Answer:
each shirt costs $17.50.
Step-by-step explanation:
we have the equation 4(12.50) + 4(2x) = 190
because each friend (4 total friends) get one hat and two shirts.
we simplify the equation to 50 + 8x = 190
subtract 50 from both sides
8x = 140
divide both sides by 8
x = 17.5
therefore, each shirt costs $17.50.
the sum of 35 and one fifth part of itself is added to the sum of one seventh of 11 and 8
Answer:
313/7
Step-by-step explanation:
Here, we are interested in turning the wordings of the statement to numeric values.
We take it one at a time.
Sum of 35 and 1/5(35) = 35 + 7 = 42
This is added to 1/7(11 + 8)
= 1/7(19) = 19/7
So we have;
42 + 19/7 = (294 + 19)/7 = 313/7
One hundred people, ages 11-15, were randomly surveyed to find their opinion of their favorite leisure time activity. Sixty-four percent of them said they liked to spend time watching TV. If there are 1500 students in your school, about how many of them would you predict would enjoy watching t.v. A.2343 B.960 C.640 D.500
Answer:
If there are 1500 students in your school then 960 students would enjoy watching TV
Step-by-step explanation:
Step 1: We know that 64% of kids aged from 11 to 15 enjoy watching TV and there is 1500 students in your school
Step 2: We now want to find 64% of 1500, we can rewrite 64% as 0.64. We multiple 1500 by 0.64 to find out how many students enjoy watching TV
0.64 x 1500 = # of students who like watching TV
960 = # of students who like watching TV
Therefore out of 1500 students, 960 would enjoy watching TV
What are the factors of the quadratic function represented by this graph?
A.
(x − 1) and (x − 5)
B.
(x + 1) and (x + 5)
C.
(x − 1) and (x + 5)
D.
(x + 1) and (x − 5)
The factors of the quadratic equations are (x + 1) and (x + 5) which is represented on the graph.
What is quadratic equation?A quadratic equation is an algebraic equation of the second degree in x. The quadratic equation in its standard form is [tex]ax^2 + bx + c = 0,[/tex]
Here in the graph we can see that the x coordinate cut by the curve of the quadratic equation is in the negative side of x at -1 and -5.
So the factors of the quadratic equations are (x + 1) and (x + 5) which is represented on the graph.
To know more about quadratic equation follow
https://brainly.com/question/1214333
#SPJ2
Answer:
Check Screenshot
Step-by-step explanation:
For all x, 5-3(x-4)=?
Answer:
the answer that i find is 17-3x
What is the answer??
c — 10 ≥ 15
Answer:
Step-by-step explanation:
c - 10 ≥ 15 =
c ≥ = 15 + 10
c ≥ = 25
c = 26 ( or numbers above 26)
n/2-3n/4+5n/6=21 please tell the answer
Answer:
n= 36
Step-by-step explanation:
36/2-3 x 36/4+5 x 36/6=21
please give me brainliest if i got this right
Answer:
n=36
Step-by-step explanation:
By simplifying both sides of the equation, then isolating the variable.
n=36
I did this quickly so sorry if it's no help
A cylinder has a radius of 2.8 in and a height of 2.4 in. Which cylinder is similar?
(p.s. the pic is the awnser choices)
also if you can awnser this xan you awnser it asap im currently taking a test thanks :)
Answer:
option 2 with radius of 1.4 in, and height of 1.2 in.
Step-by-step explanation:
If two cylinders are similar, the ratio of one cylinder's radius to its height must be the same as that of the other.
To know which cylinder is similar to the given cylinder with radius 2.8 in and height of 2.4 in, find the ratio, and compare with the ratio of the options provided. The option with the same ratio, is the cylinder that is similar.
This,
The given cylinder => radius : height = [tex] \frac{2.8}{2.4} = \frac{0.7}{0.6} = \frac{7}{6} [/tex]
First option:
Radius : height = [tex] \frac{1.8}{1.4} = \frac{0.9}{0.7} = \frac{9}{7} [/tex]
Second option:
Radius : height = [tex] \frac{1.4}{1.2} = \frac{0.7}{0.6} = \frac{7}{6} [/tex]
Third option:
Radius : height = [tex]\frac{5.6}{4.2} = \frac{0.8}{0.6} = \frac{0.4}{0.3} = \frac{4}{3}[/tex]
Fourth option:
Radius : height = [tex] \frac{2.4}{2.8} = \frac{0.6}{0.7} = \frac{6}{7} [/tex]
The correct option with the cylinder that is similar with the given cylinder is option 2 with radius of 1.4 in, and height of 1.2 in.
