Can any one solve this.Please

Can Any One Solve This.Please

Answers

Answer 1

Answer:

True

Step-by-step explanation:

The first derivative tells you the slope of the graph at a specific point. If f'(c) =0, then that means that at f(c), the slope of the graph is 0. It is neither going up nor down

The second derivative tells you the slope of the slope of the graph. If f''(c) < 0, this means that the slope is decreasing. This means that going from the left to f(c), the slope is greater than the slope at f(c), and going from f(c) to the right, the slope is less than the slope at f(c).

Therefore, since the slope at f(c) is 0, the slope is positive to the left of f(c) and negative to the right of f(c). This means that the graph is going up until it hits f(c) and then goes down. Because f(c) is greater than the values to the left of it (because it is going up until it hits f(c)) and the values to the right of it (because it is going down past f(c)), f(c) is a local maximum


Related Questions

If 5000 is divided by 10 and 10 again what answer will be reached

Answers

Hey there!

First,  divide 5,000 by 10. You will get 500.

Now, 500 ÷ 10, and you will get your answer, 50.

Hope this helps! Have a great day!

Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.)
(x − 1)y'' − xy' + y = 0, y(0) = −7, y'(0) = 3

Answers

You're looking for a solution of the form

[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]

Differentiating twice yields

[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]

[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]

Substitute these series into the DE:

[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]

[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]

[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]

Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:

[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]

which indicates that the coefficients in the series solution are governed by the recurrence,

[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]

Use the recurrence to get the first few coefficients:

[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]

You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,

-7 = -7/0!

-7/2 = -7/2!

-7/6 = -7/3!

and so on, with only the coefficient in the n = 1 position being the odd one out. So we have

[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]

which looks a lot like the power series expansion for -7.

Fortunately, we can rewrite the linear term as

3x = 10x - 7x = 10x - 7/1! x

and in doing so, we can condense this solution to

[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]

Just to confirm this solution is valid: we have

y = 10x - 7   ==>   y (0) = 0 - 7 = -7

y' = 10 - 7   ==>   y' (0) = 10 - 7 = 3

y'' = -7

and substituting into the DE gives

-7 (x - 1) - x (10 - 7) + (10x - 7 ) = 0

as required.

what percent of 70 is 35

Answers

Answer:

50%

Step-by-step explanation:

35 is halve of 70 therefore it is 50%

hope it helps u...........

Shaun is planting trees along his driveway, and he has 66 redwoods and 66 pine trees to plant in one row. What is the probability that he randomly plants the trees so that all 66 redwoods are next to each other and all 66 pine trees are next to each other

Answers

Answer:

0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.

Step-by-step explanation:

The trees are arranged, so the arrangements formula is used to solve this question. Also, a probability is the number of desired outcomes divided by the number of total outcomes.

Arrangements formula:

The number of possible arrangements of n elements is given by:

[tex]A_n = n![/tex]

Desired outcomes:

Two cases:

6 redwoods(6! ways) then the 6 pine trees(6! ways)

6 pine trees(6! ways) then the 6 redwoods(6! ways)

So

[tex]D = 2*6!*6![/tex]

Total outcomes:

12 trees, so:

[tex]D = 12![/tex]

What is the probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other?

[tex]p = \frac{D}{T} = \frac{2*6!*6!}{12!} = 0.0022[/tex]

0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.

If (4x-5) :(9x-5) = 3:8 find the value of x.​

Answers

Answer:

x is 5

Step-by-step explanation:

[tex] \frac{4x - 5}{9x - 5} = \frac{3}{8} \\ \\ 8(4x - 5) = 3(9x - 5) \\ 32x - 40 = 27x - 15 \\ 5x = 25 \\ x = \frac{25}{5} \\ \\ x = 5[/tex]

Step-by-step explanation:

as you can see as i solved above. all you need to do was to rationalize the both equations

The length of a rectangle is 10 yd less than three times the width, and the area of the rectangle is 77 yd^2. Find the dimensions of the rectangle.

Answers

Answer:

W=7 and L=11

Step-by-step explanation:

We have two unknowns so we must create two equations.

