Answer:
7/10
Step-by-step explanation:
3/10 + 3/5 - 1/5
Combine like terms
3/10 + 2/5
Get a common denominator of 10
3/10 + 2/5 * 2/2
3/10 +4/10
7/10
Answer:
7/10
Step-by-step explanation:
You want to first get all common denominators, in this case that will be 10.
It is now (3/10)+(6/10)-(2/10)
3+6-2=7
7/10
Shaquira is baking cookies to put in packages for a fundraiser. Shaquira has made 86 8686 chocolate chip cookies and 42 4242 sugar cookies. Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies. What is the greatest number of identical packages that Shaquira can make?
Answer: 2
Step-by-step explanation:
Given: Shaquira has made 86 chocolate chip cookies and 42 sugar cookies.
Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies.
Now, the greatest number of identical packages that Shaquira can make= GCD of 86 and 42
Prime factorization of 86 and 42:
86 = 2 ×43
42 = 2 × 3 × 7
GCD of 86 and 42 = 2 [GCD = greatest common factor]
Hence, the greatest number of identical packages that Shaquira can make =2
The equation of line WX is 2x + y = −5. What is the equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2)?
Answer: [tex]y=\dfrac12x-\dfrac{3}{4}[/tex]
Step-by-step explanation:
Given, The equation of line WX is 2x + y = −5.
It can be written as [tex]y=-2x-5[/tex] comparing it with slope-intercept form y=mx+c, where m is slope and c is y-intercept, we have
slope of WX = -2
Product of slopes of two perpendicular lines is -1.
So, (slope of WX) × (slope of perpendicular to WX)=-1
[tex]-2\times\text{slope of WX}=-1\\\\\Rightarrow\ \text{slope of WX}=\dfrac{1}{2}[/tex]
Equation of a line passes through (a,b) and has slope m:
[tex]y-b=m(x-a)[/tex]
Equation of a line perpendicular to WX contains point (−1, −2) and has slope [tex]=\dfrac12[/tex]
[tex]y-(-2)=\dfrac{1}{2}(x-(-1))\\\\\Rightarrow\ y+2=\dfrac12(x+1)\\\\\Rightarrow\ y+2=\dfrac12x+\dfrac12\\\\\Rightarrow\ y=\dfrac12x+\dfrac12-2\\\\\Rightarrow\ y=\dfrac12x-\dfrac{3}{4}[/tex]
Equation of a line perpendicular to line WX in slope-intercept form that contains point (−1, −2) [tex]:y=\dfrac12x-\dfrac{3}{4}[/tex]
Use the discriminant to determine the number of real solutions to the equation. −8m^2+2m=0
Answer:
discriminant is b²-4ac
= 2²-4(-8)(0)
= 0
one solution
hope this helps :)
I need help fast please
Answer:
Difference : 4th option
Step-by-step explanation:
The first thing we want to do here is to factor the expression x² + 3x + 2. This will help us if it is similar to the factored expression " ( x + 2 )( x + 1 ). " The denominators will be the same, and hence we can combine the fractions.
x² + 3x + 2 - Break the expression into groups,
( x² + x ) + ( 2x + 2 ) - Factor x from x² + x and 2 from 2x + 2,
x( x + 1 ) + 2( x + 2 ) - Group,
( x + 2 )( x + 1 )
This is the same as the denominator of the other fraction, and therefore we can combine the fractions.
x - 1 / ( x + 2 )( x + 1 )
As you can see this is not any of the options present, as we have not expanded ( x + 2 )( x + 1 ). Remember previously that ( x + 2 )( x + 1 ) = x² + 3x + 2. Hence our solution is x - 1 / x² + 3x + 2, or option d.
The probability that a company will launch the product A and B are 0.45 and 0.60 respectively, in main while, probability that both products launched, is 0.35. What is the probability that Neither will of these products launch? (04) At least one product will be launched ?
