Charge of uniform density (0.30 nC/m2) is distributed over the xy plane, and charge of uniform density (−0.40 nC/m2) is distributed over the yz plane. What is the magnitude of the resulting electric field at any point not in either of the two charged planes?

Answers

Answer 1

Answer: E = 39.54 N/C

Explanation: Electric field can be determined using surface charge density:

[tex]E = \frac{\sigma}{2\epsilon_{0}}[/tex]

where:

σ is surface charge density

[tex]\epsilon_{0}[/tex] is permitivitty of free space ([tex]\epsilon_{0} = 8.85.10^{-12}[/tex][tex]C^{2}/N.m^{2}[/tex])

Calculating resulting electric field:

[tex]E=E_{1} - E_{2}[/tex]

[tex]E = \frac{\sigma_{1}-\sigma_{2}}{2\epsilon_{0}}[/tex]

[tex]E = \frac{[0.3-(-0.4)].10^{-9}}{2.8.85.10^{-12}}[/tex]

[tex]E=0.03954.10^{3}[/tex]

E = 39.54

The resulting Electric Field at any point is 39.54N/C.

Answer 2

The magnitude of the resulting electric field at any point should be  28.2 N/C.

Calculation of the magnitude:

Since the Charge of uniform density (0.30 nC/m2) should be allocated over the xy plane, and charge of uniform density (−0.40 nC/m2)should be allocated over the yz plane.

So,

E1

= σ1/2ε0

= 0.30e-9/(2*8.85e-12)

= 16.949 N/C

So, direction of E1 is +z

Now

E2 = σ2/2ε0

= 0.40e-9/(2*8.85e-12)

= 22.6 N/C

So,  direction of E2 is -x

Now

E = √(E1*E1+E2*E2)

= √(16.949*16.949+22.6*22.6)

= 28.2 N/C

Learn more about magnitude here: https://brainly.com/question/14576767


Related Questions

A box is sliding down an incline tilted at a 12° angle above horizontal. The box is initially sliding down the incline at a speed of 1.5 m/s. The coefficient of kinetic friction between the box and the incline is 0.34. How far does the box slide down the incline before coming to rest?

Answers

Answer:

The box will cover a distance of 0.9199m before coming to rest

Explanation:

We are given;

Angle of tilt; θ = 12°

Speed of sliding down; u = 1.5 m/s

Coefficient of kinetic friction; μ = 0.34

We are told that the box is sliding down an incline tilted at a 12° angle above horizontal.

Thus,

The components of the weight of the block would be;

Fx = mg sinθ = mg sin 12

Fy = mg cosθ = mg cos 12

For, the normal force on the block, it will be counter balanced by the Y component of weight of block and so we have;

Normal force; Fn = mg cos 12

Now formula for the frictional force would be given by;

Ff = μmg cos 12

So, Ff = 0.34mg cos 12

So, the net force along the inclined plane is;

Fnet = Fx - Ff

Fnet = mg sin 12 - 0.34mg cos 12

Where Fnet = mass x acceleration.

Thus;

ma = mg sin 12 - 0.34mg cos 12

m will cancel out to give;

a = g sin 12 - 0.34g cos 12

a = 9.81(0.2079) - 0.34(9.81 × 0.9781)

a = -1.223 m/s²

According to Newton's equation of motion, we have;

(v² - u²) = 2as

s = (v² - u²)/2a

Final velocity is zero. Thus;

s = (0² - 1.5²)/(2 × -1.223)

s = -2.25/-2.446

s = 0.9199 m

Thus, the box will cover 0.9199m before coming to rest

A current of 5 A is flowing in a 20 mH inductor. The energy stored in the magnetic field of this inductor is:_______

a. 1J.
b. 0.50J.
c. 0.25J.
d. 0.
e. dependent upon the resistance of the inductor.

Answers

Answer:

C. 0.25J

Explanation:

Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;

L is the inductance

I is the current flowing in the inductor

Given parameters

L = 20mH = 20×10^-3H

I = 5A

Required

Energy stored in the magnetic field.

E = 1/2 × 20×10^-3 × 5²

E = 1/2 × 20×10^-3 × 25

E = 10×10^-3 × 25

E = 0.01 × 25

E = 0.25Joules.

