what weight remains when 5/9 of a cake weighing 450 grams is eaten.
pls help me on this ..
Given : Scale drawing of Angel's rectangular room is 5cm by 7 cm
We know that, Area of a rectangle is given by : Length × Width
⇒ Area of Angel's rectangular room = (5 cm × 7 cm) = 35 cm²
Given : The scale is 1 cm = 4 feet
⇒ Area of Angel's rectangular room in square feet = 35 × (4 feet)²
⇒ Area of Angel's rectangular room in square feet = 35 × 16 feet²
⇒ Area of Angel's rectangular room in square feet = 560 feet²
a tv cost £800 plus VAT at 20% what is the total cost of the tv?
Answer:
Given:
Cost = £ 800
Tax = 20%
To find:
The total cost
Solution:
Total cost = Cost + Tax
Tax = 20 % of cost
20 / 100 * 800
Tax = £ 160
Hence,
Total cost = £ 800 + £ 160
Total cost = £ 960
Will mark Brainlest (from a deck of cards,pemba withdraw a card at random what is the probability that the card is queen) step by using formula
Answer:
1/13
Step-by-step explanation:
there are total no of 52 cards
out of that there are 4 queen
propability = tatal no of favorable outcomes / total no of possible outcomes
=4 / 52
=1/13
Answer:
1/13
Step-by-step explanation:
Total cards = 52
Number of Queen = 4
Probability of the chosen card to be queen
[tex]=\frac{Number \ of \ queen}{total \ number \ of \ cards}\\\\=\frac{4}{52} \\\\= \frac{1}{13}[/tex]
Simplify the following completely, show all work. √-45
Answer:
[tex]3\sqrt{5}i[/tex]
Step-by-step explanation:
[tex]\sqrt{-45}[/tex]
[tex]\sqrt{-9*5}[/tex]
[tex]\sqrt{-9}\sqrt{5}[/tex]
[tex]3i\sqrt{5}[/tex]
[tex]3\sqrt{5}i[/tex]
hello! i hope your day is going great! whats 4x 2/1/2??
Answer:
4
Step-by-step explanation:
1/2=0.5
2/0.5=1
4x1=4
A colony contains 1500 bacteria. The population increases at a rate of 115% each hour. If x represents the number of hours elapsed, which function represents the scenario?
f(x) = 1500(1.15)x
f(x) = 1500(115)x
f(x) = 1500(2.15)x
f(x) = 1500(215)x
Answer:
C) f(x) = 1500(2.15)x
Step-by-step explanation:
Got it right on Edge :)
Find the equation of the least squares regression line. Show all calculations, and be sure to define any variables used.
A multiple-choice test contains 25 questions, each with 4 answers. Assume a student just guesses on each question. (a) What is the probability that the student answers more than 20 questions correctly
Answer:
9.68*10^-10
Step-by-step explanation:
The problem above can be solved using the binomial probability relation :
Where ;
P(x = x) = nCx * p^x * q^(n-x)
n = number of trials = 25
p = 1/4 = 0.25
q = 1 - p = 0.75
x = 20
P(x > 20) = p(x = 21) + p(x = 22) +.. + p(x = 25)
Using the binomial probability calculator to save computation time :
P(x > 20) = 9.68*10^-10
Question 6 of 10
Which expression gives the volume of a sphere with radius 7?
A 4/3pi(7^2)
B. 4/3pi (7^3)
C. 4pi(7^3)
D. 4pi(7^2)
Answer:
B. 4/3pi (7^3)
Step-by-step explanation:
The volume of a sphere is given by
V = 4/3 pi r^3
We know the radius is 7
V = 4/3 pi 7^3
Bill Dollar is playing a video game. After level one he has - 17 points. You decide to challenge Bill online and after level one you have a score that is 29 points less than Bill's score. What is your score?
