Answer:
well I'm not gonna explain it but
#1 is C or the 3rd one (DOMIAN)
#2 is B or the second one (RANGE)
Answer:
DOMAIN OF THE FUNCTION :-
all real numbers
RANGE :-
all real numbers greater than or equal to - 2
as we the graph's vertex is at -2 so basically -2 is the lowest value of the function.
What is the product?
A bag contains 6 apples and 4 oranges. If you select 5 pieces of fruit without
looking, how many ways can you get 5 apples?
Answer:
6 I think
Step-by-step explanation:
Plss answer the bottom question
Answer:
200
Step-by-step explanation:
250/100=2.5
2.5*80=200
So the answer is 200
a)if A×B ={(1,2),(2,3),(1,3),(2,2),(3,2),(3,3)} find i) set A ii) set B.i need for exam
Answer:
soln,
set A ={ 1,2,3}
set B ={2,3}
What is the equation of the following line written in general form? (The y-intercept is -1.)
Answer:
2x-y-1=0
Step-by-step explanation:
.
What number should be subtracted from -3/4 to get 5/6?
Answer:
Let that rational number to be subtracted be x.Given,-5/6 - x = 4/9= - x = 4/9+5/6= - x = 23/18x = - 23/18.
Step-by-step explanation:
Complete the similarity statement for the two triangles shown
40 m
15 m
30 m
25 m
>H
Enter your answer in the box
20 m
50 m
S
F
ACHS ~A
Answer:
TFY
Step-by-step explanation:
let's start with the 90 degrees angle.
this is C in the first, and T in the second triangle.
so, C and T must be aligned.
and the we go around.
F ~ H
and then
Y ~ S
At the beginning of year 1, Matilda invests $450 at an annual simple interest rate of 5%. She makes no deposits to or withdrawals from the account. Which explicit formula can be used to find the account's balance at the beginning of year 15? What is the balance?
Answer:
$765
Step-by-step explanation:
[tex]interest \: = \frac{prt}{100} \\ = \frac{(450)(5)(14)}{100} \\ = 315 \\ total \: money \: = 315 + 450 \\ = 765[/tex]
A(n) = 450 + (n – 1)(0.05 • 450); $765.00
The height of a cone is two times its base diameter. What is the volume of the cone in terms of its base radius r?
options are on the picture:)
Answer:-
The option B is the right answer.
Solution:-
[tex] \sf h = 2d = 2 \: • \: 2r = 4r[/tex]
[tex] \sf = \frac{1}{3} \pi {r}^{2} h[/tex]
[tex] \sf = \frac{1}{3} \pi {r}^{2} \: • \: 4r[/tex]
[tex] \sf = \frac{4}{3} \pi {r}^{3} \: \green✓ [/tex]
Which shape has the greatest number of lines of symmetry?
A. rhombus
B. square
C. rectangle
D. parallelogram
(Algebra ll) Given the function below
Answer: B
Step-by-step explanation:
To find the values of x, we first need to write the function into an equation. We can derive 2 equations from the problem.
Equation 1: y=2|x+6|-4
Equation 2: y=6
Now, we can substitute.
2|x+6|-4=6
Let's solve for x.
2|x+6|-4=6 [add both sides by 4]
2|x+6|=10 [divide both sides by 2]
|x+6|=5 [subtract both sides by 6]
x=-1
Now that we know x=-1 is one of the solutions, we can eliminate C and D.
We know that the absolute value makes the number inside positive always. Therefore, let's solve for x with -5 instead.
|x+6|=-5 [subtract both sides by 6]
x=-11
Therefore, we know that B is the correct answer.
3x + y = 10 x - y = 2 2
Factor -1.8 out of 3.6b-9
=================================================
Explanation:
Consider something like 2b+6 factoring to 2(b+3). When we distribute that outer 2 back inside the parenthesis, we're multiplying that 2 by everything inside. Factoring goes in reverse of this and we divide each term of 2b+6 by the GCF 2.