Hence the energy stored in the magnetic field of this inductor is 0.25Joules

Some stove tops are smooth ceramic for easy cleaning. If the ceramic is 0.630 cm thick and heat conduction occurs through an area of 1.45 ✕ 10−2 m2 at a rate of 500 J/s, what is the temperature difference across it (in °C)? Ceramic has the same thermal conductivity as glass and concrete brick.

Answers

Answer:

The temperature difference [tex]\Delta T = 258.6 \ ^ o\ C[/tex]

Explanation:

From the question we are told that

   The  thickness is [tex]\Delta x = 0.630 cm = 0.0063 m[/tex]

    The  area is  [tex]A = 1.45 *10^{-2 } \ m^2[/tex]

     The rate is  [tex]P = 500 J/s[/tex]

       The  thermal conductivity is  [tex]\sigma = 0.84J[\cdot s \cdot m \cdot ^oC ][/tex]

Generally the rate heat conduction mathematically represented as

       [tex]P = \sigma * A * \frac{\Delta T}{\Delta x }[/tex]

=>    [tex]\Delta T = \frac{P * \Delta x }{\sigma * A }[/tex]

=>     [tex]\Delta T = \frac{ 500 * 0.00630 }{ 0.84 * 1.45 *10^{-2} }[/tex]

=>    [tex]\Delta T = 258.6 \ ^ o\ C[/tex]

Determine the value of the current in the solenoid so that the magnetic field at the center of the loop is zero tesla. Justify your answer.

Answers

Answer:

I will explain the concept of magnetic field and how it can be calculated.

Explanation:

The formula for magnetic field at the center of a loop is given as

B = μ[tex]_{o}[/tex]I / 2R

where B is the magnetic field

R is the radius of the loop

I is the current

and μ[tex]_{o}[/tex] is the magnetic permeability of free space which is a constant 4π × [tex]10^{-7}[/tex] newtons/ampere²

If the magnetic field at the center of the loop is 0, then μ[tex]_{o}[/tex]I = 0

I = 0 which means there will be no current flow in the loop.

g Calculate the maximum wavelength of light that will cause the photoelectric effect for potassium. Potassium has work function 2.29 eV = 3.67 x 10–19 J.

Answers

Answer:

λ = 5.4196 10⁻⁷m,  λ = 541.96 nm    this is green ligh

Explanation:

The photoelectric effect was explained by Eintein assuming that the light was made up of particles called photons and these collided with the electrons taking them out of the material.

 

                     K = h f -Ф

where K is the kinetic energy of the ejected electrons, hf is the energy of the light quanta and fi is the work function of the material.

The speed of light is related to wavelength and frequency

                   c = λ / f

                  f = c /λ

we substitute

                K = h c / λ - Φ

for the case that they ask us the kinetic energy of the electons is zero (K = 0)

                 h c / λ = Ф

                λ = h c / Ф

we calculate

                 λ = 6.63 10⁻³⁴  3 10⁸ / 3.67 10⁻¹⁸

                 λ = 5.4196 10⁻⁷m

let's take nm

                lam = 541.96 nm

this is green light

"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"

Answers

Answer:

A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if

the dispersion is great

The distance from the Sun to Earth is approximately 149,600,000 km. The distance from the Sun to Venus is approximately 108,200,000 km. The elongation angle αα is the angle formed between the line of sight from Earth to the Sun and the line of sight from Earth to Venus. Suppose that the elongation angle for Venus is 10∘.10 ∘. Use this information to find the possible distances between Earth and Venus.

Answers

Answer:

335206922km

Explanation:

Pls see attached file

Specular reflection occurs where the light ray in the glass strikes the reflector. If no light is to enter the water, we require that there be reflection only. Which phenomenon prevents the light from entering the water?

Answers

Answer:

The critical angle phenomenon.

Explanation:

Critical angle in optics is the smallest angle of incidence of a wave, that will give total reflection of the wave. This phenomenon occurs at the boundary of two medium, where light will normally move from one medium to another.

To prevent light from entering the water, the angle of incidence of the light incident on the water must exceed the critical angle.