Answer:
1) 0.3 ; 0.7
Step-by-step explanation:
Given the following :
Probability that product A launch : P(A) = 0.45
Probability that product B launch : P(B) = 0.60
Probability that both product launch : P(AnB) = 0.35
P(A alone) = p(A) - p(AnB)
P(A alone) = 0.45 - 0.35 = 0.1
P(B alone) = p(B) - p(AnB)
P(B alone) = 0.60 - 0.35 = 0.25
Probability that neither product will launch :
1 - [p(A alone) + p(B alone) + p(AnB)]
1 - [0.1 + 0.25 + 0.35]
1 - 0.7 = 0.3
Probability that at least one product will launch :
P(A alone) + p(B alone) + p(AnB)
0.1 + 0.25 + 0.35 = 0.7
Will give Brainliest, Please show work.
Answer:
Hi, there!!
Hope you mean the answers in the solution.
Hope it helps...
Answer:
Step-by-step explanation:
7)
JKLM is a isosceles trapezium.
KL // JM
∠K + ∠J = 180 {Co interior angles}
50 +∠J = 180
∠J = 180 - 50
∠J = 130
As it is isosceles, non parallel sides KJ = LM &
∠L = ∠K
∠L = 50
∠M = ∠J
∠M = 130
8)JKLM is a isosceles trapezium.
KL // JM
∠K + ∠J = 180 {Co interior angles}
100 +∠J = 180
∠J = 180 - 100
∠J = 80
As it is isosceles, non parallel sides KJ = LM &
∠L = ∠K
∠L = 100
∠M = ∠J
∠M = 80
What is 20 to 7 minus 1 hour 40 mins Will award brainliest
6:40 or 6 hour 40 minutes,
if you go back(subtract) 1 hour and 40 minutes
i.e. 6hours 40 minutes- 1 hour 40 minutes
subtract minutes from minutes and hours from hours,
5:00
note that here the minutes value is not negative so it was not a problem, what If it was 6:40-1:50?
Mr. Lee is 32 years older than his son. Five years later, Mr. Lee’s age will be 5 times that of his son. How old is Mr. Lee now?
Answer: mr lee is 37 year .
Step-by-step explanation:32+5=37
Answer:
Mr. lee is 35 yrs old right now. his son 3
Step-by-step explanation:
after 5 yrs, his son will be 8 and lee 40, 8×5=40
please hurry!!!! Show that (2, 1) is a solution of the system of equations. x + 3y = 5, y = –x + 3 Substitute (2, 1) into x + 3y = 5 to get 1 + 32 = 5 . Simplify the equation to get . Substitute (2, 1) into y = –x + 3 to get . Simplify the equation to get .\
Answer:
see below
Step-by-step explanation:
x + 3y = 5,
y = –x + 3
Substitute the point into each equation and verify that it is true
x + 3y = 5, 2 +3(1) = 5 5 = 5 true
y = -x +3 1 = -2+3 1=1 true
(2,1) is a solution
Answer:
D,A,A,A,
Step-by-step explanation:
that's the real answer
1d
2a
2a
2a
God bless
Evaluate the expression 52 + 2x when x = 5. Choose the phrase below that describes the resulting number.
Answer:
62
Step-by-step explanation:
hope that helps! if it is an answer
The Phrase is: "The resulting number is 62."
We have the expression as
52 + 2x
Now, To evaluate the expression 52 + 2x when x = 5,
we substitute the value of x into the expression and simplify:
=52 + 2(5)
= 52 + 10
= 62.
Thus, The resulting number is 62.
Learn more about Expression here:
https://brainly.com/question/28170201
#SPJ6
7 less than the quotient of a number 5 and w in a algebraic expression.
Answer:
5/w -7
Step-by-step explanation:
quotient means division
5/w
less than means it comes after
5/w -7
Answer:
5/w-7
Step-by-step explanation:
First, let's write out "the quotient of a number 5 and w"
The quotient is the result from dividing two numbers. Therefore, we must divide 5 and w.
5/w
Now, let's add on "7 less than". Since it is "less than" it will come after the division. "Less" means subtract. So, subtract 7 from 5/w.
