Answer:
(a).
» E. SO₃, sulphur trioxide.
(b).
» A. CaO, Calcium oxide.
» D. K₂O, potassium oxide.
» E. BaO, barium oxide.
(c).
» B. Al₂O₃, Aluminium oxide.
» E. SnO₂, tin (IV) oxide.
(d).
» A. CO, carbon monoxide.
» B. NO, nitrogen monoxide.
Explanation:
[tex]{ \underline{ \sf{ \blue{christ \:† \: alone }}}}[/tex]
Write the balanced equation showing the decomposition of carbonic acid and sulfurous acid.
Explanation:
here's the answer to your question
Decomposition of Sulfurous Acid (H₂SO₃):
H₂SO₃ → H₂O + SO₂
In this reaction, sulfurous acid decomposes into water (H₂O) and sulfur dioxide (SO₂).
The decomposition of carbonic acid (H₂CO₃) and sulfurous acid (H₂SO₃) can be represented by the following balanced chemical equations:
Decomposition of Carbonic Acid (H₂CO₃):
H₂CO₃ → H₂O + CO₂
In this reaction, carbonic acid decomposes into water (H₂O) and carbon dioxide (CO₂).
Decomposition of Sulfurous Acid (H₂SO₃):
H₂SO₃ → H₂O + SO₂
In this reaction, sulfurous acid decomposes into water (H₂O) and sulfur dioxide (SO₂).
To know more about carbonic acid:
https://brainly.com/question/33000916
#SPJ2
please help!
What is the definition of thermal chemistry?
a.The study of change that involves warm objects
b.The study of change that involves heat
c.The study of change that involves cool objects
d.The study of change that involves temperature
Somebody help me!!
Calculate the mass of 2.046L of NO2
A tank of oxygen with a pressure of 23 atm is moved from room temperature of 293K to a storage freezer at 239K. What is the final pressure?
Answer:
18.76atm
Explanation:
Using the formula V1P1/T1 = V2P2/T2, from combined gas law. Volume is constant since we have not been given. Therefore the formula comes to be; P1/T1 = P2/T1
To get P2 = T2(P1/T1)
Where P2 is final pressure
P2 = 239K ( 23atm/293K)
=18.76atm
One and a half gallons of paint are used on refrigeration units which are then baked dry in a 275F oven for 2 hours. If the paint contains 5% solids and uses hexane as the solvent, what is the evaporation rate in pints per minute
Answer:
Hence the evaporation rate in pints per minute is 0.001583.
Explanation:
Now,
1.5 gallons of paint are used.
It has 5% solid, so total 95% of 1.5 gallon can evaporate(only the solvent part will evaporate).
95% of 1.5 gallon=(95/100)*1.5 = 1.425 gallons.
1gallon = 8 pints.
So 1.425 gallons=8*1.425 pints
=11.4 pints.
Evaporation requires 2 hours. That is 3600*2 seconds = 7200 seconds.
So evaporation rate= 11.4 pints/7200 seconds.
=0.001583 pints per second
Classify each of the reactions listed below as a single-displacement, double-displacement, synthesis,
decomposition, oxidation reduction or combustion reaction.
Reaction Type
: 2Na + Cl2 → 2NaCl
: C2H4 + 3O2 → 2CO2 + 2H2O
: 2Ag2O-> 4Ag + O2
: BaCl2 + Na2SO4->BaSO4 +2NaCl
: 2AI + Fe2O3-> 2Fe + Al2O3
5. How many grams of tin metal can be produced from smelting (heating) of a 4.5 kilograms of tin (IV) oxide? (Note: Elemental tin and oxygen gas are the only products of this reaction).
Answer:
About 3500 grams of tin.
Explanation:
We want to determine amount of tin metal (in grams) that can be produced from smelting 4.5 kilograms of tin(IV) oxide.
First, write the chemical compound. Since our cation is tin(IV), it forms a 3+ charge. Oxygen has a 2- charge, so we will have two oxygen atoms. Hence, tin(IV) oxide is given by SnO₂.