Which of these cannot be a resistor in a series or parallel circuit?
A)switch
B) battery
C) light bulb
D) all of these are resistors

Answers

Answer:

it is going to D. all of these are resistors

An LR circuit consists of a 35-mH inductor, a resistance of 12 ohms, an 18-V battery, and a switch. What is the current 5.0 ms after the switch is closed

Answers

Answer:

Current, I = 1.23 A

Explanation:

Given that,

Inductance, L = 35 mH

Resistance, R = 12 ohms

Potential difference, V = 18 V

We need to find current 5 ms after the switch is closed. Current in LR circuit is given by :

[tex]I=I_o(1-e^{-t/\tau })[/tex] ....(1)

Here,

[tex]I_o[/tex] is final current

[tex]I_o=\dfrac{V}{R}\\\\I_o=\dfrac{18}{12}=1.5\ A[/tex]

[tex]\tau[/tex] is time constant

[tex]\tau=\dfrac{L}{R}\\\\\tau=\dfrac{35\times 10^{-3}}{12}\\\\\tau=0.00291\ s[/tex]

So, equation (1) becomes :

[tex]I=1.5\times (1-e^{-5\times 10^{-3}/0.00291})\\\\I=1.23\ A[/tex]

So, after 5 ms the current in the circuit is 1.23 A.

A polarized laser beam of intensity 285 W/m2 shines on an ideal polarizer. The angle between the polarization direction of the laser beam and the polarizing axis of the polarizer is 16.0 ∘. What is the intensity of the light that emerges from the polarizer?

Answers

Answer:

The intensity is  [tex]I_1 = 263.35 \ W/m^2[/tex]

Explanation:

From the question we are told that

    The intensity of the beam is  [tex]I = 285\ W/m^2[/tex]

    The  angle is [tex]\theta = 16^o[/tex]

The  intensity of the light that emerges from the polarizer is mathematically represented by Malus' law as

        [tex]I_1 = I * cos^2 (\theta )[/tex]

substituting values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

substituting  values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

        [tex]I_1 = 263.35 \ W/m^2[/tex]

Alpha particles (charge = +2e, mass = 6.68 × 10-27 kg) are accelerated in a cyclotron to a final orbit radius of 0.30 m. The magnetic field in the cyclotron is 0.80 T. The period of the circular motion of the alpha particles is closest to: A. 0.25 μs B. 0.16 μs C. 0.49 μs D. 0.40 μs E. 0.33 μs

Answers

Answer:

Option B: T ≈ 0.16 μs

Explanation:

We are given;

Mass; m = 6.68 × 10^(-27) kg

Magnetic field;B = 0.80 T

Charge;q = 2e

Now, e is the charge on an electron and it has a value of 1.6 × 10^(-19) C

So, q = 2 × 1.6 × 10^(-19)

q = 3.2 × 10^(-19) C

The period of the circular motion of the alpha particles moving along a in the presence of the magnetic field is given by;

T = 2πm/qB

Where ;

m, q and B are as stated earlier.

Plugging in the relevant values, we have;

T = (2π × 6.68 × 10^(-27))/(3.2 × 10^(-19) × 0.8)

T = 0.16395 × 10^(-6) s

This can also be written as;

T ≈ 0.16 μs

A string is stretched and fixed at both ends, 200 cm apart. If the density of the string is 0.015 g/cm, and its tension is 600 N, what is the fundamental frequency

Answers

Answer:

f₀ = 158.12 Hertz

Explanation:

The fundamental frequency of the string  f₀ is expressed as f₀ = V/4L where V is the speed experienced by the string.

[tex]V = \sqrt{\frac{T}{\mu} }[/tex] where T is the tension in the string and  [tex]\mu[/tex] is the density of the string

Given T = 600N and [tex]\mu[/tex] = 0.015 g/cm  = 0.0015kg/m

[tex]V = \sqrt{\frac{600}{0.0015} }\\ \\V = \sqrt{400,000}\\ \\V = 632.46m/s[/tex]

The next is to get the length L of the string. Since the string is stretched and fixed at both ends, 200 cm apart, then the length of the string in metres is 2m.

