Find the pH of these buffer solutions using the information provided: 1L solution containing 80g of lactic acid (MW
Answer:
pH of the solution is 2.0
Explanation:
The lactic acid is a weak acid that is in equilibrium with water as follows:
Lactic acid + H2O ⇄ Lactate + H₃O⁺
And Ka for lactic acid: 1.38x10⁻⁴
Ka = 1.38x10⁻⁴ = [Lactate] [H₃O⁺] / [Lactic acid]
Initial concentration of lactic acid is (MW: 112.06g/mol):
80g * (1mol / 112.06g) / 1L = 0.714M
The equilibrium concentration of the species in the equilibrium are:
[Lactate] = X
[H₃O⁺] = X
[Lactic acid] = 0.714-X
Replacing in Ka expression:
1.38x10⁻⁴ = [X] [X] / [0.714-X]
9.8532x10⁻⁵ - 1.38x10⁻⁴X = X²
9.8532x10⁻⁵ - 1.38x10⁻⁴X - X² = 0
Solving for X:
X = -1.0x10⁻². False solution, there is no negative concentrations
X = 9.86x10⁻³M. Right solution.
As [H₃O⁺] = X
[H₃O⁺] = 9.86x10⁻³M
and pH = -log [H₃O⁺] = -log 9.86x10⁻³M
pH = 2.0
pH of the solution is 2.0Select the true statement concerning voltaic and electrolytic cells. Select one: a. Voltaic cells involve oxidation-reduction reactions while electrolytic cells involve decomposition reactions. b. Voltaic cells require applied electrical current while electrolytic cells do not. . c. all electrochemical cells, voltaic and electrolytic, must have spontaneous reactions. d. Electrical current drives nonspontaneous reactions in electrolytic cells.
Answer:
Electrical current drives nonspontaneous reactions in electrolytic cells.
Explanation:
Electrochemical cells are cells that produce electrical energy from chemical energy.
There are two types of electrochemical cells; voltaic cells and electrolytic cells.
A voltaic cell is an electrochemical cell in which electrical energy is produced from spontaneous chemical process while an electrolytic cell is an electrochemical cell where electrical energy is produced from nonspontaneous chemical processes. Current is needed to drive these nonspontaneous chemical processes in an electrolytic cell.
Answer:
electrolytic cells generate electricity through a non-spontaneous reaction while voltaic cells absorb electricity to drive a spontaneous reaction.
Explanation:
Answer via Educere/ Founder's Education
How many valence electrons must two atoms share to form a single covalent bond? answers A.2 B.4 C.3 D.1
Answer:
2
Explanation:
A single covalent bond is formed when two electrons are shared between the same two atoms, one electron from each atom.
Answer:
the answer is 2
Explanation:
The total kinetic energy of a body is known as:
A. Thermal energy
B. Convection
C. Potential energy
D. Temperature
The total kinetic energy of a body is known as Thermal energy. Option A
What is thermal energy?Thermal energy is the direct sum of all the available random kinetic energies of molecules.
Also note that thermal energy is directly proportional to temperature in Kelvin.
Thus, the total kinetic energy of a body is known as Thermal energy. Option A
Learn more about thermal energy here:
https://brainly.com/question/19666326
#SPJ1
Answer:
A.) Thermal energy
Explanation:
I got it correct on founders edtell
For the following reaction, 3.76 grams of iron are mixed with excess oxygen gas . The reaction yields 4.29 grams of iron(II) oxide . iron ( s ) oxygen ( g ) iron(II) oxide ( s ) What is the theoretical yield of iron(II) oxide
Answer:
4.84g of FeO is the theoretical yield
Explanation:
The Iron, Fe(s), reacts with oxygen, O₂(g), producing Iron (II) oxide, as follows:
2Fe(s) + O₂(g) → 2FeO
Theoretical yield is the yield of a reaction in which you assume the 100% of reactants is converted in products.
