(a)
[tex]\dfrac{\partial f}{\partial x}=x^2\implies f(x,y)=\dfrac{x^3}3+g(y)[/tex]
[tex]\dfrac{\partial f}{\partial y}=\dfrac{\mathrm dg}{\mathrm dy}=y^2\implies g(y)=\dfrac{y^3}3+C[/tex]
[tex]\implies f(x,y)=\dfrac{x^3+y^3}3+C[/tex]
(b)
[tex]\displaystyle\int_C\nabla f\cdot\mathrm d\mathbf r=f(2,8)-f(-1,2)=\boxed{171}[/tex]
What is the area of the house (including the drawing room, TV room, balcony, hallway, kitchen, and bedroom)?
Answer:
1256 i think
Step-by-step explanation:
Which expression is equivalent to 5y^3/(5y)^-2
Answer:
5^3 y^5
125 y^5
Step-by-step explanation:
5y^3/(5y)^-2
Distribute the exponent in the denominator
5y^3/(5 ^-2 y^-2)
A negative exponent in the denominator brings it to the numerator
5y^3 5 ^2 y^2
Combine like terms
5 * 5^2 * y^3 5^2
We know that a^b * a^c = a^(b+c)
5^(1+2) * y^( 3+2)
5^3 y^5
125 y^5
Find the length of GV¯¯¯¯¯¯¯¯ A. 43.92 B. 33.1 C. 41.45 D. 68.87
Answer:
The answer is option AStep-by-step explanation:
Since the figure above is a right angled triangle we can use trigonometric ratios to find GV
To find GV we use cosine
cos∅ = adjacent / hypotenuse
From the question
GV is the adjacent
GC is the hypotenuse
So we have
[tex] \cos(37) = \frac{GV}{GC} [/tex]GC = 55°
GV[tex] \cos(37) = \frac{GV}{55} [/tex]GV = 55 cos 37
GV = 43.92495
We have the final answer as
GV = 43.92Hope this helps you
Find the domain and the range of the relation.
Find the domain of the relation. Select the correct choice below and fill in the answer box to
complete your choice.
O A. The domain is _
(Type your answer in interval notation.)
B. The domain is {_}
(Type an integer or a fraction. Use a comma to separate answers as needed.)
Find the range of the relation. Select the correct choice below and fill in the answer box to
complete your choice.
O A. The range is _
(Type an integer or a fraction. Use a comma to separate answers as needed.)
OB. The range is {_}
Answer:
1) the domain is all real numbers
2) the range is
[tex]y \geqslant 3[/tex]
Residents of four cities are able to vote in an upcoming regional election. A newspaper recently conducted a survey to gauge support for each of the two candidates. The results of the poll are shown in the two-way frequency table below.
Answer:
3 only
Step-by-step explanation:
Consider the statement, "The two cities with the highest number of respondents, both show more support for candidate A." In the total column, the two highest number of respondents are 471 and 463 which represent Carsonville and Appleton. For Carsonville, the number of respondents who prefer candidate A is 205, which is less than the number of respondents who prefer candidate B, 266. Therefore, this statement is not true.
Consider the statement, "The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas." In the table, the number of people who support candidate B in Carsonville is observed to be 266 and the number of people who support candidate B in New Thomas is 138. Since 266 is not equal to twice 138, this statement is not true.
Consider the statement, "More residents of Center City responded to the poll than the number who responded from New Thomas." In the total column, it can be observed that 350 people responded to the poll in Center City and 318 people responded to the poll in New Thomas. Since, 350 is greater than 318, this statement is true.
Consider the statement, "Overall, more residents support candidate A than candidate B." The bottom row of the table represents the total number of responses for each candidate. The number of people supporting candidate A is 797, which is less than the number of people supporting candidate B, 805. So, this statement is not true.
Therefore, the true statement is III only.
More residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Data given in the table shows the data of elections between two candidates among the different cities.
What is Statistic?
Statistics is the study of mathematics that deals with relations between comprehensive data.