Answer:
-46
Step-by-step explanation:
To find your score, take Bill's score which is -17 and if it is 29 less than, you subtract 29
So, - 17 - 29 is -46
Determine whether the stochastic matrix P is regular. Then find the steady state matrix X of the Markov chain with matrix of transition probabilities P. P=
0.22 0.20 0.65
0.62 0.60 0.15
0.16 0.20 0.20
Answer:
Step-by-step explanation:
Given that:
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right][/tex]
For a steady-state of a given matrix [tex]\bar X[/tex]
[tex]\bar X = \left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
As a result P[tex]\bar X[/tex] = [tex]\bar X[/tex] and a+b+c must be equal to 1
So, if P[tex]\bar X[/tex] = [tex]\bar X[/tex]
Then;
[tex]P = \left[\begin{array}{ccc}0.22&0.20&0.65\\0.62&0.60&0.15\\0.16&0.20&0.20\end{array}\right]\left[\begin{array}{c}a\\b\\c\end{array}\right] =\left[\begin{array}{c}a\\b\\c\end{array}\right][/tex]
[tex]\implies \left\begin{array}{ccc}0.22a+&0.20b+&0.65c\\0.62a+&0.60b+&0.15c\\0.16a+&0.20b+&0.20c\end{array} \right = \left \begin{array}{c}a ---(1)\\b---(2)\\c---(3)\end{array}\right[/tex]
Equating both equation (1) and (3)
(0.22a+ 0.2b + 0.65c) - (0.16a + 0.2b + 0.2c) = a - c
0.06a + 0.45c = a - c
collect like terms
0.06a - a = -c - 0.45c
-0.94 a = -1.45 c
0.94 a = 1.45 c
[tex]c =\dfrac{ 0.94}{1.45}a[/tex]
[tex]c =\dfrac{ 94}{145}a --- (4)[/tex]
Using equation (2)
0.62a + 0.60b + 0.15c = b
where;
c = 94/145 a
[tex]0.62a + 0.60b + 0.15(\dfrac{94}{145}) a= b[/tex]
[tex]0.62a + 0.15(\dfrac{94}{145}) a= -0.60b+b[/tex]
[tex]0.62a + (\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](0.62+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{62}{100}+\dfrac{141}{1450}) a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= 0.40b[/tex]
[tex](\dfrac{1043}{1450})a= \dfrac{4}{10} b[/tex]
[tex](\dfrac{1043 \times 10}{1450 \times 4})a = \dfrac{4}{10} \times \dfrac{10}{4}[/tex]
[tex]b = (\dfrac{1043}{580}) a --- (5)[/tex]
From a + b + c = 1
[tex]a + \dfrac{1043}{580}a + \dfrac{94}{145} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{94*4}{145*4} a = 1[/tex]
[tex]a + \dfrac{1043}{580}a + \dfrac{376}{580} a = 1[/tex]
[tex]\dfrac{580+ 1043+376 }{580} a= 1[/tex]
[tex]\dfrac{1999}{580} a= 1[/tex]
[tex]a = \dfrac{580}{1999}[/tex]
∴
[tex]b = \dfrac{1043}{580} \times \dfrac{580}{1999}[/tex]
[tex]b = \dfrac{1043}{1999}[/tex]
[tex]c = \dfrac{94}{145} \times \dfrac{580}{1999}[/tex]
[tex]c= \dfrac{376}{1999}[/tex]
∴
The steady matrix of [tex]\bar X[/tex] is:
[tex]\bar X = \left[\begin{array}{c}\dfrac{580}{1999} \\ \\ \dfrac{1043}{1999}\\ \\ \dfrac{376}{1999}\end{array}\right][/tex]
Five minivans and three trucks are traveling on a 3.0 mile circular track and complete a full lap in 98.0, 108.0, 113.0, 108.0, 102.0, 101.0, 85.0, and 95.0 seconds, respectively. Assuming all vehicles are traveling at constant speeds, what is the time-mean speed of the minivans
Answer:
The time-mean speed of the minivans is of 105.8 seconds.