L = 2m

Substituting the derived values into the formula f₀ = V/2L

f₀ = 632.46/2(2)

f₀ = 632.46/4

f₀ = 158.12 Hertz

Hence the fundamental frequency of the string is 158.12 Hertz

Copper Pot A copper pot with a mass of 2 kg is sitting at room temperature (20°C). If 200 g of boiling water (100°C) are put in the pot, after a few minutes the water and the pot come to the same temperature. What temperature is this in °C?

Answers

Answer:

The final temperature is 61.65 °C

Explanation:

mass of copper pot [tex]m_{c}[/tex] = 2 kg

temperature of copper pot [tex]T_{c}[/tex] = 20 °C  (the pot will be in thermal equilibrium with the room)

specific heat capacity of copper [tex]C_{c}[/tex]= 385 J/kg-°C

The heat content of the copper pot = [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{c}[/tex] = 2 x 385 x 20 = 15400 J

mass of boiling water [tex]m_{w}[/tex] = 200 g = 0.2 kg

temperature of boiling water [tex]T_{w}[/tex] = 100 °C

specific heat capacity of water [tex]C_{w}[/tex] = 4182 J/kg-°C

The heat content of the water = [tex]m_{w}[/tex][tex]C_{w}[/tex][tex]T_{w}[/tex] = 0.2 x 4182 x 100 = 83640 J

The total heat content of the water and copper mix [tex]H_{T}[/tex] = 15400 + 83640 = 99040 J

This same heat is evenly distributed between the water and copper mass to achieve thermal equilibrium, therefore we use the equation

[tex]H_{T}[/tex] =   [tex]m_{c}[/tex][tex]C_{c}[/tex][tex]T_{f}[/tex] + [tex]m_{w}[/tex][tex]C_{w}[/tex]

where [tex]T_{f}[/tex] is the final temperature of the water and the copper

substituting values, we have

99040 = (2 x 385 x [tex]T_{f}[/tex]) + (0.2 x 4182 x

99040 = 770[tex]T_{f}[/tex] + 836.4

99040 = 1606.4[tex]T_{f}[/tex]

[tex]T_{f}[/tex] = 99040/1606.4 = 61.65 °C

If the rods with diameters and lengths listed below are made of the same material, which will undergo the largest percentage length change given the same applied force along its length?a. d, 3L b. 3d, L c. 2d, 2L d. 4d, L

Answers

Answer:

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

Explanation:

For this exercise we are asked to change the length of the bar by the action of a force applied along its length, in this case we focus on the expression of longitudinal elasticity

               F / A = Y ΔL/L

where F / A is the force per unit length, ΔL / L is the fraction of the change in length, and Y is Young's modulus.

In this case the bars are made of the same material by which Young's modulus is the same for all

              ΔL / L = (F / A) / Y

the area of ​​the bar is the area of ​​a circle

               A = π r² = π d² / 4

               A = π / 4 d²

we substitute

              ΔL / L = (F / Y) 4 /πd²

changing length

               ΔL = (F / Y 4 /π) L / d²

The amount between paracentesis are all constant in this exercise, let's look for the longitudinal change

a) values ​​given d and 3L

               ΔL = cte 3L / d²

               ΔL = cte L /d²  3

To find the percentage, we must divide the change in magnitude by its value and multiply by 100.

                ΔL/L % = [(F /Y  4/π 1/d²) 3L ] / 3L 100

                ΔL/L  % = cte 100%

 

b) 3d and L value, we repeat the same process as in part a

               ΔL = cte L / 9d²

               ΔL = cte L / d² 1/9

               ΔL / L% = cte 100/9

               ΔL / L% = cte 11%

   

c) 2d and 2L value

               ΔL = (cte L / d ½ )/ 2L

               ΔL/L% = cte 100/4

               ΔL/L% = cte 25%

d) value 4d and L

               ΔL = cte L / d² 1/16

                ΔL/L % = cte 100/16

                ΔL/L % = cte 6.25%

   

The highest percentage of change corresponds to the thinnest rod, the correct answer is a

In 8,450 seconds, the number of radioactive nuclei decreases to 1/16 of the number present initially. What is the half-life (in s) of the material

Answers

Answer:

2113 seconds

Explanation:

The general decay equation is given as [tex]N = N_0e^{-\lambda t} \\\\[/tex], then;

[tex]\dfrac{N}{N_0} = e^{-\lambda t} \\[/tex] where;

[tex]N/N_0[/tex] is the fraction of the radioactive substance present = 1/16

[tex]\lambda[/tex] is the decay constant

t is the time taken for decay to occur = 8,450s

Before we can find the half life of the material, we need to get the decay constant first.