I.The two cities with the highest number of respondents both show more support for candidate A. This statement is false because carsonville is the second highest support for A but it does not show more support for candidate A.
II.The number of people who support candidate B in Carsonville is twice the number of people who support candidate B in New Thomas. It is false
III. More residents of Center City responded to the pole than the number who responded from New Thomas. It is true.
IV. Overall, more residents support candidate A than candidate B. it is also false.
Thus, more residents of the center city responded to the pole than the number who responded from New Thomas, which is the only correct option. Option B. is correct.
Learn more about Statistics here:
https://brainly.com/question/23091366
#SPJ5
Solve for W.
W/9 = g
Answer:
W = 9 * g
Step-by-step explanation:
W/9 = g
W = 9 * g
The expression W/9 = g can be written as W = 9g after cross multiplication.
What is an expression?It is defined as the combination of constants and variables with mathematical operators.
We have an expression:
W/9 = g
To solve for W
Make subject as W:
W = 9g
By cross multiplication.
Thus, the expression W/9 = g can be written as W = 9g after cross multiplication.
Learn more about the expression here:
brainly.com/question/14083225
#SPJ2
A triangle has vertices at (-4,-6),(3,3),(7,2). Rounded to two decimal places, which of the following is closest aporoximation of the perimeter of the triangle
Answer:
Perimeter= 29.12 unit
Step-by-step explanation:
Perimeter of the triangle is the length of the three sides if the triangle summef up together
Let's calculate the length of each side.
For (-4,-6),(3,3)
Length= √((3+4)²+(3+6)²)
Length= √((7)²+(9)²)
Length= √(49+81)
Length= √130
Length= 11.40
For (-4,-6),(7,2)
Length= √((7+4)²+(2+6)²)
Length= √((11)²+(8)²)
Length= √(121+64)
Length= √185
Length= 13.60
For (3,3),(7,2)
Length=√( (7-3)²+(2-3)²)
Length= √((4)²+(-1)²)
Length= √(16+1)
Length= √17
Length= 4.12
Perimeter= 4.12+13.60+11.40
Perimeter= 29.12 unit
Solve 2x+2y=6 and 3x-2y=11
Answer:
x = 17/5
y = -2/5
Step-by-step explanation:
2x + 2y = 6
3x - 2y = 11
sum both equations results
5x + 0 = 17
x = 17/5
2x + 2y = 6
2*17/5 + 2y = 6
34/5 + 2y = 6
2y = 6 - 34/5
2y = 30/5 - 34/5
2y = -4/5
y = (-4/5)/2
y = -2/5
verify:
3x - 2y = 11
3*17/5 - 2*-2/5 = 11
51/5 + 4/5 = 55/5
51 + 4 = 55
PLEASE ANSWER ASAP!!!
Equation in the picture
Solve for r in the equation in the picture. You must use the LCD (Least Common Denominator) to simplify. You can also use cross products to solve.
Must show work
A. r = 19
B. r = 21
C. r = 25
D. r = 30
any unrelated answer will be reported
Answer:
r = 19
Step-by-step explanation:
( r-5) /2 = ( r+2) /3
The least common denominator is 6
3/3 *( r-5) /2 = ( r+2) /3 * 2/2
3( r-5) /6 = 2( r+2) /6
Since the denominators are the same, the numerators are the same
3( r-5) = 2(r+2)
Distribute
3r -15 = 2r+4
Subtract 2r from each side
3r-2r -15 = 2r+4-2r
r-15 =4
Add 15 to each side
r-15+15 = 4+15
r = 19
Help me please please please please
Answer:
1.
d. (-14) + (-8)
2.
a. (-14) + 8
Step-by-step explanation:
(-14) - 8 is equal to (-14) + (-8) because we still add two negative values so the result wouldn't change.
(-14) - (-8) is equal to (-14) + 8 because there's two negative sign in front of 8 and two negative values multiplied makes a positive result.