Step-by-step explanation:
Mean of a data-set:
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
Five minivans, times of: 98.0, 108.0, 113.0, 108.0, 102.0, in seconds.
Thus, the mean is:
[tex]M = \frac{98 + 108 + 113 + 108 + 102}{5} = 105.8[/tex]
The time-mean speed of the minivans is of 105.8 seconds.
What is the value of x
Answer:
18°
Step-by-step explanation:
Know that the intersection of two lines and the angles opposite each other are equal
3t+12=66
Subtract 12 from both sides
3t=54
Divide 3 from both sides
t=18
In which of the following expressions does the number 36 fill in the blank so that the equation is true? Select all that apply. A) 6(8 + 9) = ___ + 54 B) 6(9 + 6) = 54 + ___ C) 9(4 + 7) = ___ + 63 D) 3(5 + 12) = 15 + ___
Answer:
B is the correct answer
Step-by-step explanation:
6(9+6)=54+36
6(15)=90
90=90
Graph the image of kite JKLM after a translation 3 units up.
Found out the answer please I can't do this
Answer:
530.929158457
Step-by-step explanation:
13x13= 169 x pi= 530.929158457
Im needing help with this math question
Answer:
4 weeks = 105
16 weeks = 42
24 weeks = 0
Step-by-step explanation:
the function is missing the 'w'
it should be : C(w) = 126 - 5.25w
'w' is the number of weeks
Substitute number of weeks in the 'w' spot
first one is 4 weeks, so
C(w) = 126 - 5.25(4)
= 126 - 21
= 105
The base of a solid is a circular disk with radius 4. Parallel cross sections perpendicular to the base are squares. Find the volume of the solid.
Answer:
the volume of the solid is 1024/3 cubic unit
Step-by-step explanation:
Given the data in the question,
radius of the circular disk = 4
Now if the center is at ( 0,0 ), the equation of the circle will be;
x² + y² = 4²
x² + y² = 16
we solve for y
y² = 16 - x²
y = ±√( 16 - x² )
{ positive is for the top while the negative is for the bottom position }
A = b²
b = 2√( 16 - x² ) { parallel cross section }
A = [2√( 16 - x² )]²
A = 4( 16 - x² )
Now,
VOLUME = [tex]\int\limits^r -rA dx[/tex]
= [tex]\int\limits^4_4 {-4(16-x^2)} \, dx[/tex]
= 4[ 16x - (x³)/3 ] { from -4 to 4 }
= 4[ ( 64 - 64/3 ) - (-64 = 64/3 0 ]
= 4[ 64 - 64/3 + 64 - 64/3 ]
= 4[ (192 - 64 + 192 - 64 ) / 3 ]
= 4[ 256 / 3 ]
= 1024/3 cubic unit
Therefore, the volume of the solid is 1024/3 cubic unit
What’s the answer to this question?
Answer:
its x^4
Step-by-step explanation:
its x^4
Find x
Find Angle CBD
Find Angle D
Answer:
[tex]thank \: you[/tex]
Combine the following complex numbers.
(16 − 6i) − (2 − 3i)
Answer:
14 - 3i
Step-by-step explanation:
Distribute the minus sign amongst the second equation:
(16 - 6i) - (2 - 3i) = 16 - 6i - 2 + 3i
Solve:
16 - 6i - 2 + 3i:
16 - 2 - 6i +3i
14 - 3i
Hope this helps!
Determine the domain of the function (f o g)((x) where:
Answer: You have the correct answer. It's choice B
Domain = [tex]\left(-\infty, \frac{2}{5}\right)[/tex]
Nice work.
=========================================================
Explanation:
The domain of g(x) is found by setting 2-5x greater than or equal to 0 and solving for x. We're doing this to ensure that 2-5x is not negative.
