Answer:
A dilation by a factor of three about Point T followed by a translation of two units downwards.
Step-by-step explanation:
When transforming functions, we will reflect/dilate the figure first and then translate it. This is directly from the order of operations.
Since we are trying to determine the transformation that was performed, we can try to map ΔS'T'U' onto ΔSTU. We can start by translating the figure and then determining any reflections/dilations.
First, we can translate ΔS'T'U' up two units to map T' onto T. This is represented by the black triangle in the image below. Let the black triangle be ΔS''T''U''. (T'' and T are the same point.)
Next, notice that from Point T'' to U'', we move nine units right and six units up.
From Point T to Point U, we move three units right and two units up.
Likewise, from Point T'' to S'', we move six units left and nine units up.
From Point T to Point S, we move two units left and three units up.
Therefore, to map ΔS''T''U'' onto ΔSTU, we dilate ΔS''T''U'' about Point T by a factor of 1/3.
Hence, by reversing the transformations, to acquire ΔS'T'U', we can see that we will dilate ΔSTU by a factor of three about Point T and then a perform a translation of two units downwards.
Given m n, find the value of X.
Answer:
x = 62
Step-by-step explanation:
62 and x are alternate exterior angles and alternate exterior angles are equal when the lines are parallel
My sister’s house is 1 2/4 times as high as my house. My house is 5 feet high. How high is my sister’s house?
Answer:
Sister's house is 7.5 feet high
Step-by-step explanation:
Given :
My house = 5 feet
Sisters house = [tex]1\frac{2}{4}[/tex] [tex]times[/tex] [tex]my \ house[/tex]
= [tex]\frac{6}{4} \times 5[/tex]
[tex]=\frac{30}{4}\\\\=\frac{15}{2}\\\\= 7 . 5 \ feet[/tex]
A bacteria culture is growing at a rate of
r(t) = 7e^0.6t
thousand bacteria per hour after t hours. How much did the bacteria population increase during the first two hours? (Round your answer to three decimal places.)
Answer:
[tex]{ \bf{r(t) = 7e {}^{0.6t} }} \\ { \tt{r(2) = 7 {e}^{0.6 \times 2} }} \\ = { \tt{7 {e}^{1.2} }} \\ = 23.241 \: thiusand bacteria \: per \: hour[/tex]
2 units
5
2 units
2 units
8 units
2 units
2 units
2 units
6 units
The area of the figure is
square units.
What is the cube root of -1,000p12q3?
O-1004
O - 10pta
O 1004
O 10pta
Answer:
Your options are not clear
Step-by-step explanation:
[tex]\sqrt[3]{-1000 \times p^{12} \times q^3} \\\\(-1 \times 10^3 \times p^{12} \times q^3)^{\frac{1}{3} }\\\\(-1^3)^{\frac{1}{3} }\times 10^{3 \times \frac{1}{3} } \times p^{12 \times \frac{1}{3}} \times q^{3 \times \frac{1}{3}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (-1)^3 = - 1 \ ] \\\\- 1 \times 10 \times p^4 \times q\\\\-10p^4q[/tex]
A cone has a diameter of 4 inches and a height of 9 inches. Find the volume of the cone. Use 3.14 for \large \pi.
Answer:
37.68 in.^3
Step-by-step explanation:
diameter = 4 in.
radius = diameter/2 = 2 in.
height = 9 in.
[tex] V = \dfrac{1}{3}\pi r^2 h [/tex]
[tex] V = \dfrac{1}{3}(3.14)(2~in.)^2(9~in.) [/tex]
[tex] V = \dfrac{1}{3}(3.14)(2~in.)^2(9~in.) [/tex]
[tex] V = \blue{37.68~in.^3} [/tex]
Trong một lớp học có 50 sinh viên. Hỏi có bao nhiêu cách bầu ra một ban cán sự lớp gồm 3 người: 1 lớp trưởng, 1 lớp phó, 1 bí thư và không kiêm nhiệm chức vụ.
Answe
SI Si olla amigo lel just spammin here
Step-by-step explanation:
GIVING OUT BRAINLIEST PLEASE HELP ME!!
Answer: B (0,0) r=4
Step-by-step explanation:
The 12th term of GP whose
1
first term is 1/8 and second
term is 1/2is
Answer:
jjanation:jdgjdjgdjgjkdkidjgjghdjjghhkd
Which statement best describes the areas and perimeters of the figures?
Answer:
The last one!
Step-by-step explanation:
help pls i'll mark brainliest.. state the length of the line segment shown.