First the problem states that  length of a rectangle is 10 yd less than three times the width so: L= 3w-10

Next we are given the area so: L X W = 77

Then solve for the variable algebraically. It is just a system of equations.

3W^2 - 10W - 77 = 0

(3W + 11)(W - 7) = 0

W = -11/3 and/or W=7

Discard the negative solution as the width of the rectangle cannot be less then 0.

So W=7

Plug that into the first equation.

3(7)-10= 11 so L=11

A capark has 34 rows and each row can acommodate 40 cars. If there are 976 cars parked, how many cars can still be parked?​

Answers

Answer:

384 cars

Step-by-step explanation:

To find the total number of spaces in the carpark, we must multiply the number of rows by how many cars they can accommodate:

34 ⋅ 40 = 1360

As you can see, we have 1360 total spaces. Since there are 976 cars parked, and we want to find out how many spaces are left, we have to subtract the amount of cars parked from the total spaces.

1360 - 976 = 384

Therefore, our answer is 384, specifically, 384 cars.

Answer:

384 cars.

Step-by-step explanation:

40 * 34 - 976

= 1360 - 976

= 384.

Question with last attempt is displayed for your review only
Amanda rented a bike from Ted's Bikes.
It costs $9 for the helmet plus $5.25 per hour.
If Amanda paid about $43.13, how many hours did she rent the bike?

Let h = the number of hours she rented the bike. Write the equation you would use to solve this problem.

Answers

Answer:

[tex]43.13 = 5.25h + 9[/tex]

Step-by-step explanation:

Let's solve this by making an equation.

$9 for the helmet, and $5.25 per hour.

h will stand for hours, C will stand for Amanda's cost.

[tex]C = 5.25h + 9[/tex]

Now, substitute in what we learned from the problem.

[tex]43.13 = 5.25h + 9[/tex]

This is an equation you can use to solve for the hours.

John and mike got paid $40.00 for washing
car. John work one hour, mike worked 1.5 hrs.
How much do they get paid for time worked?

Answers

This question is incomplete , l can’t answer it . You have to say how much minutes or hours they work to get paid $40 ,if you just say that John’s work one hour and Mike work 1.5 hours then I don’t know what to solve ,this question is a complete

PLEASE HELP

Solve the equation for y. Identify the slope and y-intercept then graph the equation.

2y-3x=10

Y=
M=
B=

Please Include a picture of the graph and show your work if you can

Answers

Hey there! I'm happy to help!

Here is our equation.

[tex]2y-3x=10[/tex]

Let's add 3x to both sides.

[tex]2y=3x+10[/tex]

Divide both sides by 2.

[tex]y=\frac{3}{2}x+5[/tex]

Here is slope intercept form.

[tex]y=mx+b\\m=slope\\b=y-intercept[/tex]

So, we can just find those two things in the equation, and here are our answers.

[tex]y=\frac{3}{2}x+5\\m=\frac{3}{2}\\b=5[/tex]

The graph is down below. If our y-intercept is 5, then one of our points is (0,5). You can then plug a random x-value into the formula to find another point and then draw the line going through the two points.

[tex]y=\frac{3}{2}(2)+5\\y=3+5\\y=8\\(2,8)[/tex]

Have a wonderful day and keep on learning! :D

The diameters of ball bearings are distributed normally. The mean diameter is 7373 millimeters and the variance is 44. Find the probability that the diameter of a selected bearing is less than 7676 millimeters. Round your answer to four decimal places.

Answers

Answer:

0.9332

Step-by-step explanation:

We are given that

Mean diameter, [tex]\mu=73[/tex]

Variance, [tex]\sigma^2=4[/tex]

We have to find the probability that the diameter of a selected bearing is less than 76.