[tex]2-5x \ge 0\\\\2 \ge 5x\\\\5x \le 2\\\\x \le \frac{2}{5}[/tex]
So we can plug in any number smaller than 2/5, or we can plug in 2/5 itself, into the g(x) function to get some output.
However, notice that if x = 2/5, then g(x) = 0. This then would feed into the f(x) function and lead to a division by zero error. Therefore, x = 2/5 must be kicked out of the domain of (f o g)(x). We keep everything else that we found earlier.
In short, the domain as an inequality is [tex]x < \frac{2}{5}[/tex], which is the same as saying [tex]-\infty < x < \frac{2}{5}[/tex] and that converts to the interval notation [tex]\left(-\infty, \frac{2}{5}\right)[/tex]
We don't use a square bracket because we don't want to include the endpoint 2/5.
Example 3:
In how many ways can a supermarket manager display 5 brands of cereals
in 3 spaces on a shelf?
Solution:
Answer:
10
Step-by-step explanation:
5
C
3
5!/(3!(5-3)!)
5!/(3!x2!)
120/12
10
In 10 ways can a supermarket manager display 5 brands of cereals
in 3 spaces on a shelf.
What is Combination?Combinations are mathematical operations that count the number of potential configurations for a set of elements when the order of the selection is irrelevant. You can choose the components of combos in any order. Permutations and combinations can be mixed up.
Given:
Total brands of cereals= 5
Using Combination, C(n, r)
= n!/ r! (n- r)!
So, the number of ways
= C(5, 3)
= 5!/(3!(5-3)!) 5
= 5 x 4 x 3! / 3! x 2!
= 5 x 4 /2
= 10
Thus, the total number of ways is 10.
Learn more about Combination here:
https://brainly.com/question/13387529
#SPJ6
Think you can figure out the correct answer here
The answer would be 30 because the triangle is 10, the circle is 5, and each black triangle is 2 which would be 10 plus 5 which is 15 then times 2 which is 30.
Answer:
20?
Step-by-step explanation:
If 3 triangles = 30 they we could assume that each triangle = 10
10 + 10 + 10 = 30
If one triangle = 10 then the 2 circles would = 5 in the 2nd equation
10 + 5 + 5 = 20
If 1 circle = 5 then the 1 full squares would = 4
5 + 4 + 4 = 13
1 triangle = 10 , 1 circle = 5, Half a square = 2
10 + 5 * 2 = ?
Using PEMDAS we would multiply 2 and 5 first to get 10
10 + 10 = 20
PLS HELP ASAP !!! WILL MARK BRAINLIEST !!
Answer:
c is equal to e
Step-by-step explanation: a
What is the greatest possible integer value of x for which StartRoot x minus 5 EndRoot is an imaginary number?
Answer:
The answer is 4.
Step-by-step explanation:
Edge 2021
Answer:
4
Step-by-step explanation:
EDGE2021
What is 30 rounded to the nearest whole number percent?
Answer:
Thirty rounded to the nearest whole number percent is 30% (%=percent)
Step-by-step explanation:
Well, you see that if you have 30 out of one hundred then that's when all you have to do is go with the same number and just add percent or % to the end.
Please Mark as Brainliest
Hope this Helps
This is just evidence
Please help me!!!!!!!!!!!!!!!!
Answer:
I think it might be SAS. (side angle side)
A rectangular field is covered by circular sprinklers as
shown in the diagram. What percentage of the field is not
being watered by the sprinklers?
Answer:
21%
Step-by-step explanation:
Area of one sprinkler
a = πr²
a = π10²
a = 314.159 ft²
8 sprinklers
a = 8 * 314.159
a = 2,513.272
---------------------
area of field
a = lw
a = 80 * 40
a = 3200
------------------------
area not watered
a = 3200 - 2,513.272
a = 686.728
------------------
percentage not watered
p = 686.728 / 3200 * 100%
p = 21.46025%
Rounded
21%