5/w-7
7 less than the quotient of a number 5 and w as an expression is: 5/w-7
Which of the following best describes the graph shown below?
16
A1
1
14
O A This is the graph of a linear function
B. This is the graph of a one-to-one function
C. This is the graph of a function, but it is not one to one
D. This is not the graph of a function
The vertical line test helps us see that we have a function. Note how it is not possible to draw a single straight line through more than one point on the curve. Any x input leads to exactly one y output. This graph passes the vertical line test. Therefore it is a function.
The function is not one-to-one because the graph fails the horizontal line test. Here it is possible to draw a single straight horizontal line through more than one point on the curve. The horizontal line through y = 2 is one example of many where the graph fails the horizontal line test, meaning the function is not one-to-one.
The term "one-to-one" means that each y value only pairs up with one x value. Here we have something like y = 2 pair up with multiple x values at the same time. This concept is useful when it comes to determining inverse functions.
Find the vertex of f(x)= x^2+ 6x + 36
Pls help soon
Answer:
vertex(-3,27)
Step-by-step explanation:
f(x)= x^2+ 6x + 36 ( a=1,b=6,c=36)
V(h,k)
h=-b/2a=-6/2=-3
k=f(-3)=3²+6(-3)+36
f(-3)=9-18+36=27
vertex(-3,27)
An entomologist is studying the reproduction of ants. If an ant colony started with 50 ants, and each day, their population increases by 10%, how many ants will be in the colony 5 days later? *
Step-by-step explanation: Ants are one of the most abundant insects on our planet and the reasons are their eusocial, complex societal behaviors and their ability to survive in many and various ecosystems. Like most other animal societies, reproduction is one of the core reasons why ants are so prevalent.
Acrobat Ant
Reproduction for ants is a complex phenomenon that involves finding, selecting and successfully fertilizing females to ensure that the eggs laid are able to survive and molt through the successive stages of the ant’s life cycle – larvae, pupae and adults.
Answer:
81
Step-by-step explanation:
Start: 50
After 1 day: 50 * 1.1
After 2 days: 50 * 1.1 * 1.1 = 50 * 1.1^2
After 3 days: 50 * 1.1^2 * 1.1 = 50 * 1.1^3
...
After 5 days: 50 * 1.1^5 = 80.53
Answer: 81
State whether the given measurements determine zero, one, or two triangles. A = 58°, a = 25, b = 28
Answer:
1
Step-by-step explanation:
I believe it is 1. Just picture or draw a diagram of the constraints. Don't quote me on this though...
Answer:
Step-by-step explanation:
apply sine formula
[tex]\frac{a}{sin ~A} =\frac{b}{sin~B} \\\frac{25}{sin~58} =\frac{28}{sin ~B} \\sin~B=\frac{28}{25} \times sin~58\\B=sin^{-1} (\frac{28}{25} \times sin ~58)=71.77 \approx 72 ^\circ[/tex]
so third angle=180-(58+72)=180-130=50°
∠C=50°
[tex]cos ~C=\frac{a^2+b^2-c^2}{2ab} \\or ~2abcos~C=a^2+b^2-c^2\\2*25*28*cos ~50=25^2+28^2-c^2\\c^2=625+784-1400 *cos~50\\c^2=1409-899.90\\c^2=509.1\\c=\sqrt{509.1} \approx 22.56 \approx 22.6[/tex]
so one triangle is formed.
Complete the square to transform the expression x2 - 2x - 2 into the form a(x - h)2 + k
Answer:
A
Step-by-step explanation:
Find the vertex form of the quadratic function below.
y = x^2 - 4x + 3
This quadratic equation is in the form y = a{x^2} + bx + cy=ax
2
+bx+c. However, I need to rewrite it using some algebraic steps in order to make it look like this…
y = a(x - h)^2 + k
This is the vertex form of the quadratic function where \left( {h,k} \right)(h,k) is the vertex or the “center” of the quadratic function or the parabola.