Standard deviation, [tex]\sigma=\sqrt{variance}=\sqrt{4}=2[/tex]

[tex]P(x<76)=P(\frac{x-\mu}{\sigma}<\frac{76-73}{2})[/tex]

[tex]P(x<76)=P(Z<\frac{3}{2})[/tex]

Where [tex]Z=\frac{x-\mu}{\sigma}[/tex]

[tex]P(x<76)=P(Z<1.5)[/tex]

[tex]P(x<76)=0.9332[/tex]

Hence, the probability that the diameter of a selected bearing is less than 76=0.9332

Identify the slope and y intercept of the line with equation 2y = 5x + 4

Answers

Answer:

Slope is 5/2

y-intercept is 2

Step-by-step explanation:

Turn the equation into slope intercept form [ y = mx +  b ].

2y = 5x + 4

~Divide everything by 2

y = 5/2x + 2

Remember that in slope intercept form, m = slope and b = y-intercept.

Best of Luck!

Answer:

slope: 2.5

y-intercept: 2

Step-by-step explanation:

First isolate the y variable which changes the equation to y=2.5x+2

The equation of a line is mx + b where m is the slope and b and the

y-intercept. Leading us to conclude that 2.5 is the slope and 2 is the y-intercept.

HURRY plSSSSSSSSSSSSSSSSSSSSSS
What is the measure of the unknown angle?

Image of a straight angle divided into two angles. One angle is eighty degrees and the other is unknown.

Answers

Answer:

The unknown is 100

Step-by-step explanation:

A straight line is 180 degrees

We have two angles x, and 80

x+80 = 180

x = 180-80

x= 100

I need help ASAP please

Answers

Answer:

5:10

6 (-2,0)

7 (-5,6)

8 (5,3)

9 No, ab=8 CD=6

Step-by-step explanation:

SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample? Make sure to give a whole number answer.

Answers

Answer:

The administrator should sample 968 students.

Step-by-step explanation:

We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.88}{2} = 0.06[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a p-value of [tex]1 - 0.06 = 0.94[/tex], so Z = 1.555.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Standard deviation of 300.

This means that [tex]n = 300[/tex]

If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample?

This is n for which M = 15. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]15 = 1.555\frac{300}{\sqrt{n}}[/tex]

[tex]15\sqrt{n} = 300*1.555[/tex]

Dividing both sides by 15

[tex]\sqrt{n} = 20*1.555[/tex]

[tex](\sqrt{n})^2 = (20*1.555)^2[/tex]

[tex]n = 967.2[/tex]

Rounding up:

The administrator should sample 968 students.

Help me please and thank you

Answers

Answer:

Option C is correct

Step-by-step explanation:

[tex]log( {10}^{3} )[/tex]

Use logarithm rules to move 3 out of the exponent.

[tex]3 \: log \: (10)[/tex]

Logarithm base 10 of 10 is 1.

[tex]3×1[/tex]

Multiply 3 by 1.

[tex]3[/tex]

Hope it is helpful....
C is the correct answer

find the missing length indicated​

Answers

I think x is 144 by using tan theta=p/b

explainion:

[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]

Use The (Pythagorean Theorem) to find the length of any side of a right triangle. Form it like its shown in picture above. Follow the instructions that also shown in the picture above.

Martha, Lee, Nancy, Paul, and Armando have all been invited to a dinner party. They arrive randomly, and each person arrives at a different time.

a. In how many ways can they arrive?

b. In how many ways can Martha arrive first and Armando last?

c. Find the probability that Martha will arrive first and Armando last.

Show your work

Answers

Answer:

a) 120

b) 6

c) 1/20

Step-by-step explanation:

a) 5! = 120

b) (5 - 2)! = 6

c) 6/120 = 1/20

NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!!

Chapter 11 part 2:

What are three different properties of logarithmic functions when encountering the operations of addition, subtraction, and multiplication? Provide an example of each.

Answers

The three main log rules you'll encounter are

log(A*B) = log(A) + log(B)log(A/B) = log(A) - log(B)log(A^B) = B*log(A)

The first rule allows us to go from a log of some product, to a sum of two logs. In short, we go from product to sum. The second rule allows us to go from a quotient to a difference. Lastly, the third rule allows to go from an exponential to a product.