Substituting the given values into the formula above, we will have;

[tex]\frac{1}{16} = e^{-\lambda(8450)} \\\\Taking\ ln\ of \both \ sides\\\\ln(\frac{1}{16} ) = ln(e^{-\lambda(8450)}) \\\\\\ln (\frac{1}{16} ) = -8450 \lambda\\\\\lambda = \frac{-2.7726}{-8450}\\ \\\lambda = 0.000328[/tex]

Half life f the material is expressed as [tex]t_{1/2} = \frac{0.693}{\lambda}[/tex]

[tex]t_{1/2} = \frac{0.693}{0.000328}[/tex]

[tex]t_{1/2} = 2,112.8 secs[/tex]

Hence, the half life of the material is approximately 2113 seconds

How does a negative ion differ from an uncharged atom of the same
element?
O A. The ion has a greater number of protons.
B. The ion has fewer protons.
O C. The ion has a greater number of electrons.
O D. The ion has fewer neutrons.​

Answers

Answer:

C if it is a negitive ion it has more electrons because protons determine what element it is

A step-down transformer is used for recharging the batteries of portable devices. The turns ratio N2/N1 for a particular transformer used in a CD player is 2:29. When used with 120-V (rms) household service, the transformer draws an rms current of 180 mA.
Find the rms output voltage of the transformer

Answers

Answer:

8.28 V

Explanation:

Using,

N2/N1 = V2/V1.................. Equation 1

Where N2/N1 = Turn ratio of the transformer, V1 = primary/input voltage, V2 = output/secondary voltage

make V2 the subject of the equation

V2 = (N2/N1)V1............ Equation 2

Given: N2/N1 = 2:29 = 2/29, V1 = 120 V

Substitute these values into equation 2

V2 = (2/29)120

V2 = 8.28 V

Hence the rms output voltage of the transformer = 8.28 V

A front wheel drive car starts from rest and accelerates to the right. Knowing that the tires do not slip on the road, what is the direction of the friction force the road applies to the front tires

Answers

Answer:

static friction acting opposite to the direction of travel

Explanation:

Because the Frictional force of the front wheels act to oppose the spinning, so, For the front wheels to roll without slipping, the friction must be static friction pointing in the direction of travel of the car.

Explanation:

zeugen and yardang differences​

Answers

Answer:

Yardangs are formed on vertical strata while zeugen on horizontal strata. ... Yardangs are formed on vertical hard/soft layers of rock, while zeugen (this is its plural form) are formed on horizontal bands of hard/soft rocks giving it a more mushroom-like shape. The Great Sphinx of Giza has been sculpted in a yardang

A long straight solenoid has 800 turns. When the current in the solenoid is 2.90 amperes the average flux through each turn is 3.25×10−3Wb.
A. What is the inductance of the coil?
B. What must be the magnitude fo the rate of change of the current (di/dt) in order for the self-induced emf to equal 7.50 mV?

Answers

Answer:

Explanation:

Relation between flux and inductance is as follows

φ = Li

where φ is flux associated with induction of inductance L when a current i flows through it

putting the values

3.25 x 10⁻³ x 800 = L x 2.9

L = .9 H

for induced emf in an induction , the relation is

emf induced = L di / dt

Putting the values

7.5 x 10⁻³ = .9 x di / dt

di / dt = 8.33 x 10⁻³ A / s

(a) The self inductance of the solenoid is 0.897 H.

(b) The magnitude of the rate of change of the current is 0.00836 A/s.