By smelting it, we acquire elemental tin and oxygen gas. Hence:
[tex]\text{SnO$_2$}\rightarrow \text{Sn} + \text{O$_2$}[/tex]
(Note: oxygen is a diatomic element.)
The equation is balanced as well.
To convert from SnO₂ to only Sn, we can first convert from grams of SnO₂ to moles, use mole ratios to convert to moles of Sn, and then from there convert to grams.
Since Sn has a molar mass of 118.71 g/mol and oxygen has a molar mass of 15.999 g/mol, the molar mass of SnO₂ is:
[tex](118.71)+2(15.999) = 150.708\text{ g/mol}[/tex]
Therefore, given 4.5 kilograms of SnO₂, we can first convert this into grams using 1000 g / kg and then using the ratio:
[tex]\displaystyle \frac{1\text{ mol SnO$_2$}}{150.708\text{ g SnO$_2$}}[/tex]
We can convert this into moles.
Next, from the chemical equation, we can see that one mole of SnO₂ produces exactly one mole of Sn (and also one mole of O₂). So, our mole ratio is:
[tex]\displaystyle \frac{1\text{ mol Sn}}{1\text{ mol SnO$_2$}}[/tex]
With SnO₂ in the denominator to simplify units.
Finally, we can convert from moles Sn to grams Sn using its molar mass:
[tex]\displaystyle \frac{118.71\text{ g Sn}}{1\text{ mol Sn}}[/tex]
With the initial value and above ratios, we acquire:
[tex]\displaystyle 4.5\text{ kg SnO$_2$}\cdot \frac{1000 \text{ g SnO$_2$}}{1\text{ kg SnO$_2$}}\cdot \displaystyle \frac{1\text{ mol SnO$_2$}}{150.708\text{ g SnO$_2$}}\cdot \displaystyle \frac{1\text{ mol Sn}}{1 \text{ mol SnO$_2$}} \cdot\displaystyle \frac{118.71\text{ g Sn}}{1\text{ mol Sn}}[/tex]
Cancel like units:
[tex]=\displaystyle 4.5\cdot \frac{1000}{1}\cdot \displaystyle \frac{1}{150.708}\cdot \displaystyle \frac{1}{1} \cdot\displaystyle \frac{118.71\text{ g Sn}}{1}[/tex]
Multiply. Hence:
[tex]\displaystyle = 3544.5696...\text{ g Sn}[/tex]
Since we should have two significant figures:
[tex]=3500 \text{ g Sn}[/tex]
So, about 3500 grams of tin is produced from smelting 4.5 kg of tin(IV) oxide.
Answer:
3546g
Explanation:
start w/ tin (IV) oxide n elemental tin and oxygen gas are the only products of this reaction
SnO2 -> Sn + O2
Sn molecular wt: 119
O2 molecular wt: 32
SnO2 molecular wt: 119+32 = 151
so Sn / SnO2 wt ratio = 119 / 151
4.5 kilograms of tin (IV) oxide will produce:
= 4.5 * 119 / 151
= 3.546 kg
or 3546 grams of tin metal
no need to involve moles ;)
The illustration on the left represents a mixture of I2 (purple) molecules and F2 (green) molecules. If these were to react to form IF3 molecules, what is the maximum number of IF3 molecules that could form? Hint: Atoms must be conserved in an ordinary chemical reaction.
Answer:
Depends on the reacting molecules.
Explanation:
More molecules of IF3 are formed when more I2 (purple) molecules and F2 (green) molecules combine or react with each other. If one molecule of I2 (purple) react with three F2 (green) molecules then two molecules of IF3 are formed. The equation for this reaction is given below:
I2 + 3F2 -----------> 2IF3. In this reaction, we can see that one molecule of I2 react with three molecules of F2 forming two molecules of IF3.
Choose all the answers that apply. Silicon (Si) has 14 protons and an atomic mass of 28. Silicon has _____. three electron shells 14 electrons 14 neutrons two electron shells 28 electrons
Answer:
three electron shells
14 electrons
14 neutrons
Explanation:
Silicon has three electron shells arranged as follows; 2, 8, 4. This corresponds to the fact that silicon is a member of group 14 of the periodic table.