Let's see what it would take to win that trip to Hawaii.
Remember that you think you'll respond to 12 questions and hope to score 600 points to win,
although it's possible to score even more points or many fewer (including negative scores!) on
the show.
Here are the equations you wrote to model your winning scenario:
x+y=12
100x - 200y = 600
Are the boundaries of the first equation viable in the second equation? What does this
suggest about your plan to score 600 points?
Select the two correct statements.
Answer:
A and D choices (Plato)
Step-by-step explanation:
The upper boundary of the first equation is at x = 12, y = 0. With these values, this is the second equation:
100(12) − 200(0) = 1,200.
The lower boundary of the first equation is at x = 0, y = 12. With these values, this is the second equation:
100(0) − 200(12) = -2,400.
Both of these scores are possible in the game, so they are both viable.
Because the upper boundary is greater than 600, it suggests that you can still score 600 points and win the game even if you get one or two of the questions incorrect.
In fact, you could give 10 correct and 2 incorrect answers to score 600 points and still beat the champion, Kimberly, assuming she answers 15 correct and 5 incorrect to score 500 points.
please help me solve
Answer:
18 square centimeters
Step-by-step explanation:
Notice that if e is the midpoint of the side CB, and angle [tex]\angle x = 45^o[/tex], then this rectangle is in fact two squares of side 3 cm put together. therefore, side CD has a length of 6 cm, and as a result, the area of the figure is given by the product base times height = 6 x 3 = 18 [tex]cm^2[/tex]
Answer:
(B) 18
Step-by-step explanation:
The angle x is 45 degrees. Since it is bisecting a 90 degree angle, the angle on the other side is 45 degrees.
90 - 45 = 45
Since AB is 3, DC is 3. Since the right triangle DC is 45-90-45, the other side, CE, will also be 3. Since CE is half of the side of the rectangle, multiply it by 2 to get 6. The sides of the rectangle are 3 and 6. Use the formula for area of a rectangle to solve.
A = lw
A = (6)(3)
A = 18
The answer is B.
Need to find the Domain and Range
Answer:
D: {x∈R | -2 ≤ x ≤ 2 }
R: {y∈R | 0 ≤ y ≤ 4 }
Step-by-step explanation:
The domain ranges between -2 and 2
The range ranges between 0 and 4
PLEASE help me with this question! No nonsense answers please. This is really urgent.
Answer:
A) 15.6 ft²
Step-by-step explanation:
Area of the circle
A=[tex]\pi[/tex]r²
A=[tex]\pi[/tex](5.7)²
A=102.07
Area of the segment
102.07*55/360
15.594
Insert 2 sets of parentheses to make each sentence true: 2 x 14 – 9 – 17 – 14 = 7 (2 x 14) – 9 – (17 – 14) = 7 2 x (14 – 9) + (– 17 – 14) = 7 (2 x 14) – (9 – 17) – 14 = 7 2 x (14 – 9) – (17 – 14) = 7
Answer:
2 × (14 – 9) – (17 – 14) = 7
Step-by-step explanation:
Evaluate the choices to see which is true.
(2 x 14) – 9 – (17 – 14) = 7 ⇒ 28 -9 -3 ≠ 7
2 x (14 – 9) + (– 17 – 14) = 7 ⇒ 2(5) +(-31) ≠ 7
(2 x 14) – (9 – 17) – 14 = 7 ⇒ 28 -(-8) -14 ≠ 7
2 x (14 – 9) – (17 – 14) = 7 ⇒ 2(5)- 3 = 7 . . . . true
Solve for x 3(x+7)-14=22
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
Let's solve your equation step-by-step.
[tex]3(x+7)-14=22[/tex]
Step 1: Simplify both sides of the equation.
