Please check the attached image for the steps.
Answer = 11/42 = 0.261
____
RainbowSalt2222 ☔
help me please !!!!
Answer:
graph X only
Step-by-step explanation:
because with the rate of change it makes a straight line
The greatest possible number whose digits are all even numbers from 1 to 9
Answer:
8642Step-by-step explanation:
Our even numbers from 1-9 are:
2,4,6,8The largest possible number using the even numbers once is 8642.
Hoped this helped
Today everything at a store is on sale the store offers a 20
% discount the regualr price of a t shirt is 18 what is the discount price
Answer:
$14.40 is the discount price.
Step-by-step explanation:
0.2 x 18 = 3.6
18 - 3.6 = 14.4
Andrew shovels snow for 4 %2 hours and makes
$27. How much did he make per hour?
And how much does he earn in 8 hours?
2. A house costs $30,000. A buyer is given a 1/10 discount. How much money does the buyer save?
Answer:
3000
Step-by-step explanation:
Write a linear inequality for each graph (back page)
Answer:
I can't read that...........
Please help. ASAP. Work out, giving your answer in its simplest form:
3 1/2 divided by 2 3/5
Answer:
26/35
Step-by-step explanation:
1. First to divide the 3 1/2 by 2 3/5 you have to turn them both into improper fractions
First take 3 1/2. You have to multiply the whole number (3) by the denominator (2) and you would get 6. Then you would add then you add the product (6) to the numerator (1) and get 7.
You keep the denominator the same so the improper fraction is 7/2
Do the same thing to 2 3/5 and the improper fraction is 13/5
2. Now we can divide 13/5 by 7/2 using "keep, change, flip"
Keep: 13/5
Change: division to multiplcation
Flip: 7/2 to make 2/7
Your new equation is 13/5 × 2/7. Multiplcation is easy so you just have to multiply staight across: 13 × 2 and 5 × 7 giving you 26/35
If you divide 35 by 26 you will get 1.34 and a bunch of other numbers but I usually stop at two decimal places
hope this helps :)
(27/8)^1/3×[243/32)^1/5÷(2/3)^2]
Simplify this question sir pleasehelpme
Step-by-step explanation:
[tex] = {( \frac{27}{8} )}^{ \frac{1}{3} } \times ( \frac{243}{32} )^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = { ({ (\frac{3}{2} )}^{3}) }^{ \frac{1}{3} } \times {( {( \frac{3}{2}) }^{5} )}^{ \frac{1}{5} } \div {( \frac{2}{3} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{3 \times \frac{1}{3} } \times {( \frac{3}{2} )}^{5 \times \frac{1}{5} } \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = \frac{3}{2} \times \frac{3}{2} \times {( \frac{3}{2} )}^{2} [/tex]
[tex] = {( \frac{3}{2} )}^{1 + 1 + 2} [/tex]
[tex] = {( \frac{3}{2} )}^{4} \: or \: \frac{81}{16} [/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{27}{8} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{243}{32} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
We can write as :
27 = 3 × 3 × 3 = 3³
8 = 2 × 2 × 2 = 2³
243 = 3 × 3 × 3 × 3 × 3 = 3⁵
32 = 2 × 2 × 2 ×2 × 2 = 2⁵
[tex]\sf{\longmapsto{\bigg( \dfrac{3 \times 3 \times 3}{2 \times 2 \times 2} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{3 \times 3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 2} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{{(3)}^{3}}{{(2)}^{3}} \bigg)^{\frac{1}{3}} \times \Bigg[\bigg( \dfrac{({3}^{5})}{{(2)}^{5}} \bigg)^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now, we can write as :
(3³/2³) = (3/2)³
(3⁵/2⁵) = (3/2)⁵
[tex]\sf{\longmapsto{\left\{\bigg(\frac{3}{2} \bigg)^{3} \right\}^{\frac{1}{3}} \times \Bigg[\left\{\bigg(\frac{3}{2} \bigg)^{5} \right\}^{\frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
Now using law of exponent :
[tex]{\sf{({a}^{m})^{n} = {a}^{mn}}}[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{3 \times \frac{1}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{5 \times \frac{1}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{\frac{3}{3}} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{\frac{5}{5}} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times\Bigg[\bigg(\frac{3}{2} \bigg)^{1} \div \bigg(\dfrac{2}{3} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \bigg)^{2}\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \frac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\frac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3}{2} \times \dfrac{3}{2} \bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{3 \times 3}{2 \times 2}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)^{1} \times \Bigg[\bigg(\dfrac{3}{2} \bigg)^{1} \times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex] \sf{\longmapsto{\bigg( \frac{3}{2} \bigg)\times \Bigg[\bigg(\frac{3}{2} \bigg)\times \bigg(\dfrac{9}{4}\bigg)\Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3}{2} \times \dfrac{9}{4} \: \: \Bigg]}}\\[/tex]
[tex]\sf{\longmapsto{\bigg( \dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{3 \times 9}{2 \times 4} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\bigg(\dfrac{3}{2} \bigg)\times \Bigg[ \: \: \dfrac{27}{8} \: \: \Bigg]}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3}{2} \times \dfrac{27}{8}}} \\[/tex]
[tex]\sf{\longmapsto{\dfrac{3 \times 27}{2 \times 8}}} \\[/tex]
[tex] \sf{\longmapsto{\dfrac{81}{16}}\: ≈ \:5.0625\:\red{Ans.}} \\[/tex]
does anyones know these ?
No I don't know your thing
How many solutions can be found for the system of linear equations represented on the graph?
A) no solution
B) one solution
C) two solutions
D) infinitely many solutions
Answer:
A) No solution
Step-by-step explanation:
Given the systems of linear equations, y = 2x + 1 and y = 2x - 1:
Both equations in the system have the same slope, m = 2, thus forming parallel lines. Since their lines are parallel from each other, then it means that their lines will never intersect.
Therefore, the given systems of linear equation is an inconsistent system that has no solution.