evaluated. The normal equations fro determining a and b are
∑Y = na +b ∑X
∑XY = a∑X + b∑X²
We now calculate ∑X, ∑Y , ∑X², and ∑XY
X Y XY X²
5 4 20 25
7 3 21 49
6 2 12 36
2 5 10 4
1 1 1 1
21 15 64 115
Thus the normal equation becomes
5a + 21b =15
21a +115b = 64
Solving these two equations simultaneously we get
105 a + 441b = 315
105a + 575b = 320
134b= 5
b= 0.037 , a= 2.843
Hence the equation for the required straight line is
Y = 2.843+ 0.037 X
as part of a group exercise, four students each randomly selected 3 cards with angle measures written on them. The table shows the results.
Answer:
Option (A)
Step-by-step explanation:
As we know sum of interior angles of a triangle = 180°
If the sum of angles written on 3 cards is equal to 180°, will make a triangle.
Total of Alisha's cards = 100° + 90° + 170°
= 360°
Total of Aella's cards = 60° + 25° + 95°
= 180°
Total of Andrew's cards = 35° + 35° + 35°
= 105°
Total of Ah Lam's cards = 90° + 60° + 35°
= 185°
Since total of Aella's cards is 180°, triangle is possible with the angles given on the cards of Aella only.
Therefore, Option (A) will be the answer.
What is the missing statement in step 10 of the proof?
Answer:
c/sin C = b/sin C
Step-by-step explanation:
Look at the statement in the previous step and the reason in this step.
c sin B = b sin C
Divide both sides by sin B sin C:
(c sin B)/(sin B sin C) = (b sin C)/(sin B sin C)
c/sin C = b/sin B
Cancel the common factor of the numerator and the denominator and write specified expression
Step-by-step explanation:
Hello,
I hope you mean to cancel the common factor that exists in numerator and denominator,right.
so, Let's look for the common factor,
here, the expression is,
=4(x-2)/ (x+5)(x-2)
so, here we find the common factor is (x-2)
now, we have to cancel it. And after cancelling we get,
=4/(x+5)
Note:{ we cancel the common factor if the common factors are in multiply form.}
Hope it helps
Find the value of x to the nearest tenth. A) 5 B) 9.2 C) 3.3 D) 2.9
Answer:
B) 9.2
Step-by-step explanation:
tan(57)=x/6 multiply 6 on both sides
6.tan(57)=x use calculator to find answer
9.2 rounded
Answer:9.2 is correct
Step-by-step explanation:
Find the point on the terminal side of θ = negative three pi divided by four that has an x coordinate of -1. Show your work for full credit. Please explain the exact process of how you get your answer because I do not understand it at all. If you don't explain properly or try to just snatch some points I will try to delete your answer.
Answer:
See below.
Step-by-Step Explanation:
Please refer to the attachment.
If you have any questions, feel free to comment!
Answer:
(-1,-1)
Step-by-step explanation:
theta = -3 pi/4
Changing to degrees =
theta = -3 * 180/4 =-135
x coordinate of -1
The y value would be
= 45
tan 45 = y /1
y = tan 45
y = 1
But we are in the third coordinate so x and y are negative
The coordinates are
(-1,-1)
Find the radius of the circle with equation x^2 + y^2 - 10x - 16y + 53 = 0.
Answer:
radius = 10.5 unitsStep-by-step explanation:
Equation of a circle is given by
x² + y² + 2gx + 2fy + c = 0
To find the radius of the circle we use the formula
[tex]r = \sqrt{ {g}^{2} + {f}^{2} - c } [/tex]
where g and f is the center of the circle
From the question
x² + y² - 10x - 16y + 53 = 0
Comparing with the general equation above we have
2g = - 10 2f = - 16
g = - 5 f = - 8
c = 53
Substitute the values into the above formula
That's
[tex]r = \sqrt{ ({ - 10})^{2} + ( { - 8})^{2} - 53 } [/tex]
[tex]r = \sqrt{100 + 64 - 53} [/tex]
[tex]r = \sqrt{111} [/tex]
We have the final answer as
radius = 10.5 unitsHope this helps you
PLEASE PLEASE PLEASE HELP ME ANSWER THIS QUESTION QUICK!! The picture of the question is down below.
Answer:
x = -2 or x = 2
Step-by-step explanation:
The solution is the points of intersection of the line and the parabola.
x = -2 or x = 2
Answer:
x = -2 and x=2
Step-by-step explanation:
The solution to the system is where the two graphs intersect
The meet at x = -2 and x=2
please help give bralienst not need explation
Answer:
4.5 cm
Step-by-step explanation:
The ruler says it all..... (why do you need help with this? What grade????)
Hope this helps, have a good day :)
Answer:Its 4.5 centimeters
Step-by-step explanation:
13,226 divided by 29
13226/29= 456.068965517
Is 100 a good estimate for the difference of 712 and 589? If it is, explain why it is a good estimate. If it is not, explain why it is a bad estimate.
22)
Subtract (4 - 21) - (3 - 51)
A)
1+3i
B)
1-71
7+3i
D)
7-7i
Answer:
1 +3i
Step-by-step explanation:
(4 - 2i) - (3 - 5i)
Subtract the reals
4 - 3 =1
Subtract the imaginary
-2i - -5i
-2i + 5i = 3i
1 +3i
Answer:
A
Step-by-step explanation:
Subtract all real numbers
4 - 3 = 1
Subtract all imaginary numbers
-2i - (-5i) = 3i
Put back together
1 + 3i
Best of Luck!
2000 2yrs at 2% How much interest is owed
Answer:
Rs. 80 is owed.
Step-by-step explanation:
Principle (P) = 2000
Time (T) = 2 years
Rate (R) = 2%
Interest (I) = ?
Here,
I = (P×T×R) / 100
= (2000×2×2) / 100
= (8000) / 100
= Rs. 80
Answer:
P= 2000
T= 2
R=2÷100
I = PTR
= 2000×2×2÷100
2÷100=0.02
2000×2×0.02= 80
So i is 80