[tex]3 ( x + 7 ) - 14 = 22\\(3)^(x) + (3) (7) + - 14 = 22[/tex] (Distribute)
[tex]3x + 21 + -14 = 22[/tex]
[tex]( 3x) + (21 + -14 ) = 22[/tex] (Combine Like Terms)
[tex]3x + 7 = 22\\3x + 7 = 22[/tex]
Step 2: Subtract 7 from both sides.
[tex]3x + 7 - 7 = 22 - 7 \\3x = 15[/tex]
Step 3: Divide both sides by 3.
[tex]\frac{3x}{3} = \frac{15}{3} \\x = 5[/tex]
So your answer would be : [tex]\boxed {x = 5}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀
PLEASE HELP!! It’s for a math class and I can’t figure it out been trying every website nothing has helped!
Answer:
11.6%
I hope this helps!
Please answer this question now
Answer:
82 degrees
Step-by-step explanation:
Measure of arc ABC = 86*2 = 172 degrees.
Measure of arc DC = 360 - (145+172) = 360-317 = 43 degrees.
Measure of arc BCD = 121+43 = 164 degrees.
Measure of angle A = 164/2 = 82 degrees
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4) {}^{2} }{4 + 3x - {x}^{2} } [/tex]
pls help me need help asap
Answer:
[tex] { x^2+3x-4} [/tex]
Step-by-step explanation:
Factor top and bottom.
The numerator is a difference of two squares, and the denominator is a quadratic.
[tex] \frac{ {9x}^{2} - {(x}^{2} - 4)^{2} }{4 + 3x - {x}^{2} } [/tex]
= [tex]\frac{ (3x+x^2-4)(3x-x^2+4) }{(1+x)(4-x)}[/tex]
= [tex] \frac{ (x-1)(x+4) (1+x)(4-x) }{(1+x)(4-x)} [/tex]
If x does not equal -1 and does not equal 4, we can cancel the common factors in italics to give
= [tex] { (x-1)(x+4)} [/tex]
= [tex] { x^2+3x-4} [/tex]
Answer:
The answer is
x² + 3x - 4Step-by-step explanation:
[tex] \frac{9 {x}^{2} - ( { {x}^{2} - 4})^{2} }{4 + 3x - {x}^{2} } [/tex]
To solve the expression first factorize both the numerator and the denominator
For the numerator
9x² - ( x² - 4)²
Expand the terms in the bracket using the formula
( a - b)² = a² - 2ab + b²
(x² - 4) = x⁴ - 8x² + 16
So we have
9x² - (x⁴ - 8x² + 16)
9x² - x⁴ + 8x² - 16
- x⁴ + 17x² - 16
Factorize
that's
(x² - 16)(-x² + 1)
Using the formula
a² - b² = ( a + b)(a - b)
We have
(x² - 16)(-x² + 1) = (x + 4)(x - 4)( 1 - x)(1 + x)
For the denominator
- x² + 3x + 4
Write 3x as a difference
- x² + 4x - x + 4
Factorize
That's
- ( x - 4)(x + 1)
So we now have
[tex] \frac{(x + 4)(x - 4)( 1 - x)(1 + x)}{ - (x - 4)(x + 1)} [/tex]
Simplify
[tex] \frac{ - (x + 4)(1 - x)(1 + x)}{x + 1} [/tex]
Reduce the expression by x + 1
That's
-( x + 4)( 1 - x)
Multiply the terms
We have the final answer as
x² + 3x - 4Hope this helps you
need help...!!ASAP..!! plz....
the answer for this is A
Answer:
Correct option is A
Step-by-step explanation:
3x - 7
Three times a number x minus 7
Or
The difference of there times a number and 7
Answer ASAP THANKKK YOUUUUU
Answer:
D. 40
Step-by-step explanation:
Interquartile range is the difference between the upper quartile value (Q3) and the lower quartile value (Q1).
In a box plot, Q1 is located at the beginning of the edge of the rectangular box from our left, while the Q3 is located at the end of the edge of the rectangular box to our right.
Interquartile range for City A = 70 - 40 = 30
Interquartile range for City B = 80 - 40
Therefore, city B has greater variability. The interquartile range is 40.
Please help!! Two birds sit at the top of two different trees. The distance between the first bird and a birdwatcher on the ground is 32 feet. The distance between the birdwatcher and the second bird is 45 feet. What is the angle measure, or angle of depression, between this bird and the birdwatcher? Round your answer to the nearest tenth. 35.4° 44.7° 45.3° 54.6°
Answer:
45.3°
Step-by-step explanation:
A right triangle is formed given the information above.