Before I start, I realize that a = 1a=1. Therefore, I can immediately apply the “completing the square” steps.
STEP 1: Identify the coefficient of the linear term of the quadratic function. That is the number attached to the xx-term.
STEP 2: I will take that number, divide it by 22 and square it (or raise to the power 22).
STEP 3: The output in step #2 will be added and subtracted on the same side of the equation to keep it balanced.
Think About It: If I add 44 on the right side of the equation, then I am technically changing the original meaning of the equation. So to keep it unchanged, I must subtract the same value that I added on the same side of the equation.
STEP 4: Now, express the trinomial inside the parenthesis as a square of a binomial, and simplify the outside constants.
After simplifying, it is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)
2
+k where the vertex \left( {h,k} \right)(h,k) is \left( {2, - 1} \right)(2,−1).
Visually, the graph of this quadratic function is a parabola with a minimum at the point \left( {2, - 1} \right)(2,−1). Since the value of “aa” is positive, a = 1a=1, then the parabola opens in upward direction.
Example 2: Find the vertex form of the quadratic function below.
The approach to this problem is slightly different because the value of “aa” does not equal to 11, a \ne 1a
=1. The first step is to factor out the coefficient 22 between the terms with xx-variables only.
STEP 1: Factor out 22 only to the terms with variable xx.
STEP 2: Identify the coefficient of the xx-term or linear term.
STEP 3: Take that number, divide it by 22, and square.
STEP 4: Now, I will take the output {9 \over 4}
4
9
and add it inside the parenthesis.
By adding {9 \over 4}
4
9
inside the parenthesis, I am actually adding 2\left( {{9 \over 4}} \right) = {9 \over 2}2(
4
9
)=
2
9
to the entire equation.
Why multiply by 22 to get the “true” value added to the entire equation? Remember, I factored out 22 in the beginning. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out.
STEP 5: Since I added {9 \over 2}
2
9
to the equation, then I should subtract the entire equation by {9 \over 2}
2
9
also to compensate for it.
STEP 6: Finally, express the trinomial inside the parenthesis as the square of binomial and then simplify the outside constants. Be careful combining the fractions.
It is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)
2
+k where the vertex \left( {h,k} \right)(h,k) is \left( {{{ - \,3} \over 2},{{ - 11} \over 2}} \right)(
2
−3
,
2
−11
).
Example 3: Find the vertex form of the quadratic function below.
Solution:
Factor out - \,3−3 among the xx-terms.
The coefficient of the linear term inside the parenthesis is - \,1−1. Divide it by 22 and square it. Add that value inside the parenthesis. Now, figure out how to make the original equation the same. Since we added {1 \over 4}
4
1
inside the parenthesis and we factored out - \,3−3 in the beginning, that means - \,3\left( {{1 \over 4}} \right) = {{ - \,3} \over 4}−3(
4
1
)=
4
−3
is the value that we subtracted from the entire equation. To compensate, we must add {3 \over 4}
4
3
outside the parenthesis.
Therefore, the vertex \left( {h,k} \right)(h,k) is \left( {{1 \over 2},{{11} \over 4}} \right)(
2
1
,
4
11
).
Example 4: Find the vertex form of the quadratic function below.
y = 5x^2 + 15x - 5
Solution:
Factor out 55 among the xx-terms. Identify the coefficient of the linear term inside the parenthesis which is 33. Divide it by 22 and square to get {9 \over 4}
4
9
.
Add {9 \over 4}
4
9
inside the parenthesis. Since we factored out 55 in the first step, that means 5\left( {{9 \over 4}} \right) = {{45} \over 4}5(
4
9
)=
4
45
is the number that we need to subtract to keep the equation unchanged.
Express the trinomial as a square of binomial, and combine the constants to get the final answer.
Therefore, the vertex \left( {h,k} \right)(h,k) is {{ - \,3} \over 2},{{ - \,65} \over 4}
2
−3
,
4
−65
.