Note that, the number of protons in an atom is the same as the number of electrons in the neutral atom. Since Silicon has 14 protons, it also has 14 electrons likewise.
The mass number of silicon is 28 but number of neutrons= mass number - number of protons. Since mass number = 28, then there are 14 neutrons in silicon.
Based on the "Reactivity in Substitution Reactions" experiment, which molecule would be expected to react the fastest using AgNO3 in water-ethanol ?
Answer:
C) EtOH 1% AgNO3
how does lead resemble chromium?
what are the features of modern periodic table
A researcher is attempting to produce ethanol using an enzyme catalyzed batch reactor. The ethanol is produced from corn starch by first-order kinetics with a rate constant of 0.05 hr-1. Assuming the concentration of ethanol initially is 1 mg/L, what will be the concentration of ethanol (in mg/L) after 24 hours
Answer:
The correct solution is "3.32 gm/L".
Explanation:
Given:
Rate constant,
[tex]K = 0.05 \ hr^{-1}[/tex]
Time,
[tex]t = 24 \ hours[/tex]
Concentration of ethanol,
[tex]C_o= 1 \ mg/L[/tex]
Now,
The concentration of ethanol after 24 hours will be:
⇒ [tex]C_o=C\times e^{-K\times t}[/tex]
By putting the values, we get
[tex]1=C\times e^{-0.05\times 24}[/tex]
[tex]1=C\times 0.30119[/tex]
[tex]C= 3.32 \ gm/L[/tex]
1. Which of the following are covalent compounds?
Select all that apply:
Potassium Chloride: K CI
Octadecanol: C18H380
Dimethyl Sulfoxide: CHOS
Lithium Bromide: LiBr
Answer:
Octadecanol: C18H380
Dimethyl sulfoxide: CHOS
Explanation:
Covalent compounds are formed between non-metallic elements
10g of a non-volatile and non-dissociating solute is dissolved in 200g of benzene.
The resulting solution boils At temperature of 81.20oC. Find the molar mass of solute.
Given that the BP of pure benzene is 80.10oC and Its elevation boiling point constant = 2.53 oC/m.
Answer: The molar mass of solute is 115 g/mol.
Explanation:
Elevation in the boiling point is defined as the difference between the boiling point of the solution and the boiling point of the pure solvent.
The expression for the calculation of elevation in boiling point is:
[tex]\text{Boiling point of solution}-\text{boiling point of pure solvent}=i\times K_b\times m[/tex]
OR
[tex]\text{Boiling point of solution}-\text{Boiling point of pure solvent}=i\times K_f\times \frac{m_{solute}\times 1000}{M_{solute}\times w_{solvent}\text{(in g)}}[/tex] ......(1)
where,
Boiling point of pure solvent (benzene) = [tex]80.10^oC[/tex]
Boiling point of solution = [tex]81.20^oC[/tex]
i = Vant Hoff factor = 1 (for non-electrolytes)
[tex]K_b[/tex] = Boiling point elevation constant = [tex]2.53^oC/m[/tex]
[tex]m_{solute}[/tex] = Given mass of solute = 10 g
[tex]M_{solute}[/tex] = Molar mass of solute = ? g/mol
[tex]w_{solvent}[/tex] = Mass of solvent = 200 g
Putting values in equation 1, we get:
[tex]81.20-80.10=1\times 2.53\times \frac{10\times 1000}{M_{solute}\times 200}\\\\M_{solute}=\frac{1\times 2.53\times 10\times 1000}{1.1\times 200}\\\\M_{solute}=115g/mol[/tex]
Hence, the molar mass of solute is 115 g/mol.
Why does increasing the temperature of two reactants in solution make a
reaction proceed more quickly?
Answer:
-The particles of the two reactants will gain kinetic energy and collide with one another more frequently and forcefully, which makes the reaction take place more quickly
balance the following reaction using LCM method by showing each steps Pb (N3)2 + Cr(MnO4)2 Cr2O3 + MnO2 + Pb3O4+ NO
here's the answer to your question
Which statement best summarizes the second law of thermodynamics?