Angle of depression = x°
Distance between first bird and birdwatcher = opposite to angle x° = 32 ft
Distance between second bird and birdwatcher = hypotenuse of the right triangle formed = 45 ft
The trigonometric ratio formula to use is:
[tex] sin(x) = \frac{opp}{hypo} [/tex]
[tex] sin(x) = \frac{32}{45} [/tex]
[tex] sin(x) = 0.7111 [/tex]
[tex] x = sin^{-1}(0.7111) [/tex]
[tex] x = 45.3 [/tex] (nearest tenth)
Angle of depression = 45.3°
Answer:
45.3°
Step-by-step explanation:
Hope this helps :)
A student who is 5 1/4 feet tall has a shadow that is 2 feet and 10 1/2 inches long. At the same time. a flag pole has a shadow that is 10 1/2 feel long. How tall, to the nearest inch, is the flag pole?
Answer:
The height of the flag pole is approximately 19 feet and 2 inches.
Step-by-step explanation:
Let suppose that length of the shadow of the object is directly proportional to its height. Hence:
[tex]l \propto h[/tex]
[tex]l = k\cdot h[/tex]
Where:
[tex]h[/tex] - Height of the object, measured in inches.
[tex]l[/tex] - Shadow length of the object, measured in inches.
[tex]k[/tex] - Proportionality constant, dimensionless.
Now, let is find the value of the proportionality constant: ([tex]h = 5\,\frac{1}{4} \,ft[/tex] and [tex]l = 2\,ft\,\,10\,\frac{1}{2}\,in[/tex])
[tex]h = \frac{21}{4}\,ft[/tex]
[tex]h = \left(\frac{21}{4}\,ft \right)\cdot \left(12\,\frac{in}{ft} \right)[/tex]
[tex]h = 63\,in[/tex]
[tex]l = (2\,ft)\cdot \left(12\,\frac{in}{ft} \right) + \frac{21}{2}\,in[/tex]
[tex]l = 24\,in + \frac{21}{2}\,in[/tex]
[tex]l = \frac{48}{2}\,in+\frac{21}{2}\,in[/tex]
[tex]l = \frac{69}{2}\,in[/tex]
Then,
[tex]k = \frac{l}{h}[/tex]
[tex]k = \frac{\frac{69}{2}\,in }{63\,in}[/tex]
[tex]k = \frac{69}{126}[/tex]
[tex]k = \frac{23}{42}[/tex]
The equation is represented by [tex]l = \frac{23}{42}\cdot h[/tex]. If [tex]l = 10\,\frac{1}{2}\,ft[/tex], then:
[tex]l = \frac{21}{2}\,ft[/tex]
[tex]l = \left(\frac{21}{2}\,ft \right)\cdot \left(12\,\frac{in}{ft} \right)[/tex]
[tex]l = 126\,in[/tex]
The height of the flag pole is: ([tex]l = 126\,in[/tex], [tex]k = \frac{23}{42}[/tex])
[tex]h = \frac{l}{k}[/tex]
[tex]h = \frac{126\,in}{\frac{23}{42} }[/tex]
[tex]h = \frac{5292}{23}\,in[/tex]
[tex]h = 230\,\frac{2}{23}\,in[/tex]
[tex]h = \frac{115}{6}\,ft\,\frac{2}{23}\,in[/tex]
[tex]h = 19\,\frac{1}{6}\,ft \,\frac{2}{23}\,in[/tex]
[tex]h = 19\,ft\,\,2\,\frac{2}{23}\,in[/tex]
[tex]h = 19\,ft\,\,2\,in[/tex]
The height of the flag pole is approximately 19 feet and 2 inches.
A player has 15 hits in 34 times at bat and then gets
another hit. Did the batting average increase? Explain.
Answer:
yes, his batting average will increase bcz average of a batsmen is the sum of total hits per ball.
An air traffic controller spots two airplanes at the same altitude converging to a point as they fly at right angles to each other. One airplane is 150 miles from the point and has a speed of 300 miles per hour. The other is 200 miles from the point and has a speed of 400 miles per hour.(a) At what rate is the distances between the planes decreasing?(b) How much time does the air traffic controller have to get one of the planes on a different flight path?