To find theoretical yield we need to find moles of Iron, and, knowing 2 moles of Fe produce 2 moles of FeO (Ratio 1:1), we can find theoretical yield of FeO as follows:
Moles Fe (Molar mass: 55.845g/mol)
Using the molar mass of the compound we can convert grams to moles, thus:
3.76g Fe × (1mol / 55.845g) = 0.0673 moles of Fe
Moles and mass of FeO
As there are in reaction 0.0673 moles Fe, assuming a theoretical yield (And as ratio of the reaction is 1:1), you will obtain 0.0673 moles of FeO.
Theoretical yield is given in grams, As molar mass of FeO is 71.844g/mol, theoretical yield of the reaction is:
0.0673 moles FeO × (71.844g / mol) =
4.84g of FeO is the theoretical yieldA mixture of 50ml of 0.1M HCOOH and 50ml of 0.05M NaOH is equivalent to
Answer:
d) a solution that is 0.025M in HCOOH and 0.025M in HCOONa
Explanation:
The reaction of a weak acid (HOOH) with NaOH is as follows:
HCOOH + NaOH → HCOONa + H₂O
Based on the reaction, 1 mole of the acid reacts with 1 mole of the base (Ratio 1:1).
The initial moles of both species are:
HCOOH: 0.050L × (0.1mol / L) = 0.0050 moles of HCOOH
NaOH: 0.050L × (0.05 mol / L) = 0.0025 moles NaOH
After the reaction, all NaOH reacts with HCOOH producing HCOONa (Because moles of NaOH < moles HCOOH).
Final moles:
HCOOH: 0.0050 moles - 0.0025 moles (After reaction) = 0.0025 moles
HCOONa: Moles HCOONa = Initial Moles NaOH: 0.0025 moles
As volume of the mixture is 100mL (50 from the acid + 50 from NaOH), molarity of both HCOOH and HCOONa is:
0.0025 moles / 0.100L = 0.025M of both HCOOH and HCOONa
Thus, the initial mixture is equivalent to:
d) a solution that is 0.025M in HCOOH and 0.025M in HCOONaCalculate [OH-] given [H3O+] in each aqueous solution and classify the solution as acidic or basic. [H3O+] = 2.6 x 10-8 M
Answer:
To calculate the [OH-] in the solution we must first find the pOH
That's
pH + pOH = 14
pOH = 14 - pH
First to find the pH we use the formula
pH = - log [H3O+]From the question
[H3O+]= 2.6 × 10^-8 M
pH = - log 2.6 × 10^-8
pH = 7.6
pH = 8
So we pOH is
pOH = 14 - 8 = 6
To find the [OH-] we use the formula
pOH = - log [OH-]6 = - log [OH-]
Find antilog of both sides
[OH-] = 1.0 × 10^-6 MThe solution is slightly basic since it's pH is in the basic region and slightly above the neutral point 7
Hope this helps you
The Lewis structure of N2H2 shows ________. Group of answer choices a nitrogen-nitrogen single bond each hydrogen has one nonbonding electron pair each nitrogen has one nonbonding electron pair each nitrogen has two nonbonding electron pairs a nitrogen-nitrogen triple bond
Answer:
one bond between nitrogen and hydrogen and a double bond between the nitrogen atoms.
Explanation:
H-N=N-H
The number of moles of H2O which contains 4g of oxygen?
Answer:
16G = 1 mole ; then 4G = how many moles? 4/16 = 0.25 mole; That means 4 grams of oxygen is 0.25 moles.
Explanation:
A mole of water molecules contains 2 moles of hydrogen atoms and 1 mole of oxygen atoms.
Gaseous indium dihydride is formed from the elements at elevated temperature:
In(g)+H2(g)⇌InH2(g),Kp=1.48 at 973 K
The partial pressures measured in a reaction vessel are
PIn =0.0540atm
PH2= 0.0250atm
PInH2 =0.0780atm
Calculate Qp and give equal partial pressure for In, H2, and InH2.
Answer:
The reaction given is:
In (g) + H₂ (g) ⇔ InH₂ (g), the Kp is 1.48 at 973 K.