A. The total disorder of a system and it’s surroundings tend to increase
B. Energy cannot be created or destroyed
C. Energy is lost when it changes form
D. A system and it’s surroundings tend toward a state of increased order
Answer:
B
Explanation:
A p e x
define surface are tension of liquid
The hydrological cycle refers to the circulation of water within the earth's hydrosphere in different from I. e. the liquid, solid and the gaseous forms.
Suppose we have two rock samples, A and B. Rock A was subject to both physical and chemical weathering while rock B was subject to chemical weathering only. Which rock would experience more chemical weathering? Why? (2pts) (Hint: consider the effect of surface area on the rate of chemical weathering)
Answer:
Rock A will have far more chemical weathering than Rock B due to the rise in area effect
Explanation:
Rock A undergoes both Physical and Chemical weathering. So, thanks to physical weathering there'll appear cracks within the rock, which can, in turn, increase the area of rock on which weathering is occurring. So, Chemical weathering will happen much faster now as there's a rise in the area. within the case of Rock B, there's only chemical weathering therefore the increase in the area won't be that very much like compared to Rock A.
If the temperature of a volume of dieal gas ncreases for 100 to 200, what happens to the average kinetic energy of the molecules?
Answer:
It increases but less than double
Explanation:
As the temperature of a gas increase, the average kinetic energy of the gas increases. The kinetic energy of a gas is the thermal energy that the gas contains.
We know, the kinetic energy of an ideal gas is given by :
[tex]$V_{avg} = \sqrt{\frac{8R}{\pi M}}$[/tex]
where, R = gas constant
T = absolute temperature
M = molecular mass of the gas
From the above law, we get
[tex]$V_{avg} \propto \sqrt{T}$[/tex]
Thus, if we increase the temperature then the average kinetic energy of the ideal gas increases.
In the context, if the temperature of the ideal gas increases from 100°C to 200°C, then
[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{\frac{T_2}{T_1}}$[/tex]
[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{\frac{473.15}{373.15}}$[/tex]
[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =\sqrt{1.26}$[/tex]
[tex]$\frac{(V_{avg)_2}}{(V_{avg)_1}} =1.12$[/tex]
[tex]$(V_{avg})_2 = 1.12\ (V_{avg})_1$[/tex]
Therefore, [tex]$(V_{avg})_2 > (V_{avg})_1$[/tex]
Thus the average kinetic energy of the molecule increases but it increases 1.12 times which is less than the double.
Thus, the answer is " It increases but less that double".
A solution is made by mixing 500.0 mL of 0.02558 M Na2HAsO4 with 500.0 mL of 0.03961 M NaOH . Complete the mass balance expressions for the sodium and arsenate species in the final solution.
Answer:
Na2HAsO4 + NaOH → Na3AsO4 + H2O
Explanation:
The arseniate specie (Na2HAsO4) contains 1 proton that is acidic. This acidic proton will react with a base as NaOH to produce water and the related salt. The acid-base reaction is:
H+ + NaOH → H2O + Na+
Now, the arsenate species reacts as follows:
Na2HAsO4 + NaOH → Na3AsO4 + H2OYou are given a metal sample that you are told is gold. Explain in a step-by-step procedure exactly how you could (a) determine if the metal is actually gold and (b) determine the purity of the gold if you know what other metals may be present. Write out your answer in a clear and well supported paragraph.
Answer:
The answer is provided below
Explanation:
To determine the metal is gold we will use the following steps
Calculate the density of the MetalTake the density of the pure goldCompare both densitiesTake a full water container
Place the metal in the container
Collect the water that spills out due to the placement of the metal
measure the mass of collected water.
Calculate the value in terms of the density of water, it will be the volume of metal.
Calculate the mass of the metal
Use the following formula to calculate the density of the metal
Density = Mass / Volume
Now compre the resulted density to the density of pure gold.
How much BaSO4 can be formed from 196.0 g of H2SO4?
Answer:
a) You can form 466 g of BaSO₄.