Answer:
1. D
2. A
Step-by-step explanation:
1. It asks you what expression has the same value as (-14)-8. All you need to do is find other equations that have the same value as that. So the equation is -14-8. IF a negative is outside a parenthesis with a positive number inside like -(+5), it is going to be -5. If it's both negative: -(-5), it will be +5. If it is both positive: +(+5), it is going to be +5.
IMPORTANT!
- and + = -
- and - = +
+ and + = +
What we are looking for: -14-8
So choice A is (-14)+8 which is simplified to -14+8. So, this one isn't right.
Choice B: 14-(-8)= 14+8. So, it's incorrect.
Choice C: 14+(-8)= 14-8. Again, it's not -14-8 so it's not right.
Choice D: (-14)+(-8)= -14-8. This equation matches the one we are looking for! So it's correct!
2. Same thing as number 1. Let's simplify the equation it wants us to find first.
(-14)-(-8)= -14+8
So -14+8 is what we are looking for.
Choice A: (-14)+8= -14+8. It matches! So it is correct. Let's look at the other options anyway.
Choice B: 14-(-8)= 14+8. Nope. Not right.
Choice C: 14+(-8)= 14-8 because - always beats +. So, this one is also incorrect.
Choice D: (-14)+(-8)= -14-8. Oops, this is also wrong. So choice A is the right answer.
Keep in mind, when you start getting questions like this with numbers inside the parenthesis as well, you want to remember the same rules for positive and negative, but also multiply the numbers together:
(When there is a number outside and inside a parentheses, multiply them.)
2(5)=10, CORRECT! 2+(5) is not 2 times 5. It's whatever is closest to the parentheses, in this case being the positive sign. So + and 5 is just 5!
IMPORTANT!
-2(-5)= - and - is positive, so positive (2 times 5). Positive 10.
-2(+5)= - and + is negative, so negative (2 times 5). Negative 10.
+2(+5)= + and + is positive, so positive (2 times 5). Positive 10.
A charity organization is holding a food drive with a goal to collect at least 1,000 cans of
food by the end of the month. It currently has 565 cans from donations and is having an
event where 87 guests will attend and bring cans. Which solution set represents the
number of cans each guest must bring to meet the goal?
+
OA
++
0
1
2
3
4
5
6
7
8
9
10
---
+
OB. 4
+
0
1
2
3
4
5
6
7
8
9
10
OC.
+
1
2
3
5
6
7
8
9
10
OD. +
+
++
-
6
+
7.
+
0
1
2
3
4
5
8
9
10
Answer:
Each guest must bring 5 cans.
Step-by-step explanation:
1000-565=435
435/87=5
The algebraic expression for the product of five and the cube of a number decreased by 40
Answer:
5a³ - 40
Step-by-step:
The algebraic expression is:
5a³ - 40
Best Buy is currently selling the latest model of the iPad
Pro for $549.99. Since you are an employee there, you
receive a 5% discount. How much will the iPad Pro cost
you if you use your employee discount (before taxes).
Answer:
$522.49
Step-by-step explanation: 549.99*.05=27.50 (discount)
549.99-27.50=$522.49
Answer:
$522.49
Step-by-step explanation:
First, find the discount amount. You can do this by multiplying the original cost by the discount amount. A little trick for remembering to multiply instead of divide is to think "five percent of the original amount"
5% = 0.05
549.99 ⋅ 0.05 = 27.4995
That means the discount amount is $27.50
Subtract the discount amount from the original price
$549.99 - $27.50 = $522.49
Point E lies within rectangle ABCD. If AE = 6, BE = 7, and CE = 8, what is the length of DE?
Answer:
[tex]\sqrt{51}[/tex] units.
Step-by-step explanation:
Point E is inside a rectangle ABCD.
Please refer to the attached image for the given statement and dimensions.
Given that:
Sides AE = 6 units
BE = 7 units and
CE = 8 units
To find:
DE = ?