Answer:
(x - 1 )^2 - 3
Step-by-step explanation:
( x - 1 )^2 + ( -3)
x^2 - 2x + 1 - 3
x^2 - 2x - 2
Resolve 36x2 – 81y2 into factors
Answer:
(6x + 9y)(6x - 9y)
Step-by-step explanation:
We can use the difference of squares which states that a² - b² = (a + b)(a - b), in this case, a = 6x and b = 9y so the answer is (6x + 9y)(6x - 9y).
3/4a−16=2/3a+14 PLEASE I NEED THIS QUICK and if you explain the steps that would be geat:) Thank youuuuuuu
Answer:
360
Step-by-step explanation:
3/4a - 16 = 2/3a + 14 ⇒ collect like terms 3/4a - 2/3a = 14 + 16 ⇒ bring the fractions to same denominator9/12a - 8/12a = 30 ⇒ simplify fraction1/12a = 30 ⇒ multiply both sides by 12a = 30*12a = 360 ⇒ answerWhat the relation of 1/c=1/c1+1/c2 hence find c
[tex]\frac 1c=\frac1{c_1}+\frac1{c_2} [/tex]
$\frac1c=\frac{c_1+c_2}{c_1c_2}$
$\implies c=\frac{c_1c_2}{c_1+c_2}$
Given the following three points, find by hand the quadratic function they represent.
(-1,-8), (0, -1),(1,2)
(1 point)
Of(x) = -51% + 87 - 1
O f(x) = -3.2? + 4.1 - 1
Of(t) = -202 + 5x - 1
Of(1) = -3.1? + 10.1 - 1
Answer:
The correct option is;
f(x) = -2·x² + 5·x - 1
Step-by-step explanation:
Given the points
(-1, -8), (0, -1), (1, 2), we have;
The general quadratic function;
f(x) = a·x² + b·x + c
From the given points, when x = -1, y = -8, which gives
-8 = a·(-1)² + b·(-1) + c = a - b + c
-8 = a - b + c.....................................(1)
When x = 0, y = -1, which gives;
-1 = a·0² + b·0 + c = c
c = -1.....................................................(2)
When x = 1, y = 2, which gives;
2 = a·1² + b·1 + c = a + b + c...............(3)
Adding equation (1) to (3), gives;
-8 + 2 = a - b + c + a + b + c
-6 = 2·a + 2·c
From equation (2), c = -1, therefore;
-6 = 2·a + 2×(-1)
-2·a = 2×(-1)+6 = -2 + 6 = 4
-2·a = 4
a = 4/-2 = -2
a = -2
From equation (1), we have;
-8 = a - b + c = -2 - b - 1 = -3 - b
-8 + 3 = -b
-5 = -b
b = 5
The equation is therefore;
f(x) = -2·x² + 5·x - 1
The correct option is f(x) = -2·x² + 5·x - 1.
The cost of a pizza at the local pizza shop has a base price of $12 for a cheese pizza, plus $2 for each additional topping? What is the value of the slope?
Answer:
$2.
Step-by-step explanation:
This is because the base price is $12, which means the constant is 12. The toppings are the only things you can add to the pizza, so the price of each additional topping is the slope of the pizza's cost. The slope is 2 dollars.
Hope this helps!
Answer:
2
Step-by-step explanation:
If we were to write a linear equation in slope-intercept form (y = mx + b where m = slope and b = y-intercept) of this situation, it would be y = 2x + 12 where y is the price and x is the number of toppings. This is because the price for every topping is 2x but the base price doesn't change, therefore it's a constant so it would be + 12. In this case, since m = slope, the slope is 2.
Find the value of x in the figure below.
A. 25
B. 35
C. 45
D. 65
Answer:x=45
Step-by-step explanation:
a diagonal of rectangle forms a 30 degree angle with each of the longer sides of the rectangle. if the length of the shorter side is 3, what is the length of the diagonal
Answer:
Length of diagonal = 6
Step-by-step explanation:
Given that
Diagonal of a rectangle makes an angle of [tex]30^\circ[/tex] with the longer side.