The same thing applies to this current problem as well.
Divide each term by the -1.8 we want to factor out.
(3.6b)/(-1.8) = -2b(-9)/(-1.8) = 5The results -2b and 5 will go inside the parenthesis. That's how we end up with -1.8(-2b+5)
You can use distribution to verify this
-1.8(-2b+5)
-1.8*(-2b) - 1.8*(5)
3.6b - 9
I need help with my math!!!
Answer:
[tex]y = |x+2|+1[/tex]
Step-by-step explanation:
Helpppp ,I will mark you brainlist
Answer:
Okay
Step-by-step explanation:
Can Someone Help Me With This ?
Answer:
its to pixelated
Step-by-step explanation:
URGENTT!!!! help quick please
Chang knows one side of a triangle is 13 cm. Which set of two sides is possible for the lengths of the other two
sides of this triangle?
5 cm and 8 cm
6 cm and 7 cm
7 cm and 2 cm
8 cm and 9 cm
Answer:
8 cm and 9 cm
Step-by-step explanation:
Hi there!
The sum of the lengths of two sides of a triangle must always be greater than the length of the third side.
5 cm and 8 cm ⇒ 5+8=13; not greater than 13
6 cm and 7 cm ⇒ 6+7=13; not greater than 13
7 cm and 2 cm ⇒ 7+2=9; not greater than 13
8 cm and 9 cm ⇒ 8+9=17; greater than 13
Therefore, the last set of two sides is possible for the lengths of the the other two sides of this triangle.
I hope this helps!
Find the area of circle Q in terms of x
Answer:
The answer is C 100πcm^3
Write each as a percent. Use proportions.
7/25
2/3
3/8
4x+9/y+11=0 and 6/y -3x=8
9514 1404 393
Answer:
(x, y) = (-2 12/17, -51)
Step-by-step explanation:
Here is the answer to ...
[tex]4x+\dfrac{9}{y}+11=0\\\\\dfrac{6}{y}-3x=8[/tex]
If you mean something else, then parentheses are needed.
__
Let z = 1/y. Then the equations in general form are ...
[tex]4x+9z+11=0\\3x-6z+8=0[/tex]
The solution (cross multiplication method) is ...
x = (9·8 -(-6)·11)/(4(-6)-3·9) = 138/-51 = -2 12/17
z = (11·3 -8·4)/-51 = -1/51
y = 1/z = -51
The solution is (x, y) = (-2 12/17, -51).
Find the perimeter of ΔJKL. Round your answer to the nearest tenth if necessary
Answer:
Step-by-step explanation:
as angles of two triangles are equal, so they are similar.
x/17 =35/14=40/16
x/17=35/14
x=35/14×17=85/2=42.5
perimeter of ΔJKL=40+35+42.5=117.5
why can two prime numbers only have one common factor?
A prime number has exactly two factors, 1 and itself. For example, 13 is a prime number because the only factors of 13 are 1 and 13. The number 8 is not prime because it has four factors: 1, 2, 4 and 8. The number 1 is not a prime number because it only has one factor (itself).
A man runs at the speed of 10 km/hr. How much time will he take to cover 2000 meters?
pls help, i have class rn :(
in how many ways can alice distribute 12 apples to 3 children (a child can have no apples)
Explain what you would do first to simplify the expression below. Justify why, and then state the result of performing this step.
What is the value of tan 0 in the unit circle below?
Answer:
1 / sqrt(3)
Step-by-step explanation:
tan(o) = sin(o) / cos(o)
sin(o) is the vertical distance from the x-axis. and that is in this basic circle the y-coordinate of the point.
cos(o) is the horizontal distance from the y-axis. that is the x-coordinate of the point.
so,
tan(o) = (1/2) / (sqrt(3)/2) = (2×1) / (2×sqrt(3)) = 1/sqrt(3)
The vertices of a triangle are P(-6,1), Q(-2,-5) and R(8,1).