The partial pressures measured in the reaction vessel is Partial pressure of In is 0.0540 atm, partial pressure of H₂ is 0.0250 atm, and the partial pressure of InH₂ is 0.0780 atm. By using the table given in the attachment below, the value of PInH₂ is (0.078-x), PIn is (0.054 + x), and the value of PH2 is (0.025 + x).
Kp = PInH₂/PIn × PH₂ = (0.078 - x) / (0.054 +x) (0.025 + x)
1.48 = (0.078 - x) / (0.054 +x) (0.025 + x)
x = 0.06689
Now the partial pressures of In, H₂ and InH₂ will be,
PH₂ = 0.025 + x = 0.025 + 0.0668 = 0.0918 atm
PIn = 0.054 + 0.0668 = 0.1208 atm
PInH₂ = 0.078 - 0.0668 = 0.0112 atm
Now the Qp or the reaction quotient will be,
Qp = (0.078) / (0.054) (0.025) = 57.78.
If a salt is formed by combining NH3 (Kb=1.8×10−5) and CH3COOH (Ka=1.8×10−5), an aqueous solution of this salt would be:
Answer:
Neutral
Explanation:
pKa of acid = -log Ka
= -log (1.8 x 10^-5)
= 4.74
pKb of base = -log Kb
= 4.74
pKa of acid = pKb of base
salt pH formula : pH = 7 + 1/2 [pKa -pKb ]
here pKa = pKb
so pH = 7
the salt it is CH3COONH4 exactly neutral solution .
If a salt is formed by combining NH₃ (Kb=1.8×10⁻⁵) and CH₃COOH (Ka=1.8×10⁻⁵), an aqueous solution of this salt would be neutral.
What information does pH convey?pH of any solution tells about the acidity or basicity or neutral nature of the solution.
pH of any solution is directly proportional to the acid dissociation constant value (Ka) and base dissociation constant (Kb). In the question it is given that,
Value of Kb for NH₃ = 1.8×10⁻⁵
Value of Ka for CH₃COOH = 1.8×10⁻⁵
Ka & Kb values for the base and acid is same means it dissociates with same extent. So the aqueous solution of this acid and base is a neutral in nature as they have same number of acid and base ions in it.
Hence resultant solution will be a neutral solution .
To know more about neutral solution, visit the below link:
https://brainly.com/question/13805901
Calculate ΔS∘rxn for the balanced chemical equation 2H2S(g)+3O2(g)→2H2O(g)+2SO2(g) Express the entropy change to four significant figures and include the appropriate units.
Answer:
-170.65
188.8+ 256.8-205.8-(2x205.2)
-170.65 is the entropy change.
What is Entropy Change?Entropy trade is the phenomenon that is the measure of change of disorder or randomness in a thermodynamic gadget. It is associated with the conversion of heat or enthalpy completed in work. A thermodynamic device that has extra randomness means it has high entropy.
Subtract the sum of the absolute entropies of the reactants from the sum of the absolute entropies of the products, each extended by using their suitable stoichiometric coefficients, to reap ΔS° for the reaction.
Learn more about entropy change here: https://brainly.com/question/14257064
#SPJ2
From the following balanced equation, CH4(g)+2O2(g)⟶CO2(g)+2H2O(g) how many grams of H2O can be formed when 1.25g CH4 are combined with 1.25×10^23 molecules O2? Use 6.022×10^23 mol−1 for Avogadro's number.
Answer:
2.81 g of H2O.
Explanation:
We'll begin by calculating mass of O2 that contains 1.25×10²³ molecules O2.
This can be obtained as follow:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ molecules. This implies that 1 mole of O2 also contains 6.022×10²³ molecules.
1 mole of O2 = 16x2 = 32 g.
Thus 6.022×10²³ molecules is present in 32 g of O2,
Therefore, 1.25×10²³ molecules will be present in =
(1.25×10²³ × 32) / 6.022×10²³ = 6.64 g of O2.