Answer:
i believe its 3 but i could be wrong
Step-by-step explanation:
sorry if i am..
HELP ME PLEASE!!!
GIVEN sin0= √23/12
tan0= √23/11
Find cos0
Answer:
[tex]cos \theta = \frac{11}{12}[/tex]
Step-by-step explanation:
[tex]sin \theta = \frac{\sqrt{23}}{12} \ , \ tan \theta = \frac{\sqrt{23}}{11}\\\\tan \theta = \frac{sin \theta }{cos \theta }\\\\ \frac{\sqrt{23}}{11} = \frac{\frac{\sqrt{23}}{12} }{cos \theta}\\\\cos \theta = \frac{\frac{\sqrt{23}}{12} }{\frac{\sqrt{23}}{11} }\\\\cos \theta = \frac{\sqrt{23}}{12 } \times \frac{11}{\sqrt{23}}\\\\cos \theta = \frac{11}{12}[/tex]
62.5% of a number is 25. What is half of the same number.
let the number be b
62.5/100 x b = 25
0.625 x b = 25
b =25/0.625
b=40
half of b= 40/2 = 20
d) The Princess was allowed to climb trees.
e)
Hector lived a lonely life in the King's castle.
Answer these questions in one or two words only.
a) Who first discovered that the Princess had climbed up a tree?
Hector is the one who discovered
how can two different rectangles both have a perimeter of 24 cm
Explanation:
Perimeter is simply the sum of all the edges. The same way 10 can be made of 4+6 or 3+7, the perimeter can be made by many combinations. if you know the 2 must equal 24cm, then we can create numerous combinations.
The fracture strength of tempered glass averages 14 (measured in thousands of pounds per square inch) and has standard deviation 2. (a) What is the probability that the average fracture strength of 100 randomly selected pieces of this glass exceeds 14.2
Answer:
0.1587 = 15.87% probability that the average fracture strength of 100 randomly selected pieces of this glass exceeds 14.2.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
The fracture strength of tempered glass averages 14 (measured in thousands of pounds per square inch) and has standard deviation 2.
This means that [tex]\mu = 14, \sigma = 2[/tex]
Sample of 100:
This means that [tex]n = 100, s = \frac{2}{\sqrt{100}} = 0.2[/tex]
What is the probability that the average fracture strength of 100 randomly selected pieces of this glass exceeds 14.2?
This is 1 subtracted by the p-value of Z when X = 14.2. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{14.2 - 14}{0.2}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.8413.
1 - 0.8413 = 0.1587
0.1587 = 15.87% probability that the average fracture strength of 100 randomly selected pieces of this glass exceeds 14.2.
Can someone help me simplify it more?
Answer:
8[tex]v^{-3}[/tex]z - [tex]\frac{5}{3}[/tex] vz
Step-by-step explanation:
3.42x16.5 show your work plz
Answer:
= 56.43
Step-by-step explanation:
= 3.42 × 16.5
multiply the numbers= 56.43
X+ 5
If m(x) =x-1 and n(x) = x-3, which function has the same domain as (mon)(x)?
X+5
O (x)=
11
11
o h(x)=
X-1
11
O (X)=
X-4
11
Oh(x) =
X-3
Answer:
third option
Step-by-step explanation:
m(n(x)) =
[tex] \frac{x - 3 + 5}{x - 3 - 1} = \frac{x + 2}{x - 4} [/tex]
the domain of this is R/(4)
so as the third option
The function that has the same domain as (m o n)(x) is
h(x) = 11 / (x - 3)
Option D is the correct answer.
What is a function?A function has an input and an output.
A function can be one-to-one or onto one.
It simply indicated the relationships between the input and the output.
Example:
f(x) = 2x + 1
f(1) = 2 + 1 = 3
f(2) = 2 x 2 + 1 = 4 + 1 = 5
The outputs of the functions are 3 and 5
The inputs of the function are 1 and 2.
We have,
m(x) = (x + 5)/ (x - 1) and n(x) = x - 3,
Now,
(m o n)(x)
= m (n(x)
= m (x - 3)
= (x - 3 + 5) / (x - 3 - 1)
= (x + 2) / (x - 3)
We can not have x = 3.
So,
The domain can not have x = 3.
From the options,
h(x) = 11 / (x - 3) can not have x = 3.
Thus,
The function that has the same domain as (m o n)(x) is
h(x) = 11 / (x - 3)
Learn more about functions here:
https://brainly.com/question/28533782
#SPJ7
Select all the numbers that are rational.