Solution:
For a point E inside the rectangle the following property hold true:
[tex]AE^2+CE^2=BE^2+DE^2[/tex]
Putting the given values to find the value of DE:
[tex]6^2+8^2=7^2+DE^2\\\Rightarrow 26+64=49+DE^2\\\Rightarrow DE^2=100-49\\\Rightarrow DE^2=51\\\Rightarrow \bold{DE = \sqrt{51}\ units}[/tex]
When you enter the Texas Turnpike, they give you a ticket showing the time and place of your entry. When you exit, you turn in this ticket and they use it to figure your toll. Because they know the distance between toll stations, they can also use it to check your average speed against the turnpike limit of 65 mph. On your trip, heavy snow limits your speed to 40 mph for the first 120 mi. At what average speed can you drive for the remaining 300 mi without having your ticket prove that you broke the speed limit?
Answer:
87 mph
Step-by-step explanation:
Total distance needed is 120 mi + 300 mi and that is 420 mi.
Driving at 65 mph means that it would take
420 / 65 hours to reach his destination.
6.46 hours .
at the first phase, he drove at 40 mph for 120 mi, this means that it took him
120 / 40 hours to complete the journey.
3 hours.
the total time needed for the whole journey is 6.46 hours, and he already spent 3 hours in the first phase. To keep up with the 6.46 hours required, in the second phase, he has to drive at a speed of
6.46 - 3 hours = 3.46 hours.
300 mi / 3.46 hours => 86.71 mph approximately 87 mph
Therefore, he needs to drive at not more than 87 mph to keep up with the journey while not breaking his speed limit
Calculate, correct to one decimal plice
the acute angle between the lines
3x - 4y + 5 = 0 and 2x + 3y -1 = 0
A. 70.69
B. 50.2
C. 39.8
D. 19.4
Answer:
A. 70.69 is the correct answer.
Step-by-step explanation:
Given:
Two lines:
[tex]3x - 4y + 5 = 0 \\2x + 3y -1 = 0[/tex]
To find:
Angle between the two lines = ?
Solution:
Acute Angle between two lines can be found by using the below formula:
[tex]tan \theta = |\dfrac{(m_1 - m_2)}{ (1 + m_1m_2)}|[/tex]
Where [tex]\theta[/tex] is the acute angle between two lines.
[tex]m_1, m_2[/tex] are the slopes of two lines.
Slope of a line represented by [tex]ax+by+c=0[/tex] is given as:
[tex]m = -\dfrac{a}{b }[/tex]
So,
[tex]m_1 = -\dfrac{3}{- 4} = \dfrac{3}{4}[/tex]
[tex]m_2 = -\dfrac{2}{ 3}[/tex]
Putting the values in the formula:
[tex]tan \theta = |\dfrac{(\dfrac{3}{4}- (-\dfrac{2}{3}))}{ (1 + \dfrac{3}{4}\times (-\dfrac{2}{3 }))}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{3}{4}+\dfrac{2}{3}}{ (1 -\dfrac{1}{2})}|\\\Rightarrow tan \theta = |\dfrac{\dfrac{17}{12}}{ \dfrac{1}{2}}|\\\Rightarrow tan \theta = \dfrac{17}{6}\\\Rightarrow \theta = tan^{-1}(\frac{17}{6})\\\Rightarrow \theta = \bold{70.69^\circ}[/tex]
So, correct answer is A. 70.69
Find the equation of a parabola that has a vertex (3,5) and passes through the point (1,13).
Oy= -27 - 3)' +5
Oy=2(x + 3) - 5
Oy=2(0 - 3)' + 5
Oy= -3(2 – 3) + 5
PLEASE HELP ME!!
Answer:
y = 2(x - 3)² + 5
Step-by-step explanation:
The equation of a parabola in vertex form is
y = a(x - h)² + k
where (h, k) are the coordinates of the vertex and a is a multiplier
Here (h, k) = (3, 5), thus
y = a(x - 3)² + 5
To find a substitute (1, 13) into the equation
13 = a(1 - 3)² + 5 ( subtract 5 from both sides )
8 = 4a ( divide both sides by 4 )
a = 2, then
y = 2(x - 3)² + 5 ← equation of parabola in vertex form
A line runs tangent to a circle at the point (4, 2). The line runs through the origin. Find the slope of the tangent line.