Therefore, 1.25×10²³ molecules present in 6.64 g of O2.
Next, the balanced equation for the reaction. This is given below:
CH4(g) + 2O2(g) —> CO2(g) + 2H2O(g)
Next, we shall determine the masses of CH4 and O2 that reacted and the mass of H2O produced from the balanced equation.
This can be obtained as follow:
Molar mass of CH4 = 12 + (4x1) = 16 g/mol.
Mass of CH4 from the balanced equation = 1 x 16 = 16 g
Molar mass of O2 = 16x2 = 32 g/mol.
Mass of O2 from the balanced equation = 2 x 32 = 64 g
Molar mass of H2O = (2x1) + 16 = 18 g/mol.
Mass of H2O from the balanced equation = 2 x 18 = 36 g
From the balanced equation above,
16 g of CH4 reacted with 64 g of O2 to produce 36 g if H2O.
Next, we shall determine the limiting reactant.
This can be obtained as follow:
From the balanced equation above,
16 g of CH4 reacted with 64 g of O2.
Therefore, 1.25 g of CH4 will react with = (1.25 x 64)/16 = 5 g of O2.
From the above calculations, we can see that only 5 g out of 6.64 g of O2 is needed to react completely with 1.25 g of CH4.
Therefore, CH4 is the limiting reactant.
Finally, we shall determine the mass of H2O produced from the reaction.
In this case, the limiting reactant will be used because it will give the maximum yield of H2O.
The limiting reactant is CH4 and the mass of H2O produced from the reaction can be obtained as follow:
From the balanced equation above,
16 g of CH4 reacted to produce produce 36 g if H2O.
Therefore, 1.25 g of CH4 will react to produce = (1.25 x 36)/16 = 2.81 g of H2O.
Therefore, 2.81 g of H2O were obtained from the reaction.
The mass in grams of H₂O which can be formed when 1.25g CH₄ are combined with 1.25×10²³ molecules O₂ is 2.8 grams.
What is stoichiometry?Stoichiometry of any reaction tells about the amount of species present before and after the completion of the reaction.
Given chemical reaction is:
CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g)
Moles of CH₄ will b calculate as:
n = W/M, where
W = given mass = 1.25g
M = molar mass = 16g/mol
n = 1.25/16 = 0.078 moles
Molecues of CH₄ in 0.078 moles = 0.078×6.022×10²³ = 0.46×10²³
Given molecules of O₂ = 1.25×10²³
Required molecules of CH₄ is less as compared to the molecules of O₂, so here CH₄ is the limiting reagent and formation of water is depends on it only.
From the stoichiometry of the reaction it is clear that:
1 mole of CH₄ = will produce 2 moles of H₂O
0.078 moles of CH₄ = will produce 2×0.078=0.156 moles of H₂O
Mass of H₂O will be calculated by using its moles as:
W = (0.156)(18) = 2.8g
Hence required mass of H₂O is 2.8g.
To know more about limiting reagent, visit the below link:
https://brainly.com/question/1163339
What is the primary source of energy in most living communities?
Answer:
The sun
Explanation:
The sun is the primary source of energy in most living communities. The producers or the green plants that prepare their own food by the use of sunlight and other natural resources. Carbon dioxide, water, and other minerals are used by the plants to make their food in the presence of chlorophyll. Plants are then consumed by the consumers. This chain helps in forming the food chain and the food web.
If the theoretical yield of a reaction is 332.5 g and the percent yield for the reaction is 38 percent, what's the actual yield of product in grams? \
A. 8.74 g
B. 12616 g
C. 116.3 g
D. 126.4 g
Answer: D - 126.4g
Explanation:
% Yield = Actual Yield/Theoretical Yield
38% = Actual Yield/332.5
38/100 = Actual Yield/332.5
(.38)(332.5) = 126.35 g = 126.4 g Actual Yield
Answer:
is D. the correct answer
Explanation:
I'm not sure if it is. Please let me know if I'm mistaking.