Here are examples of each rule being used (in the exact order they were given earlier).

log(2*3) = log(2) + log(3)log(5/8) = log(5) - log(8)log(7^4) = 4*log(7)

----------------

Here's a slightly more complicated example where the log rules are used.

log(x^2y/z)

log(x^2y) - log(z)

log(x^2) + log(y) - log(z)

2*log(x) + log(y) - log(z)

Hopefully you can see which rules are being used for any given step. If not, then let me know and I'll go into more detail.

help

What is 5 added to 3 4?
6. 12​

Answers

Answer:

8.4

Step-by-step explanation:

jjdijendjndoendidnie

what Is the si unit of temperature​

Answers

Answer:

the Si unit of temprature in Kelvin (K)

Step-by-step explanation:

Answer:

The answer is Kelvin (k).

Step-by-step explanation:

The kelvin (K) is defined by taking the fixed numerical value of the Boltzmann constant k to be [tex]1.380649*10^{-23}[/tex] when expressed in the unit of joule per kelvin. The temperature 0 K is commonly referred to as "absolute zero." On the widely used Celsius temperature scale, water freezes at 0 °C and boils at about 100 °C. One Celsius degree is an interval of 1 K, and zero degrees Celsius is 273.15 K. An interval of one Celsius degree corresponds to an interval of 1.8 Fahrenheit degrees on the Fahrenheit temperature scale.

The kelvin is also the fundamental unit of the Kelvin scale, an absolute temperature scale named for the British physicist William Thomson (known as Lord Kelvin). An absolute temperature scale has as its zero point absolute zero (−273.15° on the Celsius temperature scale and −459.67° on the Fahrenheit temperature scale), the theoretical temperature at which the molecules of a substance have the lowest energy; hence, all values on such a scale are nonnegative.  

e lifetimes of lightbulbs of a particular type are normally distributed with a mean of290 hours and astandard deviation of6 hours. What percentage of the bulbs have lifetimes that lie within 1 standarddeviation to either side of the mean

Answers

Answer:

Step-by-step explanation:

[tex]p(\overline{X}-\sigma \leq X \leq \overline{X}+\sigma)\\\\=p(\dfrac{\overline{X}-\sigma -\overline{X} }{\sigma} \leq Z \leq \dfrac{\overline{X}+\sigma -\overline{X} }{\sigma} )\\\\=p ( -1 \leq Z \leq 1)\\\\=2*(\ p (Z \leq 1)-0.5)\\\\=2*(0.8413-0.5)\\\\=0.6826\\\\\approx{68\%}[/tex]

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.
n=12​, p=0.35​, x=2

Answers

Answer:

0.1088 or 10.88%

Step-by-step explanation:

q = 1 - 0.35 = 0.65

P(X=2) = 12C2 × (0.35)² × (0.65)¹

= 0.1088

Assume that the matrices below are partitioned conformably for block multiplication. Compute the product.

[I 0] [W X]
[K I] [Y Z]

Answers

Multiplying block matrices works just like multiplication between regular matrices, provided that component matrices have the right sizes.

[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf{IW}+\mathbf{0Y}&\mathbf{IX}+\mathbf{0Z}\\\mathbf{KW}+\mathbf{IY}&\mathbf{KX}+\mathbf{IZ}\end{bmatrix}[/tex]

[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W+\mathbf 0&\mathbf X+\mathbf 0\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]

[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W&\mathbf X\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]

(I assume I is the identity matrix and 0 is the zero matrix.)

Charity is planting trees along her driveway, and she has 6 pine trees and 6 willows to plant in one row. What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other

Answers

Answer:

0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.

Step-by-step explanation:

A probability is the number of desired outcomes divided by the number of total outcomes.

In this question, the elements are arranged, so we have to use the arrangements formula.

Arrangements formula:

The number of possible arrangements of n elements is:

[tex]A_{n} = n![/tex]

Desired outcomes:

Pine trees(6!) then the willows(6!) or

Willows(6!) then the pine trees(6!). So

[tex]D = 2*6!*6! = 1036800 [/tex]

Total outcomes:

12 trees, so:

[tex]T = 12! = 479001600 [/tex]

What is the probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other?