Answer:
-14/2 , 1/3 and 0.325 are the rational numbers
To solve the equation 6x + 3 = 9 for x, what operations must be
performed on both sides of the equation in order to isolate the variable
x?
Answer:
Subtraction, and then division.
Step-by-step explanation:
We would subtract 3 on each side to undo the '3', and then divide by 6 on both sides to isolate 'x'.
[tex]6x+3 = 9\\\\6x + 3 - 3 = 9 - 3\\\\ 6x = 6\\\\\frac{6x=6}{6}\\\\\boxed{x=1}[/tex]
Hope this helps.
To solve the equation 6x + 3 = 9 for x, the operations that must be performed on both sides of the equation in order to isolate the variable x are subtraction and then division.
What is a linear equation?A linear equation in one variable has the standard form Px + Q = 0. In this equation, x is a variable, P is a coefficient, and Q is constant.
How to solve this problem?Given that 6x + 3 = 9.
First, we have to separate variable and constants. So, we have to subtract 3 from both sides.
6x + 3 - 3 = 9 - 3
i.e. 6x = 6
Now, to solve this equation, we use division.
x = 6/6 = 1
i.e. x = 1
Therefore, to solve the equation 6x + 3 = 9 for x, the operations that must be performed on both sides of the equation in order to isolate the variable x are subtraction and then division.
Learn more about linear equations here -
https://brainly.com/question/25058584
#SPJ2
Neglecting air resistance and the weight of the propellant, determine the work done in propelling a five-ton satellite to a height of (a) 100 miles above Earth and (b) 300 miles above Earth.
Answer:
a) the work done in propelling a five-ton satellite to a height of 100 miles above Earth is 487.8 mile-tons
b) the work done in propelling a five-ton satellite to a height of 300 miles above Earth is 1395.3 mile-tons
Step-by-step explanation:
Given the data in the question;
We know that the weight of a body varies inversely as the square of its distance from the center of the earth.
⇒F(x) = c / x²
given that; F(x) = five-ton = 5 tons
we know that the radius of earth is approximately 4000 miles
so we substitute
5 = c / (4000)²
c = 5 × ( 4000 )²
c = 8 × 10⁷
∴ Increment of work is;
Δw = [ ( 8 × 10⁷ ) / x² ] Δx
a) For 100 miles above Earth;
W = ₄₀₀₀∫⁴¹⁰⁰ [ ( 8 × 10⁷ ) / x² ] Δx
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{x}[/tex] [tex]]^{4100}_{4000[/tex]
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{4100}[/tex] [tex]+\frac{1}{4000}[/tex] [tex]][/tex]
= (8 × 10⁷ ) [ 6.09756 × 10⁻⁶ ]
= 487.8 mile-tons
Therefore, the work done in propelling a five-ton satellite to a height of 100 miles above Earth is 487.8 mile-tons
b) For 300 miles above Earth.
W = ₄₀₀₀∫⁴³⁰⁰ [ ( 8 × 10⁷ ) / x² ] Δx
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{x}[/tex] [tex]]^{4300}_{4000[/tex]
= (8 × 10⁷) [tex][[/tex] [tex]-\frac{1}{4300}[/tex] [tex]+\frac{1}{4000}[/tex] [tex]][/tex]
= (8 × 10⁷ ) [ 1.744186 × 10⁻⁵ ]
= 1395.3 mile-tons
Therefore, the work done in propelling a five-ton satellite to a height of 300 miles above Earth is 1395.3 mile-tons
Which expression is equivalent to:
-(4a-4b)
-4a-4b
-8a+4b
-8ab
-4a+4b
Step-by-step explanation:
-4a+4b is equivalent to -(4a-4b).hope it helpsstay safe healthy and happy..we had a pot of tea. i drank 3/8 of the tea. after my father drank 2/3 of the remainder, 100 ml of tea is left inside the pot. what is the proportion of the total amount of tea? write your answer as a fraction.
Answer:29.16 ml was left
Step-by-step explanation:
2/3-3/8=
16/23-9/24=
7/24x100/1=
then divide
In a sale, Ali buys a television for $195.80.
The original price was $220.
Calculate the percentage reduction on the original price.
11%
Hope this helps! :)
______________
Answer:
[tex] \frac{195.80}{220} \times 100 \% \\ = 0.89\%[/tex]
Explain why the work is not correct.