Answer:
The answer to this question can be defined as follows:
In option A, the answer is "- 357.14 miles per hour".
In option B, the answer is "-0.98".
Step-by-step explanation:
Given:
[tex]\frac{dx}{dt} =- 300 \text{ miles per hour}[/tex]
[tex]\frac{dy}{dt} =- 400 \text{ miles per hour}[/tex]
find:
[tex]\frac{ds}{dt} =?[/tex] when
[tex]x= 150 \\y= 200\\s=x+y\\\\[/tex]
[tex]= 150+200 \\\\=350[/tex]
[tex]\to s^2=x^2+y^2\\[/tex]
differentiate the above value:
[tex]\to 2s\frac{ds}{dt}= 2x \frac{dx}{dt}+2y \frac{dy}{dt}[/tex]
[tex]\to 2s\frac{ds}{dt}= 2(x \frac{dx}{dt}+y \frac{dy}{dt})\\\\\to \frac{ds}{dt}= \frac{(x \frac{dx}{dt}+y \frac{dy}{dt})}{s}\\\\[/tex]
[tex]= \frac{(150 \times -300 +200 \times -400 )}{350}\\\\= \frac{-45000+ (-80000) }{350}\\\\= \frac{- 125000 }{350}\\\\= - 357.14 \ \text{miles per hour}[/tex]
In option B:
[tex]\to d=rt\\\\ \to t= \frac{d}{r}[/tex]
[tex]\to \ \ d= 350 \ \ \ \ \ \ r= -357.14\\[/tex]
[tex]\to t= - \frac{350}{357.14}\\\\\to t= - 0.98[/tex]
Given: ABCD is a parallelogram.Prove: m∠A + m∠B + m∠C + m∠D = 360˚By the definition of a parallelogram, AD∥BC and AB∥DC. Using, AD as a transversal, ∠A and ∠ are same-side interior angles, so they are . By the definition of supplementary, m∠A + m∠D = 180. Using side as a transversal, ∠B and ∠C are same-side interior angles, so they are supplementary. By the definition of supplementary, m∠B + m∠C = 180. So, m∠A + m∠D + m∠B + m∠C = 180 + 180 by the property. Simplifying, we have m∠A + m∠B + m∠C + m∠D = 360˚.1) D2) Supplementary3) BC4) Addition
Answer:- D
- Supplementary
- BC
- Addition
Step-by-step explanation:
Which statement is false? Question 4 options: All whole numbers are integers. All natural numbers are whole numbers. All real numbers are irrational numbers. All whole numbers are real numbers.
Answer:
C
Step-by-step explanation:
Not all real numbers are irrational.
A classroom has 14 boys and 18 girls. What is the ratio of boys to girls?
Answer:
7:9
Step-by-step explanation:
boys:girls
14:18
simplify -- divide by 2
7:9
Answer:
7:9
Step-by-step explanation:
so we start of with 14 boys to 18 girls, but we need to simplify it.
so we half both numbers to get to 7:9.
this is the most simplified form of this ratio.
the answer is 7:9
Which expression is equivalent to the area of metal sheet required to make this square-shaped traffic sign? A sign labeled 2x-1 on one side. A: 4x^2 - 1 B:4x^2 + 1 C: 4x^2 + 4x - 1 D: 4x^2 - 4x + 1
Answer:
D: 4x² - 4x + 1
Step-by-step explanation:
(2x - 1) ( 2x - 1)
4x² - 2x - 2x + 1
4x² - 4x + 1
The correct answer is d) 4x2 - 4x + 1.
The area of a square is found by squaring the side length:
(2x-1)? = (2x-1)(2x-1) = 2x*2x - 2x*1 - 2x*1 - = 1(-1) = 4 x 2 - 2x - 2x + 1 = 4x2-4x+1
On his return trip, Zen descends from the Calloway Peak Summit to an elevation of 2,402.5 feet, arriving at the Flat Rock Junction. So, the elevation at Flat Rock is feet.
Complete question :
Zen is participating in an all-day hike to the Grandfather Mountain Summit on the Blue Ridge Parkway.