The given parameters;

number of turns, N = 800 turnscurrent in the solenoid, I = 2.9 flux through the solenoid, Ф = 3.25 x 10⁻³ Wb

The self inductance of the solenoid is calculated as follows;

[tex]emf = \frac{d\phi}{dt}\\\\emf = \frac{Ldi}{dt} \\\\d\phi = Ldi\\\\\phi = BA\\\\NBA = LI\\\\L = \frac{NBA}{I} \\\\L = \frac{N\phi}{I} \\\\L = \frac{800 \times 3.25\times 10^{-3}}{2.9} \\\\L = 0.897 \ H\\\\[/tex]

The magnitude of the rate of change of the current is calculated as follows;

[tex]emf = L \frac{di}{dt} \\\\\frac{di}{dt} \ = \frac{emf}{L} \\\\\frac{di}{dt} = \frac{7.5 \times 10^{-3}}{0.897} \\\\\frac{di}{dt} = 0.00836 \ A/s[/tex]

Learn more here:https://brainly.com/question/17086348

If this is the only water being used in your house, how fast is the water moving through your house's water supply line, which has a diameter of 0.021 m (about 3/4 of an inch)?

Answers

Answer:

0.273m/s

Explanation:

first find out the meaning of 0.90×10−4m3/s

literally, that is 0.9x6 = 5.4m3/s = 3•5.4m/s or 16.2 m/s

1.5 gal/min = 0.00009464 m³/s, perhaps that is what you mean?

cross-sectional area of pipe is πr² = 0.0105²π = 0.0003464 m²

so you have a a flow of 0.00009464 m³/s flowing through an area of 0.0003464 m²

they divide to 0.00009464 m³/s / 0.0003464 m² = 0.273 m/s

A lamp has the shape of a parabola when viewed from the side. The lamp is centimeters wide and centimeters deep. How far is the light source from the bottom of the lamp if the light source is placed at the focus

Answers

The question is not complete so i have attached it.

Answer:

The light source is 2 cm from the bottom of the lamp

Explanation:

From the attached image, we can see that the parabola opens up with its vertex at the origin.

Now, the standard form of equation for a parabola is:

x² = 4ay

Looking at the parabola in the attachment, the top right edge of the lamp has a coordinate of (12,18)

Thus, we have;

12² = 4a(18)

144 = 72a

a = 144/72

a = 2

Looking at the parabola again, the line of symmetry is at x = 0

Thus, axis of symmetry is at x = 0.

Thus, focus is at (0, 2)

So, if the light source is placed at the focus, the distance of the light source from the bottom of the lamp is 2 cm

The distance of the light source from the bottom of the lamp is 2 cm.

The given parameters;

the top right edge of the lamp has a coordinate of (12,18)

Apply standard parabola equation to determine the distance of the light source from the bottom of the lamp;

[tex]x^2 = 4ay\\\\12^2 = 4a(18)\\\\144 = 72 a\\\\a = \frac{144}{72} \\\\a = 2 \ cm[/tex]

Thus, the distance of the light source from the bottom of the lamp is 2 cm.

"Your question is not complete, it seems to be missing the following information";

the top right edge of the lamp has a coordinate of (12,18)

Learn more here:https://brainly.com/question/14459938

An 1,820 W toaster, a 1,420 W electric frying pan, and a 55 W lamp are plugged into the same outlet in a 15 A, 120 V circuit. (The three devices are in parallel when plugged into the same socket.)

Required:
a. What current is drawn by each device?
b. Will this combination blow the 15-A fuse?

Answers

Answer:

toaster- 15.1A

electric frying pan- 11.8 A

lamp- 0.5 A

b) The combination will blow the fuse.

Explanation:

When devices are connected in parallel, the potential difference across each of the devices is the same but the current through each is different. Hence;

V= 120 V

Power= IV

For the toaster;

I= 1820/120 = 15.1 A

For the electric frying pan;

I= 1420/120 = 11.8 A

For the lamp;

55/120 = 0.5 A

Total current = 15.1 +11.8 + 0.5 = 27.4 A

The combination will blow the fuse.