After balancing the following reaction under acidic conditions, how many mole equivalents of water are required and on which side of the reaction do they appear?
MnO41- (aq) + Cl1- (aq) → Mn2+ (aq) + Cl2 (g)
a. 2 moles of H2O on the reactant side
b. 2 moles of H2O on the product side
c. 4 moles of H2O on the product side
d. 8 moles of H2O on the product side
e. 10 moles of H2O on the reactant side
Answer:
d. 8 moles of H2O on the product side
Explanation:
Hello,
In this case, we need to balance the given redox reaction in acidic media as shown below:
[tex]MnO_4^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O\\\\2Cl^{1-}\rightarrow Cl_2^0+2e^-\\\\2*[(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O]\\\\5*[2Cl^{1-}\rightarrow Cl_2^0+2e^-]\\\\\\\\2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10e^- \rightarrow 2Mn^{2+}+8H_2O\\\\10Cl^{1-}\rightarrow 5Cl_2^0+10e^-\\[/tex]
Then, we add the half reactions:
[tex]2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10Cl^{1-} \rightarrow 2Mn^{2+}+8H_2O+5Cl_2^0[/tex]
Thereby, we can see d. 8 moles of H2O on the product side.
Best regards.
Zinc is used as a coating for steel to protect the steel from environmental corrosion. If a piece of steel is submerged in an electrolysis bath for 24 minutes with a current of 6.5 Amps, how many grams of zinc will be plated out? The molecular weight of Zn is 65.38, and Zn+2 + 2e– → Zn. Question 7 options: A) 3.17 g of Zn B) 1.09 g of Zn C) 6.34 g of Zn D) 12.68 g of Zn
Answer:
A) 3.17 g of Zn
Explanation:
Let's consider the reduction of Zn(II) that occurs in an electrolysis bath.
Zn⁺²(aq) + 2e⁻ → Zn(s)
We can establish the following relations:
1 min = 60 s1 A = 1 C/sThe charge of 1 mole of electrons is 96,468 C (Faraday's constant).When 2 moles of electrons circulate, 1 mole of Zn is deposited.The molar mass of Zn is 65.38 g/molThe mass of Zn deposited under these conditions is:
[tex]24min \times \frac{60s}{1min} \times \frac{6.5C}{s} \times \frac{1mol\ e^{-} }{96,468C} \times \frac{1molZn}{2mol\ e^{-}} \times \frac{65.38g}{1molZn} = 3.17 g[/tex]
Answer:
A.) 3.17
Explanation:
I got it right in class!
Hope this Helps!! :))
Calculate the energy required to heat 1.30kg of water from 22.4°C to 34.2°C . Assume the specific heat capacity of water under these conditions is 4.18·J·g−1K−1 . Round your answer to 3 significant digits.
Answer:
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
Explanation:
Calorimetry is the measurement of the amount of heat that a body gives up or absorbs in the course of a physical or chemical process.
The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state. That is, when a system absorbs (or gives up) a certain amount of heat, it may happen that it experiences a change in its temperature, involving sensible heat. Then, the equation for calculating heat exchanges is:
Q = c * m * ΔT
Where Q is the heat or quantity of energy exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature (ΔT=Tfinal - Tinitial).
In this case:
[tex]c=4.18 \frac{J}{g*K}[/tex]m= 1.30 kg= 1,300 g (1 kg=1,000 g)ΔT= 34.2 °C - 22.4 °C= 11.8 °C= 11.8 °K Being a temperature difference, it is independent if they are degrees Celsius or degrees Kelvin. That is, the temperature difference is the same in degrees Celsius or degrees Kelvin.Replacing:
[tex]Q=4.18 \frac{J}{g*K}*1,300 g*11.8 K[/tex]
Q= 64,121.2 J
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
A chemist prepares a solution of sodium chloride by measuring out 25.4 grams of sodium chloride into a 100. mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's sodium chloride solution. Be sure your answer has the correct number of significant digits.