Kindly refer to the attached diagram of the rectangle ABCD such that diagonal BD makes angles of [tex]30^\circ[/tex] with the longer side CD and BA.
[tex]\angle CDB =\angle DBA =30^\circ[/tex]
Side AD = BC = 3 units
To find:
Length of diagonal BD = ?
Solution:
We can use the trigonometric ratio to find the diagonal in the [tex]\triangle BCD[/tex] because [tex]\angle C =90^\circ[/tex]
Using the sine :
[tex]sin\theta = \dfrac{Perpendicular }{Hypotenuse }[/tex]
[tex]sin\angle CDB = \dfrac{BC}{BD}\\\Rightarrow sin30^\circ = \dfrac{3}{BD}\\\Rightarrow \dfrac{1}2 = \dfrac{3}{BD}\\\Rightarrow BD =2 \times 3 \\\Rightarrow BD = \bold{6 }[/tex]
So, the answer is:
Length of diagonal = 6
What is the value of b?
Answer:
55°
Step-by-step explanation:
Perhaps you want the measure of angle B. (There is no "b" in the figure.)
That measure is half the measure of the intercepted arc:
m∠B = 110°/2 = 55°
Angle B is 55°.
PLEASE HELP
Find the area and the perimeter of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations). The figures below are based on semicircles or quarter circles and problems b), c), and d) are involving portions of a square.
Answer:
perimeter is 4 sqrt(29) + 4pi cm
area is 40 + 8pi cm^2
Step-by-step explanation:
We have a semicircle and a triangle
First the semicircle with diameter 8
A = 1/2 pi r^2 for a semicircle
r = d/2 = 8/2 =4
A = 1/2 pi ( 4)^2
=1/2 pi *16
= 8pi
Now the triangle with base 8 and height 10
A = 1/2 bh
=1/2 8*10
= 40
Add the areas together
A = 40 + 8pi cm^2
Now the perimeter
We have 1/2 of the circumference
1/2 C =1/2 pi *d
= 1/2 pi 8
= 4pi
Now we need to find the length of the hypotenuse of the right triangles
using the pythagorean theorem
a^2+b^2 = c^2
The base is 4 ( 1/2 of the diameter) and the height is 10
4^2 + 10 ^2 = c^2
16 + 100 = c^2
116 = c^2
sqrt(116) = c
2 sqrt(29) = c
Each hypotenuse is the same so we have
hypotenuse + hypotenuse + 1/2 circumference
2 sqrt(29) + 2 sqrt(29) + 4 pi
4 sqrt(29) + 4pi cm
Step-by-step explanation:
First we need to deal with the half circle. The radius of this circle is 4, because the diameter is 8. The formula for the circumference of a circle is 2piR.
2pi4 so the perimeter for the half circle would be 8pi/2.
The area of that half circle would be piR^2 so 16pi/2.
Now moving on the triangle part, we need to find the hypotenuse side of AC. We will use the pythagoram theorem. 4^2+10^2=C^2
16+100=C^2
116=C^2
C=sqrt(116)
making the perimeter of this triangle 2×sqrt(116)
The area of this triangle is 8×10=80, than divided by 2 which is equal to 40.
We than just need to add up the perimeters and areas for both the half circle and triangle.
The area would be equal to 8pi+40
The perimeter would be equal to 4pi+4(sqrt(29))
PLEASE HELP ME !!!!!!!!!!!!!!!!!
Answer:
2
Step-by-step explanation:
The series is a geometric series with a common ratio (r) of 1/2 and a first term (a1) of 1/2^0 = 1. The sum of such a series is given by ...
S = a1/(1 -r) 1/(1 -1/2) = 2
The sum of the series is 2.
Which equation does the graph of the systems of equations solve? 2 linear graphs. They intersect at 1,4
Answer:
See below.
Step-by-step explanation:
There is an infinite n umber of systems of equations that has (1, 4) as its solution. Are you given choices? Try x = 1 and y = 4 in each equation of the choices. The set of two equations that are true when those values of x and y are used is the answer.