Find the equation of the perpendicular bisector of the side QR
Answer:
Step-by-step explanation:
Find the slope of QR. From that we can find the the slope of the line perpendicular to QR.
Q(-2, -5) & R(8,1)
[tex]Slope \ = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{1-[-5]}{8-[-2]}\\\\=\frac{1+5}{8+2}\\\\=\frac{6}{10}\\\\=\frac{-3}{5}[/tex]
So, the slope of the line perpendicular to QR = -1/m - 1÷ [tex]\frac{-5}{3} = -1*\frac{-3}{5}=\frac{3}{5}[/tex]
Bisector of QR divides the line QR to two half. We have find the midpoint of QR.
Midpoint = [tex](\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]
[tex]=(\frac{-2+8}{2},\frac{-5+1}{2})\\\\=(\frac{6}{2},\frac{-4}{2})\\\\=(3,-2)[/tex]
slope = 3/5 and the required line passes through (3 , -2)
y - y1 = m(x-x1)
[tex]y - [-2] = \frac{3}{5}(x - 3)\\\\y + 2 = \frac{3}{5}x-\frac{3}{5}*3\\\\y=\frac{3}{5}x-\frac{9}{5}-2\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{2*5}{1*5}\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{10}{5}\\\\y=\frac{3}{5}x-\frac{19}{5}[/tex]
7x-3=5x+9 solve for x
Given :-
7x - 3 = 5x + 9To Find :-
The value of x.Solution :-
Taking the given equation ,
=> 7x -3 = 5x + 9
=> 7x - 5x = 9 + 3
=> 2x = 12
=> x = 12 ÷ 2
=> x = 6
Hence the required answer is 2 .
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
Answer:
Falso.
Step-by-step explanation:
Sea [tex]d = \frac{a}{b}[/tex] un número racional, donde [tex]a, b \in \mathbb{R}[/tex] y [tex]b \neq 0[/tex], su opuesto es un número real [tex]c = -\left(\frac{a}{b} \right)[/tex]. En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:
(a) El exponente es cero.
(b) El exponente es un negativo impar.
(c) El exponente es un negativo par.
(d) El exponente es un positivo impar.
(e) El exponente es un positivo par.
(a) El exponente es cero:
Toda potencia elevada a la cero es igual a uno. En consecuencia, [tex]c = d = 1[/tex]. La proposición es verdadera.
(b) El exponente es un negativo impar:
Considérese las siguientes expresiones:
[tex]d' = d^{-n}[/tex] y [tex]c' = c^{-n}[/tex]
Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:
[tex]d' = \left(\frac{a}{b} \right)^{-n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{(-1)\cdot n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}[/tex]
[tex]d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]y [tex]c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{b}{a} \right)\right]^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = - \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' \neq c'[/tex], la proposición es falsa.
(c) El exponente es un negativo par.
Si [tex]n[/tex] es par, entonces:
[tex]d' = \left(\frac{b}{a} \right)^{n}[/tex] y [tex]c' = \left(\frac{b}{a} \right)^{n}[/tex]
Puesto que [tex]d' = c'[/tex], la proposición es verdadera.
(d) El exponente es un positivo impar.
Considérese las siguientes expresiones:
[tex]d' = d^{n}[/tex] y [tex]c' = c^{n}[/tex]
[tex]d' = \left(\frac{a}{b}\right)^{n}[/tex] y [tex]c' = \left[-\left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}[/tex]
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es impar, entonces:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = - \left(\frac{a}{b} \right)^{n}[/tex]
(e) El exponente es un positivo par.
Considérese las siguientes expresiones:
[tex]d' = \left(\frac{a}{b} \right)^{n}[/tex] y [tex]c' = \left(\frac{a}{b} \right)^{n}[/tex]
Si [tex]n[/tex] es par, entonces [tex]d' = c'[/tex] y la proposición es verdadera.
Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.