Explanation:    

step one:

Given data

power of toaster= 1,820 W  

power of electric frying pan= 1,420 W  

power of lamp= 55 W  

current of the outlet= 15 A

voltage of outlet = 120 V

step two

since all  three appliances are connected in parallel to the socket outlet, they will use the same voltage of 120 V and the currents will be different across each appliance,

Hence the current across the Toaster will be I₁

using P=I₁V we have

I₁= P/V

I₁= 1820/120 =  15.16 A

A. The current drawn by each device

the current across the  electric frying pan will be I₂

using P=I₂V we have

I₂= P/V

I₂= 1420/120 =  11.83 A

the current across the   lamp will be I₃

using P=I₃V we have

I₃= P/V

I₃= 55/120 =  0.45 A

therefore the total current drawn by all appliances will be

Total current = I₁+I₂+I₃= 15.16 +11.83+ 0.45= 27.44

B.  Will this combination blow the 15-A fuse?

27.44 A > 15 A by 45% ...and this will make fuse to blow

In a physics lab, Asha is given a 11.5 kg uniform rectangular plate with edge lengths 62.9 cm by 46.9 cm . Her lab instructor requires her to rotate the plate about an axis perpendicular to its plane and passing through one of its corners, and then prepare a report on the project. For her report, Asha needs the plate's moment of inertia ???? with respect to given rotation axis. Calculate ???? .

Answers

Answer:

6.9kgm²

Explanation:

For an axis through the center of the rectangle, I = m[(w²+L²)/12

Using the parallel axis theorem, the added value of I = mR² = m[(w²/4 + L²/4]

Adding the 2 expressions,

I = (m/3)*(w²+L²)

I =6.95 kg∙m²

2. The nuclear model of the atom held that
a. electrons were randomly spread through "a sphere of uniform positive
electrification."
b. matter was made of tiny electrically charged particles that were smaller than the
atom
C. matter was made of tiny, indivisible particles.
d. the atom had a dense, positively charged nucleus.​

Answers

Answer:

the atom had a dense, positively charged nucleus.​

Explanation:

Ernest Rutherford, based on the experiment carried out by two of his graduate students, established the authenticity of the nuclear model of the atom.

According to the nuclear model, an atom is made up of a dense positive core called the nucleus. Electrons are found to move round this nucleus in orbits. This is akin to the movement of the planets round the sun in the solar system.

The target variable is the speed of light v in the glass, which you can determine from the index of refraction n of the glass. Which equations will you use to find n and v?

Answers

Answer:

n= speed of light in vacuum/ speed of light in the other medium.

Explanation:

If light is moving from medium 1 into medium 2 where medium 1 is vacuum (approximated to mean air) and we are required to find the velocity of light; then we can confidently write;

n= speed of light in vacuum/ speed of light in the other medium.

Hence;

n= c/v

Where;

n= refractive index of the material

c= speed of light in vacuum

v = speed of light in another medium.

Note that the refractive index is the amount by which a transparent medium decreases the speed of light.

A spark is generated in an automobile spark plug when there is an electric potential of 3000 V across the electrode gap. If 60 W of power is generated in a single spark that delivers a total charge of 3 nC, how long does it take for the spark to travel across the gap?
A. 50 ns
B. 75 ns
C. 125 ns
D. 150 ns
E. 225 ns 5

Answers

Answer:

The correct option is  d

Explanation:

From the question we are told that

     The  electric potential is  [tex]V = 3000 \ V[/tex]

      The  power is  [tex]P = 60 \ W[/tex]

      The  charge delivered is  [tex]q = 3nC = 3.0 *10^{-9} \ C[/tex]

Generally the power generated is mathematically represented as

         [tex]P = I V[/tex]

=>      [tex]I = \frac{P}{V }[/tex]

=>       [tex]I = \frac{60 }{3000 }[/tex]

=>     [tex]I = 0.02 \ A[/tex]

This  current flow is mathematically represented as

           [tex]I = \frac{q -q_o}{\Delta t }[/tex]

Where [tex]q_o[/tex] is the charge delivered at t=0 s which is 0s

     So

             [tex]0.02 = \frac{ (3.0 *10^{-9}) -0 }{t - 0 }[/tex]

               [tex]t = 1.50 *10^{-7 } \ s[/tex]

               [tex]t = 150 *10^{-9 } \ s[/tex]

Discuss the phase change condition due to reflection of light from a surface. Summarize equations of interference for thin film.

Answers

Answer:

if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º

Explanation:

When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.

When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.