Answer:
The concentration in mol/L = 4.342 mol/L
Explanation:
Given that :
mass of sodium chloride = 25.4 grams
Volume of the volumetric flask = 100 mL
We all know that the molar mass of sodium chloride NaCl = 58.5 g/mol
and number of moles = mass/molar mass
The number of moles of sodium chloride = 25.4 g/58.5 g/mol
The number of moles of sodium chloride = 0.434188 mol
The concentration in mol/L = number of mol/ volume of the solution
The concentration in mol/L = 0.434188 mol/ 100 × 10⁻³ L
The concentration in mol/L = 4.34188 mol/L
The concentration in mol/L = 4.342 mol/L
Why do prices increase when demand for a product is high? Companies know they can make more money by selling fewer products at higher prices. Companies know that people will be willing to spend more to get an in-demand product. Companies take advantage of the demand to make people spend more money on excess products. Companies know they can stop production and still make money on sales.
Answer:
Companies know that people will be willing to spend more to get an in-demand product.
Explanation:
When a product is really in demand, many customers are willing to part with more money order to purchase the product, as a result of that, many companies may take advantage of the increasing demand for the product to hike it's price.
Hence, the increase in price may not really have a negative impact on the quantity demanded because the demand for the product is high and customers are willing to spend more money in order to purchase an in-demand product, hence the answer above.
Prices increase when demand is high because companies know that people will be willing to spend more to get in-demand products.
Prices generally increase with higher demand for goods because the higher demand creates pressure for the supply to meet up.
Manufacturing companies can either increase their production to meet up with demand at the same price or capitalize on the situation to make more money by increasing the price without increasing the supply.
Since there is a buying pressure on the product in the market already, people would still be open to buying even at higher prices.
More on demand and prices can be found here: https://brainly.com/question/16170198?referrer=searchResults
You have a saturated solution of BaSO4, a slightly soluble ionic compound. What happens if you add Ba(OH)2, NaNO3, and CuSO4 to this solution
Answer:
- Addition of Ba(OH)2: favors the formation of a precipitate.
- Undergo a chemical reaction forming soluble species.
- Addition of CuSO4 : favors the formation of a precipitate.
Explanation:
Hello,
In this case, since the dissociation reaction of barium sulfate is:
[tex]BaSO_4(s)\rightleftharpoons Ba^{2+}(aq)+SO_4^{2-}(aq)[/tex]
We must analyze the effect of the common ion:
- By adding barium hydroxide, more barium ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
- By adding sodium nitrate, the following reaction will undergo:
[tex]BaSO_4(s)+NaNO_3(aq)\rightarrow Ba(NO_3)_2(aq)+Na_2SO_4(aq)[/tex]
So the precipitate will turn into other soluble species.
- By adding copper (II) sulfate, more sulfate ions will be added to the equilibrium system so the formation of solid barium sulfate will be favored (reaction shifts leftwards towards reactants).
All of this is supported by the Le Chatelier's principle.
Best regards.
One way the U.S. Environmental Protection Agency (EPA) tests for chloride contaminants in water is by titrating a sample of silver nitrate solution. Any chloride anions in solution will combine with the silver cations to produce bright white silver chloride precipitate. Suppose an EPA chemist tests a sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:
Answer:
6.5 mg/L.
Explanation:
Step one: write out and Balance the chemical reaction in the Question above:
NiCl2 + 2AgNO3 =====> 2AgCl + Ni(NO3)2.
Step two: Calculate or determine the number of moles of AgCl.
So, we are given that the mass of AgCl = 3.6 mg = 3.6 × 10^-3 g. Therefore, the number of moles of AgCl can be calculated as below:
Number of moles AgCl = mass/molar mass = 3.6 × 10^-3 g / 143.32. = 2.5118 × 10^-5 moles.
Step three: Calculate or determine the number of moles of NiCl2.
Thus, the number of moles of NiCl2 = 2.5118 × 10^-5/ 2 = 1.2559 × 10^-5 moles.
Step four: detemine the mass of NiCl2.