Suppose b is any integer. If b mod 12 = 7, what is 4b mod 12? In other words, if division of b by 12 gives a remainder of 7, what is the remainder when 4b is divided by 12? Fill in the blanks to show that the same answer will be obtained no matter what integer is used for b at the start. Because b mod 12 = 7, there is an integer m such that b = 12m + . Multiply both sides of this equation by 4 and then simplify the right-hand side to find values of q and r such that 4b = 12q + r with 0 ≤ r < 12. The result is q = and r = . Now 0 ≤ r < 12, and q is an integer because ---Select--- . So the uniqueness part of the quotient remainder theorem guarantees that the remainder obtained when 4b is divided by 12 is . Need Help?
Answer:
4b mod 12 = 4
Step-by-step explanation:
Since b mod 12 = 7, it implies that there is an integer, m such that
b = 12m + 7.
We desire to find 4b mod 12
So, multiplying b by 4, we have
4b = 4(12m + 7)
4b = 4 × 12 m + 4 × 7
4b = 4 × 12 m + 28
4b = 4 × 12 m + 24 + 4
4b = 4 × 12 m + 12 × 2 + 4
Factorizing 12 out, we have
4b = 12(4m + 2) + 4
Since m is an integer 4m + 2 is an integer since the operation of adding and multiplication is closed for the set of integers.
comparing 4b = 12q + r with 4b = 12(4m + 2) + 4,
q = 4m + 2 and r = 4
So 4b mod 12 = 4, that is the remainder when 4b is divided by 12 is 4.
In this exercise we have to calculate the value of the unknown, so we have:
the value is 4
we know that the equation will be given as:
[tex]b = 12m + 7\\[/tex]
we need to multiply both sides by 4 to become another known equation, like this:
[tex]4b = 4(12m + 7)\\4b = 4 * 12 m + 4 * 7\\4b = 4 * 12 m + 28\\4b = 4 * 12 m + 24 + 4\\4b = 4 * 12 m + 12 * 2 + 4[/tex]
So factoring this equation we will find that:
[tex]4b = 12(4m + 2) + 4[/tex]
Thus, when making a comparison between the two equations, we have that:
[tex]4b = 12q + r \\4b = 12(4m + 2) + 4\\q = 4m + 2\\r = 4[/tex]
See more about factoring at brainly.com/question/6810544
If 12 girls can sweep a room in 20hours, how many hours will it take 8 girls to perform the same task, assuming they are sweeping at the same rate?
Answer:
30 hour
Step-by-step explanation:
girls time
12 20 hour
8 x(let)
now,
12/8=x/20
12×20=8×x
240=8x
x=240/8
x=30,,
NEED HELP ASAP
So for this problem I got 10.8 by multiplying 0.60 x 18. However it stated that my answer is incorrect. How do I go about this problem because I am not sure what else to do?
We are looking for the total amount of the solution. We only know part of it, that there are 18 milliliters of the alcohol. We also know that the alcohol makes up only 60% of the solution.
To find the whole, we can set up a proportion using the information given.
60 / 100 <--- This is our percentage, which we were given.
18 / x <--- This is the part (alcohol - 60%) over the whole, which we don't know and which also corresponds to the 100.
Therefore, our proportion is as such:
60 / 100 = 18 / x
To solve, cross-multiply.
100 * 18 = 60 * x
1800 = 60x
x = 30 total milliliters of the solution
Hope this helps!
upandover has a great solution. Here's a slightly different approach.
x = total amount of solution (consisting of water and alcohol mixed)
0.60x = 60% of x = amount of pure alcohol
0.60x = 18 since we have 18 mL of pure alcohol
Divide both sides by 0.60 to isolate x
0.60x = 18
x = 18/0.60
x = 30
Answer: 30 mL of total solution (alcohol + water).
Consider the following conditional statement. Determine the contrapositive
of the statement and then determine if the contrapositive is true or false.
If two angles are not complements, then their measures do not add up to 180°.
The contrapositive of the statement is true.
The contrapositve of the statement is false.
Answer:
The contrapositive of the statement is true.
Step-by-step explanation:
For a general statement:
p ⇒ q
The contrapositive statement is:
¬q ⇒ ¬p
where:
¬q is the negation of the proposition q.
Here we have the statement:
If two angles are not complements, then their measures do not add up to 180°
So we have:
p = two angles are not complements
q = their measures do not add up to 180°
Then the negations are:
¬p = two angles are complements
¬q = their measures do add up to 180°
The contrapositive statement is:
"if for two angles their measures do add up to 180°, then the two angles are complements"
This is true, if for two angles the sum of their measures is equal to 180°, then these angles are complementary.
Then: The contrapositive of the statement is true.