Given the equations of a straight line f(x) (in slope-intercept form) and a parabola g(x) (in standard form), describe how to determine the number of intersection points, without finding the coordinates of such points. Do not give an example.
Answer:
Step-by-step explanation:
Hello, when you try to find the intersection point(s) you need to solve a system like this one
[tex]\begin{cases} y&= m * x + p }\\ y &= a*x^2 +b*x+c }\end{cases}[/tex]
So, you come up with a polynomial equation like.
[tex]ax^2+bx+c=mx+p\\\\ax^2+(b-m)x+c-p=0[/tex]
And then, we can estimate the discriminant.
[tex]\Delta=(b-m)^2-4*a*(c-p)[/tex]
If [tex]\Delta<0[/tex] there is no real solution, no intersection point.
If [tex]\Delta=0[/tex] there is one intersection point.
If [tex]\Delta>0[/tex] there are two real solutions, so two intersection points.
Hope this helps.
Your mother has left you in charge of the annual family yard sale. Before she leaves you to your entrepreneurial abilities, she explains that she has made the job easy for you: everything costs either $1.50 or $3.50. She asks you to keep track of how many of each type of item is sold, and you make a list, but it gets lost sometime throughout the day. Just before she’s supposed to get home, you realize that all you know is that there were 150 items to start with (your mom counted) and you have 41 items left. Also, you know that you made $227.50. Write a system of equations that you could solve to figure out how many of each type of item you sold.
A) x + y = 109
(1.5)x + 227.50 = (3.5)y
B) x + y = 109
(3.5)x + 227.50 = (1.5)y
C) x + y = 41
(1.5)x + 227.50 = (3.5)y
D) x + y = 109
(1.5)x + (3.5)y = 227.50
E) x + y = 150
(1.5)x + (3.5)y = 227.50
F) x + y = $3.50
(1.5)x + (3.5)y = 227.50
Answer:
[tex]D)\ x + y = 109\\(1.5)x + (3.5)y = 227.50[/tex]
Step-by-step explanation:
Let the items sold with price $1.5 = [tex]x[/tex]
Let the items sold with price $3.5 = [tex]y[/tex]
Initially, total number of items = 150
Items left at the end of the day = 41
So, number of items sold throughout the day = Total number of items - Number of items left
Number of Items sold = 150 - 41 = 109
So, the first equation can be written as:
[tex]\bold{x+y = 109} ....... (1)[/tex]
Now, let us calculate the sales done by each item.
Sales from item with price $1.5 = Number of items sold [tex]\times[/tex] price of each item
= (1.5)[tex]x[/tex]
Sales from item with price $3.5 = Number of items sold [tex]\times[/tex] price of each item
= (3.5)[tex]y[/tex]
Total sales = [tex]\bold{(1.5)x+(3.5)y = 227.50} ....... (2)[/tex]
So, the correct answer is:
[tex]D)\ x + y = 109\\(1.5)x + (3.5)y = 227.50[/tex]
PLEaSE HELP!!!!!! will give brainliest to first answer
Answer:
The coordinates of A'C'S'T' are;
A'(-7, 2)
C'(-9, -1)
S'(-7, -4)
T'(-5, -1)
The correct option is;
B
Step-by-step explanation:
The coordinates of the given quadrilateral are;
A(-3, 1)
C(-5, -2)
S(-3, -5)
T(-1, -2)
The required transformation is T₍₋₄, ₁₎ which is equivalent to a movement of 4 units in the leftward direction and 1 unit upward
Therefore, we have;
A(-3, 1) + T₍₋₄, ₁₎ = A'(-7, 2)
C(-5, -2) + T₍₋₄, ₁₎ = C'(-9, -1)
S(-3, -5) + T₍₋₄, ₁₎ = S'(-7, -4)
T(-1, -2) + T₍₋₄, ₁₎ = T'(-5, -1)
Therefore, the correct option is B