Therefore, the mass of NiCl2 = number of moles × molar mass = 1.2559 × 10^-5 moles × 129.6 = 1.6 × 10^-3 g.
Step five: finally, determine the concentration of NiCl2.
1000/ 250 × 1.6 × 10^-3 g. = 6.5 mg/L.
The absorption spectrum of argon has a line at 515 nm. What is the energy of
this line? (The speed of light in a vacuum is 3.00 x 108 m/s, and Planck's
constant is 6.626 x 10-34 Jos.)
O A. 2.59 x 1027j
O B. 3.86 x 10-28 J
O C. 3.86 x 10-19 J
O D. 2.59 x 1018 J
Answer:
OPTION C is correct
3.86 x 10-19 J
Explanation:
Energy of the line can be calculated using below formula
E= h ν.................(1)
Where E= energy
h= plank constant= 6.626 10-34 J s
c=speed of light=3 x 108 m/s
But we know that Velocity V= = c / λ
Then substitute into equation (1) we have
E = h c / λ.............(2)
We can calculate our( hc ) in nm for unit consistency
h c =( 6.626 ×10^-34)x(3×108)
h c = (1.986 x 10-16 )
hc = 1.986 x 10-16 J nm then since our (hc) and λ are in the same unit , were good to go then substitute into equation(2)
E = h c / λ = (1.986 x 10-16) / 515
E = 3.86 x 10-19 J
Therefore, the Energy is 3.86 x 10-19 J
A piece of solid Fe metal is put into an aqueous solution of Cu(NO3)2. Write the net ionic equation for any single-replacement redox reaction that may be predicted. Assume that the oxidation state of in the resulted solution is 2 . (Use the lowest possible coefficients for the reaction. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank and click on Submit.)
Answer:
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)
Explanation:
The ionic equation shows the actual reaction that took place. It excludes the spectator ions. Spectator ions are ions that do not really participate in the reaction even though they are present in the system.
For the reaction between iron and copper II nitrate, the molecular reaction equation is;
Fe(s) + Cu(NO3)2(aq)----> Fe(NO3)2(aq) +Cu(s)
Ionically;
Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)
Janet observes that bubbles rise inside water when water is heated. Which of the following best names and explains the change that causes bubbles to rise?
Answer:
Boiling
Explanation:
When a liquid is heated, the vapor pressure rises steadily. When water attains a temperature of 100°C or 212°F its vapor pressure is now equal to the atmospheric pressure at sea level, this is what we mean by boiling.
When this occurs, water continues to evaporate untill the vapor pressure inside the bubbles becomes high enough to stop water bubbles from collapsing again from the pressure of the water around it so the bubbles rise and break the surface.
Because of movements at the Mid-Atlantic Ridge, the Atlantic Ocean widens by about 2.5 centimeters each year. Explain which type of plate boundary causes this motion.
Answer:
A divergent plate boundary
Explanation:
At a divergent boundary, the plates pull away from each other and generate new crust.
Answer:
Because the ocean becomes larger, this is a divergent plate boundary. Divergent plates cause the ocean floor to expand, making the ocean larger.
Explanation:
PLATO ANSWER
Match the words below to the appropriate blanks in the sentences. Make certain each sentence is complete before submitting your answerβ-1,4- and α-1,6-glycosidicβ-1,4-glycosidicgalactosean unbranchedglucosea branchedfructoseα-1,6-glycosidicAmylose is ......... polymer of ....... units joined by ........ bonds. Amylopectin is ....... polymer of .......units joined by ........ bonds.
The words given are not clear, so the clear question is as follows:
Match the words below to the appropriate blanks in the sentences. Make certain each sentence is complete before submitting your answer:
A. β-1,4- and α-1,6-glycosidic
B. α-1,4-glycosidic
C. α-1,4-galactose
D. an unbranched glucose
E. a branched fructose
F. α-1,6-glycosidic
Amylose is ......... polymer of ....... units joined by ........ bonds.