Starting at elevation zero, Zen climbs to an elevation of 4,646.4 feet to reach the Cragway Trail. From there, he hikes up another 1,817.6 feet to the Calloway Peak Summit, the highest point on Grandfather Mountain. Based on these numbers, the Calloway Peak Summit is at a height of _____ feet.
On his return trip, Zen descends from the Calloway Peak Summit to an elevation of 2,402.5 feet, arriving at the Flat Rock Junction. So, the elevation at Flat Rock is ______ feet.
Answer:
6,464 Feets; 4,061.5 Feets
Step-by-step explanation:
Given the following:
Starting elevation = 0
Elevation of the Cragway Trail = 4,646.4 feets
Elevation of Cragway Trail to Calloway peak summit = 1,817.6
From Calloway peak summit, Zen descends to an elevation of 2,402.5 Feets (flat Rock junction)
The Calloway Peak Summit is at a height of _____ feet.
Height of Calloway Peak Summit:
(Starting elevation to Cragway trail) + (Cragway trail elevation to Calloway peak Summit)
4,646.4 Feets + 1,817.6 Feets = 6,464 Feets
B) Elevation at Flat Rock Junction:
Height of Calloway peak summit - 2,402.5
(6464 - 2402.5) Feets = 4,061.5 Feets
when the point ( k, 3 ) lies on each of these lines, find the value of k y= 3x+1 , y= 4x-2 , y=1/2x - 1 and 2x+3y=4
Answer:
see explanation
Step-by-step explanation:
Since (k, 3) lies on each of the lines, the point satisfies the equations.
Substitute x = k, y = 3 into each and solve for k
y = 3x + 1
3 = 3k + 1 ( subtract 1 from both sides )
2 = 3k ( divide both sides by 3 )
k = [tex]\frac{2}{3}[/tex]
-------------------------------------------------------
y = 4x - 2
3 = 4k - 2 ( add 2 to both sides )
5 = 4k ( divide both sides by 4 )
k = [tex]\frac{5}{4}[/tex]
--------------------------------------------------------
y = [tex]\frac{1}{2}[/tex] x
3 = [tex]\frac{1}{2}[/tex] k ( multiply both sides by 2 to clear the fraction )
k = 6
---------------------------------------------------------
2x + 3y = 4
2k + 3(3) = 4
2k + 9 = 4 ( subtract 9 from both sides )
2k = - 5 ( divide both sides by 2 )
k = - [tex]\frac{5}{2}[/tex]
PLZ HELP!!!! ASAP !!!!
Answer:
(A)
Sin á = a/c
Cos ∅ = a/c
Tan á = a/b
(B)
Sin á = a/c
Cos á = b/c
Tan á = a/b
Therefore á=
(inverse sin) a/c
Or
(Inverse cos) b/c
Or
(Inverse tan) a/b
(C)
If b = 12 and c = 13
then a =√(c²-b²)
= 5
Hence 5/13 = a/c
Therefore sin á = cos ∅ = a/c = 5/13
BELL RINGER #2
A consultant charges $45 for each hour she works on a consultation, plus a flat $30
consulting fee. How many hours of work are included in a $210 bill for a consultation?
A. 2 4/5
B. 4
c. 4 2/3
D. 5 1 / 2
E. 7
Answer:
A. 2 4/5
Step-by-step explanation:
To find how many hours she worked for $210, you must get the amount of money she gets in 1 hour.
Because she charges $43 dollars every hour, and fines a fee of $30 flat, we must add both of the amount to get how many she earns in 1 hour.
So:
$45 + $30= $75
She earn $75 in 1 hour.
Next, divide $210 dollars that she earned for working for hour(s) to the amount of money she earned in 1 hour to find how many hours she worked.
So:
$210 ÷ $75= 2.8 hours
The answer is 2.8 hours
Because the given answers is in fraction, we must change the decimal into a fraction.
To change a decimal into a fraction, you must place the decimal over its place value.
Because 8 in the decimal 2.8 is in the tenths place, you must place it over 10
So:
2.8 into a decimal is 2 8/10
Simplify (only simplify if possible):
Divide 8 and 10 to their GCF which is 2.
So:
8 ÷ 2= 4
10 ÷ 2= 5
So the fraction and the answer is now:
2 4/5
I hope this helps! I'm sorry if it's wrong and too complicated.