Explanation:
a) Mass of BaSO4
196 g H₂SO4 × 1 mol H₂SO4
98.08 g H₂SO4
1 mol BaSO 1 mol H₂SO4 X X
466 g BaSO4
233.39 g BaSO4
1 mol BaSO4
Write the cell notation for an electrochemical cell consisting of an anode where Mn (s) is oxidized to Mn2 (aq) and a cathode where Co2 (aq) is reduced to Co (s) . Assume all aqueous solutions have a concentration of 1 mol/L.
Answer:
Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Explanation:
In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.
For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.
Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
How many molecules (or formula units) are in 138.56 g C4H10 Express your answer using four significant figures.
Answer:
dont buy cheap and off we went
How Many KJ
are in 1500 cal.
Answer: [tex]6.276\ kJ[/tex]
Explanation:
It is known that 1 cal is equivalent to 4.184 J
1500 cal will be equivalent to [tex]1500\times 4.184=6276\ J[/tex]
Also, 1 kJ is equivalent to 1000 J
So, 6276 J is equal to [tex]6.276\ kJ[/tex]
calculate pressure exerted by 1.255 mol of CI2 in a volume of 5.005 L at a temperature 273.5 k using ideal gas equation
Answer:
The pressure is 5.62 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
P= ?V= 5.005 Ln= 1.255 molR= 0.082 [tex]\frac{atm*L}{mol*K}[/tex]T= 273.5 KReplacing:
P* 5.005 L= 1.255 mol* 0.082 [tex]\frac{atm*L}{mol*K}[/tex] *273.5 K
Solving:
[tex]P=\frac{1.255 mol* 0.082 \frac{atm*L}{mol*K} *273.5 K}{5.005 L}[/tex]
P= 5.62 atm
The pressure is 5.62 atm.
Which of the following are combustion reactions?
NaNO3 (aq) arrow Na+(aq) + NO3-(aq)
C2H6 (g) + O2 (g) arrow CO2 (g) + H2O (l)
Mg(s) + HCl (aq) arrow H2 (g) + MgCl2 (aq)
HCl (aq) + NaOH (aq) arrow HOH (l) + NaCl (s)
Answer:
C₂H₆(g) + O₂(g) ⇒ CO₂(g) + H₂O(l)
Explanation:
Which of the following are combustion reactions?
NaNO₃(aq) ⇒ Na⁺(aq) + NO₃⁻(aq)
NO. This is a dissociation reaction.
C₂H₆(g) + O₂(g) ⇒ CO₂(g) + H₂O(l)
YES. This is a combustion reaction because a compound reacts with oxygen to form carbon dioxide and water.
Mg(s) + HCl (aq) ⇒ H₂(g) + MgCl₂(aq)
NO. This is a single displacement reaction.
HCl(aq) + NaOH (aq) ⇒ HOH(l) + NaCl(s)
NO. This is a neutralization reaction.
A rigid, sealed container that can hold 26 L of gas is filled to a pressure of
5.97 atm at 374 °C. The pressure suddenly decreases to 3.64 atm. What is
the new temperature inside the container, in units of °C?
Answer:
121 °C
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 5.97 atm
Initial temperature (T₁) = 374 °C
Final pressure (P₂) = 3.64 atm
Final temperature (T₂) =?
NOTE: Volume = constant
Next, we shall convert 374 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
Initial temperature (T₁) = 374 °C
Initial temperature (T₁) = 374 °C + 273
Initial temperature (T₁) = 647 K
Next, we shall determine the final temperature. This can be obtained as follow:
Initial pressure (P₁) = 5.97 atm
Initial temperature (T₁) = 647 K
Final pressure (P₂) = 3.64 atm
Final temperature (T₂) =?
P₁ / T₁ = P₂ / T₂
5.97 / 647 = 3.64 / T₂
Cross multiply
5.97 × T₂ = 647 × 3.64
5.97 × T₂ = 2355.08
Divide both side by 5.97
T₂ = 2355.08 / 5.97
T₂ = 394 K
Finally, we shall convert 394 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
Final temperature (T₂) = 394 K
Final temperature (T₂) = 394 – 273
Final temperature (T₂) = 121 °C
Thus, the new temperature is 121 °C