Also, when light penetrates the medium, it modifies its wavelength

              λ = λ₀ / n

We take these two aspects into account, the condition for contributory interference is

            d sin θ = (m + 1/2) λ

for destructive interference we have

            d sin θ = m λ

in general this phenomenon is observed at 90º

           2 d = (m +1/2) λ° / n

          2nd = (m + ½) λ₀

Calculate the wavelength of light that has its third minimum at an angle of 30.0º when falling on double slits separated by 3.00 µm.

Answers

Answer:

λ = 428.6 nm

Explanation:

Hello,

In this case, we must remember that the Young's double slit experiment is described by the expression :

d sin θ = m λ

For constructive interference , and:

d sin θ = (m + ½) λ          

For destructive interference , whereas d accounts for the distance between the slits, λ for the wavelength and m for an integer that describes the order of interference . Thus, for the given angle 30º, the distance between the slits is 3.00 μm or 3.00 10⁻⁶ m and the order of interference is 3; we therefore use the destructive interference equation  to compute the wavelength as shown below:

λ = 3x10⁻⁶ sin (30) / (3 +1/2)

λ = 4.286 10⁻⁷ m

Or in manometers:

λ = 428.6 nm

Best regards.

Other Questions
Which of the following is a solution for 5 - 2x -3? Covert the verbal expression into an algebraic expression.The product of 23 and a number x How much would you have to deposit today if you wanted to have $60,000 in four years? Annual interest rate is 9%. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) b. Assume that you are saving up for a trip around the world when you graduate in two years. If you can earn 8% on your investments, how much would you have to deposit today to have $15,000 when you graduate? (Round your answer to 2 decimal places.) When a number is divided by 9 and its quotient is 12 and a remainder of 2 BRAINLIEST!!! Plz help ASAPM(5, 7) is the midpoint of side RS.The coordinates of S are (6, 9). What are the coordinates of R?Please answer with full explanation and no non sense answers will reports. Will give brainiest to those who answered correctly with full explanation. Thank you. Mis deseos Write a paragraph about the environment and what should be done to protect it. Use the subjunctive and conjunctions. The double number line shows that to make 4 apple pies takes 14 pounds of apples.Select the double number line that correctly labels the number of pounds of apples that are needed to make 1 , 2, and 3 pies. Write a variable expression for a number w increased by 4 (A) 4 w (B) w + 5 (C) w + 4 WRITE AN ACROSTIC POEM OR A RHYMING POEM ON THE RESOLUTION OF THE NEW ACADEMIC YEAR. In the xy-coordinate system above, line / (not shown) does not contain point in either quadrant II orquadrant IV. Which of the following could be the equation of line /?x=3y=3xy=3x+3y=-3x-3 width of picture 7 3/5 cm. to fit in the frame the picture cannot be more than 7 3/10 cm. how much should the picture be trimmed Record the following transactions on the books of Splish Brothers Inc.a. On July 1, Splish Brothers Inc. sold merchandise on account to Waegelein Inc. for $16,100, terms 2/10, n/30. b. On July 8, Waegelein Inc. returned merchandise worth $4,900 to Splish Brothers Inc.c. On July 11, Waegelein Inc. paid for the merchandise. sadhu said to Tarun," Did you deposit the school fees?''change it into indirect speech What is the difference between a psychological disorder and "normal" behavior? In which ONE of the following compounds would the bonding be expected to have the highest percentage of ionic character? A) LiBr B) CsCl C) BaBr2 D) NaCl E) KI An electron experiences a force of magnitude F when it is 5 cm from a very long, charged wire with linear charge density, lambda. If the charge density is doubled, at what distance from the wire will a proton experience a force of the same magnitude F? Which of the following processes have a S < 0? Which of the following processes have a S < 0? carbon dioxide(g) carbon dioxide(s) water freezes propanol (g, at 555 K) propanol (g, at 400 K) methyl alcohol condenses All of the above processes have a S < 0. For the given figure, justify the statement 1 2 6. If x + 2 is the only factor of the polynomial P(x),then P(2) is: Options: A. Cannot be determined B. Not Zero C. R(2) D. Zero What is the slope of the line shown below? A. -3/2B. 3/2C. 2/3D. -2/3