Amylopectin is ....... polymer of .......units joined by ........ bonds.
Answer:
D. an unbranched glucose
C. α-1,4-galactose
B. α-1,4-glycosidic
E. a branched fructose
A. β-1,4- and α-1,6-glycosidic
F. α-1,6-glycosidic
Explanation:
Amylose and amylopectin are two types of polysaccharides that can be found in starch granules.
Amylose is linear or unbranched glucose polymer of α-1,4-galactose units that are joined by α-1,4-glycosidic.
Amylopectin is a branched fructose polymer of β-1,4- and α-1,6-glycosidic units joined by α-1,6-glycosidic bonds.
Hence, the correct answers in the sequential order are:
Amylose:
D. an unbranched glucose
C. α-1,4-galactose
B. α-1,4-glycosidic
Amylopectin:
E. a branched fructose
A. β-1,4- and α-1,6-glycosidic
F. α-1,6-glycosidic
Gaseous methane (CH4) will react with gaseous oxygen (O2) to produce gaseous carbon dioxide (CO) and gaseous water (H2O) . Suppose 0.963 g of methane is mixed with 7.5 g of oxygen. Calculate the minimum mass of methane that could be left over by the chemical reaction. Be sure your answer has the correct number of significant digits.
Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:
[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]
If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:
[tex]n_{CH_4}=0.963gCH_4*\frac{1molCH_4}{16gCH_4}=0.0602molCH_4\\ \\n_{CH_4}^{consumed}=7.5gO_2*\frac{1molO_2}{32gO_2}*\frac{1molCH_4}{2molO_2} =0.117molCH_4[/tex]
Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.
[tex]left\ over=0g[/tex]
Regards.
When 1604 J of heat energy is added to 48.9 g of hexane, C6H14, the temperature increases by 14.5 ∘C. Calculate the molar heat capacity of C6H14.
Answer:
THE MOLAR HEAT CAPACITY OF HEXANE IS 290.027 J/ C
Explanation:
1604 J of heat is added to 48.9 g of hexane
To calculate the molar heat capacity of hexane, it is important to note that the molar heat capacity of a substance is the measure of the amount of heat needed to raise 1 mole of a substance by 1 K.
Since 1604 J of heat = 48.9 g of hexane
Molar mass of hexane = 86 g/mol = 1 mole
then;
1604 J = 48.9 g
x = 86 g
x = 1604 * 86 / 48.9
x = 4205.4 J
Hence, 4205.4 J of heat will be added to 1 mole or 86 g of hexane to raise the temperature by 14.5 C.
In other words,
heat = molar heat capacity * temperature change
molar heat capacity = heat/ temperature change
Molar heat capacity = 4205.4 J / 14.5 C
Molar heat capacity = 290.027 J/C
The molar heat capacity of hexane is 290.027 J/ C
4NH3(g) 5O2(g)4NO(g) 6H2O(g) Using standard thermodynamic data at 298K, calculate the free energy change when 1.81 moles of NH3(g) react at standard conditions.
Answer:
-434.14 kJ
Explanation:
Step 1: Write the balanced equation
4 NH₃(g) + 5 O₂(g) ⇒ 4 NO(g) + 6 H₂O(g)
Step 2: Calculate the standard free energy change (ΔG°r) for the reaction
We will use the following expression.
ΔG°r = 4 mol × ΔG°f(NO(g)) + 6 mol × ΔG°f(H₂O(g)) - 4 mol × ΔG°f(NH₃(g)) - 5 mol × ΔG°f(O₂(g))
ΔG°r = 4 mol × (86.55 kJ/mol) + 6 mol × (-228.57 kJ/mol) - 4 mol × (-16.45 kJ/mol) - 5 mol × (0 kJ/mol)
ΔG°r = -959.42 kJ
Step 3: Calculate the standard free energy change for 1.81 moles of NH₃
959.42 kJ are released per 4 moles of NH₃.
[tex]\frac{-959.42 kJ}{4mol} \times 1.81mol = -434.14 kJ[/tex]