[tex]p = \frac{D}{T} = \frac{1036800 }{479001600 } = 0.0022[/tex]

0.0022 = 0.22% probability that she randomly plants the trees so that all 6 pine trees are next to each other and all 6 willows are next to each other.

Factor 64a^3 -8b^3 Explain all steps.

Answers

Answer:

[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]

Step-by-step explanation:

factor out the 8

then you have the sum/difference of cubes..

look that up SOAP: same opposite, always a plus

[tex]64a^3 -8b^3\\8(8a^3 -b^3)[/tex]

[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]

Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 2.1yd : 1.4yd

Answers

9514 1404 393

Answer:

  3/2

Step-by-step explanation:

Multiplying numerator and denominator by 10 will convert the ratio to a ratio of whole numbers. Then dividing by the common factor of 7 will reduce it to simplest form.

  [tex]\dfrac{2.1\text{ yd}}{1.4\text{ yd}}=\dfrac{2.1\times10}{1.4\times10}=\dfrac{21}{14}=\dfrac{3\times7}{2\times7}=\boxed{\dfrac{3}{2}}[/tex]

(SAT PREP) Find the value of x in each of the following excersises

Answers

Answer:

The answer is 155.

Step-by-step explanation:

We can find the remaining parts of the triangle angles.

which of these figures has rotational symmetry

Answers

9514 1404 393

Answer:

  A

Step-by-step explanation:

The parallelogram has rotational symmetry of degree 2. It looks the same after rotation by 180°.

_____

Additional comment

When a figure only looks like itself after a full rotation of 360°, it is said to have rotational symmetry of degree 1. All of the figures here will return to their original appearance after one 360° rotation. So, we assume the intent of the question is to identify figures with a rotational symmetry of degree greater than 1.

If side A is 10 inches long, and side B is 24 inches, find the length of the unknown side.

Answers

Step-by-step explanation:

Right Triangles and the Pythagorean Theorem. The Pythagorean Theorem, a2+b2=c2, a 2 + b 2 = c 2 , can be used to find the length of any side of a right triangle.

Other Questions
1. One half of a number added to a secondnumber equals 4. One half of the firstnumber decreased by the second numberequals zero. Find the two numbers. What is the slope-intercept form is? Name the vegetation found in different regions in Nepal Javier jogs 3/4 of a mile in 8/1/2 minutes.If he keeps the same pace, how many minutes will it take him to jog 1 mile? Given the function, calculate the following values: Which is a corrupt political machine of the late 1800s?A: The Rough RidersB: Tammany HallC: The JungleD: Tweed's Boys What do you know about pushpas father find all the missing measurement PLEASE HELP ME IM HAVING TROUBLE WITH IT Please help!Solve for x A random sample of 13 teenagers were surveyed for a hypothesis test about the mean weekly amount spent on convenience goods. Researchers conduct a one-mean hypothesis test, at the 1% significance level, to test whether the average spent per week on convenience goods is greater than 50 dollars. Which critter trait is affected by an environmental factor, such as light, temperature, ordiet? Explain. In MLA formatting style, writers can provide the URL for web pages in____.a. angle brackets b. square brackets c. parentheses d. curved 25)Jackson's current salary is $36,000 per year. Each year his salary is 1.04 times the previous yeal's salary. Whatwill his salary be in his 5th year?OA) $42,214.92OB) $42,114.91 Which section of the outline is the introduction? Section I Section II Section IIISection IV What are the characteristics of the cinema? When the Depression began, the federal government had a system of direct relief for giving food or money to those in need.TrueFalse Labor legislation was most favorable to labor unions during the pe- riod (a) 1960present (b) 19451959 (c) 19331945 (d) 18651933. MFP15017010 2021 Question 2 2.1 Calculate the following 2- and 3-digit numbers using strategic doubling: 34 2.1.2 340 2.13 277 214 00 (10) 2.15 500 Calculate depreciation for year 2 based on the following information: Historical cost $40,000 Useful life 5 years Salvage value $3,000 Year 1 depreciation $7,400