Answer:
Slope of the tangent line (m) = 1 / 2
Step-by-step explanation:
Given:
Point A = (4,2)
Origin point = (0,0)
Find:
Slope of the tangent line (m)
Computation:
Slope of the tangent line (m) = (y2-y1) / (x2-x1)
Slope of the tangent line (m) = (2-0) / (4-0)
Slope of the tangent line (m) = 2 / 4
Slope of the tangent line (m) = 1 / 2
how many meters are in 250 centimeters
Answer:
2.5 meters
Step-by-step explanation:
Chen is bringing fruit and veggies to serve at an afternoon meeting. He spends a total of $28.70 on 5 pints of cut veggies and 7 pints of cut fruit. The food cost is modeled by the equation 5 v plus 7 f equals 28.70, where v represents the cost of one pint of cut veggies and f represents the cost of one pint of cut fruit. If the cost of each pint of fruit is $2.85, what is the approximate price of a pint of veggies?
Answer:
(7 x 2.85) + 5v = 28.70. 19.95 + 5v = 28.70. 5v = 28.70 - 19.95. 5v = 8.75. v = 8.75/5. v = 1.75. A pint of veggies costs $1.75.
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 4x2 − 3x + 2, [0, 2]
Answer:
Yes , it satisfies the hypothesis and we can conclude that c = 1 is an element of [0,2]
c = 1 ∈ [0,2]
Step-by-step explanation:
Given that:
[tex]f(x) = 4x^2 -3x + 2, [0, 2][/tex]
which is read as the function of x = 4x² - 3x + 2 along the interval [0,2]
Differentiating the function with respect to x is;
f(x) = 8x - 3
Using the Mean value theorem to see if the function satisfies it, we have:
[tex]f'c = \dfrac{f(b)-f(a)}{b-a}[/tex]
[tex]8c -3 = \dfrac{f(2)-f(0)}{2-0}[/tex]
since the polynomial function is differentiated in [0,2]
[tex]8c -3 = \dfrac{(4(2)^2-3(2)+2)-(4(0)^2-3(0)+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(4(4)-3(2)+2)-(4(0)-3(0)+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(16-6+2)-(0-0+2)}{2-0}[/tex]
[tex]8c -3 = \dfrac{(12)-(2)}{2}[/tex]
[tex]8c -3 = \dfrac{10}{2}[/tex]
8c -3 = 5
8c = 5+3
8c = 8
c = 8/8
c = 1
Therefore, we can conclude that c = 1 is an element of [0,2]
c = 1 ∈ [0,2]
Need Help
Please Show Work
Answer:
-36
Step-by-step explanation:
3*12=36
she is going down (negative) so, it is -36
not sure if this is what you are asking for, if not try this
0-12-12-12=-36
Lisa built a rectangular flower garden that is 4 meters wide and has a perimeter of 26 meters.
What is the length of Lisa's flower garden?
Answer:
9 m
Step-by-step explanation:
Given that
Width of rectangular flower garden, w = 4 m
Perimeter of rectangular flower garden, p = 26 m
To find:
Length of Lisa's flower garden = ?
Solution:
First of all, let us understand perimeter, length and width of a rectangle.
Let ABCD be a rectangle. Please refer to the attached image.
Opposite sides of a rectangle are equal to each other.
AB = CD = Length
Let the length be [tex]l[/tex] m.
BC = DA = Width = 4 m
Perimeter of a closed image is equal to the sum of all the sides of the image.
So, perimeter of ABCD:
[tex]p = AB + BC + CD + DA \\\Rightarrow \bold{ p = 2 \times (Length +Width)}[/tex]
[tex]26 = 2 \times (l +4)\\\Rightarrow 2l =26-8\\\Rightarrow \bold{l = 9 m}[/tex]
Please Solve
F/Z=T for Z
Answer:
F /T = Z
Step-by-step explanation:
F/Z=T
Multiply each side by Z
F/Z *Z=T*Z
F = ZT
Divide each side by T
F /T = ZT/T
F /T = Z
Answer:
[tex]\boxed{\red{ z = \frac{f}{t} }}[/tex]
Step-by-step explanation:
[tex] \frac{f}{z} = t \\ \frac{f}{z} = \frac{t}{1} \\ zt = f \\ \frac{zt}{t} = \frac{f}{t} \\ z = \frac{f}{t} [/tex]
if pentagon OPQRS is dilated by a scale factor or ?
from the origin to create O'P'Q'R'S: what is the ordered pair of point S'?
Answer:
Option (D) : (3.5, 8.75)
Evaluate the expresión 6c-d when c=2 and d=10 I need help?
Answer:
the answer is 18
Step-by-step explanation:
8 is the answer
Given the graph, find an equation for the parabola.
Answer:
[tex]\Large \boxed{\sf \bf \ \ y=\dfrac{1}{16}(a-3)^2-2 \ \ }[/tex]
Step-by-step explanation:
Hello, please consider the following.
When the parabola equation is like
[tex]y=a(x-h)^2+k[/tex]
The vertex is the point (h,k) and the focus is the point (h, k+1/(4a))
As the vertex is (3,-2) we can say that h = 3 and k = -2.
We need to find a.
The focus is (3,2) so we can say.
[tex]2=-2+\dfrac{1}{4a}\\\\\text{*** We add 2. ***}\\\\\dfrac{1}{4a}=2+2=4\\\\\text{*** We multiply by 4a. ***}\\\\16a=1\\\\\text{*** We divide by 16. ***}\\\\a=\dfrac{1}{16}[/tex]
So an equation for the parabola is.
[tex]\large \boxed{\sf y=\dfrac{1}{16}(a-3)^2-2 }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 6 instead, she subtracted 6 and then divided the result by 3 giving an answer of 25 what would her answer have been if she had worked the problem correctly?
Answer:
13
Step-by-step explanation:
let the number be x
how Cindy worked it out :
(x -6) ÷ 3 = 25
x -6 = 75
x = 81
How she should have worked it out:
(x - 3) ÷ 6
(81 - 3) ÷ 6
78 ÷ 6 = 13
Billy has x marbles. Write an expression for the number of marbles the following have… a) Charlie has 5 more than Billy b) Danny has 8 fewer than Billy c) Eric has three times as many as Billy
Answer:
Charlie: 5 + xDanny: x - 8Eric: x × 3Write an equation showing the relationship between the lengths of the three sides of a right triangle.
Answer:
Below
Step-by-step explanation:
First triangle)
This triangle is a right one so we will apply the pythagorian theorem.
● 25 is the hypotenus
● 25^2 = b^2 + 24^2
■■■■■■■■■■■■■■■■■■■■■■■■■■
Seconde triangle)
Again it's a right triangle
x is the hypotenus.
● x^2 = 12^2 +5^2
● 12^2 = x^2-5^2
■■■■■■■■■■■■■■■■■■■■■■■■■■
This is a right triangle
AC is the hypotenus.
● AC^2 = BC^2 + BA^2
Notice that: BC = BE+EC and BA=BD+DA
● AC^2 = (BE+EC)^2 + (BD+DA)^2
Answer: 2) b = 7 3) x = [tex]\sqrt{119}[/tex]
Step-by-step explanation:
Use Pythagorean Theorem: (leg₁)² + (leg₂)² = hypotenuse²
2) b² + 24² = 25²
b² + 576 = 625
b² = 49
[tex]\sqrt{b^2}=\sqrt{49}[/tex]
b = 7
3) 5² + x² = 12²
25 + x² = 144
x² = 119
[tex]\sqrt{x^2}=\sqrt{119}[/tex]
[tex]x=\sqrt{119}[/tex]