Can a moving object have gravitational energy?

Answers

Answer 1

Answer:

It is worth noting that the higher the gravitational energy of an object moving downwards, the lower the kinetic energy, and the lower the kinetic energy of an object moving upwards, the higher its gravitational energy.

Gravitational potential energy is acquired by an object when it has been moved against a gravitational field. For example, an object raised above the surface of the Earth will gain energy, which is released if the object is allowed to fall back to the ground.


Related Questions

A particular coil has 100 turns and a diameter of 6.0 m. When it's time for a measurement, a 4.5 A current is turned on. The large diameter of the coil means that the field in the water flowing directly above the center of the coil is approximately equal to the field in the center of the coil. The field is directed downward and the water is flowing east. The water is flowing above the center of the coil at 1.5 m/s .

What is the magnitude of the field at the center of the coil?

Answers

Answer:

The magnetic field at the center of the coil = 5.23 * 10 ^ -5 T

Explanation:

Information from the question:

Number of turns of the coil = 100 turns

The diameter of the coil = 6 m

The radius of the coil = diameter / 2 = 3 m

The coil current = 2.5 A

Formula : The Magnetic field at the center of the coil =

                                  k * number of turns * current / 2 * radius

Therefore, The Magnetic field at the center of the coil=

                                 (4 * [tex]\pi[/tex] * 10 ^ -7 * 100 * 2.5 ) / (2 * 3)

The Magnetic field at the center of the coil = 5.23 * 10 ^ -5 T

The current in the wires of a circuit is 60 milliamps. If the resistance of the circuit were doubled (with no change in voltage), then it’s new current would be _____ milliamps

Answers

Answer:30

Explanation:

Current=60 milliamps

Current=(voltage)/(resistance)

60=(voltage)/(resistance)

Doubling the resistance means multiplying both sides by 1/2

60x1/2=(voltage)/(resistance) x 1/2

30=(voltage)/2(resistance)

Therefore the resistance would be 30 milliamp if we double the resistance

If A = (6i-8j) units, B = (-8i-3j) units, and C = (26i-19j) units, determine a and b
such that aA + bB + C = 0

Answers

Answer:

Explanation:

given equation

aA + bB + C = 0

Putting the given values

a(6i-8j) +b (-8i-3j) +(26i-19j) = 0

i ( 6a - 8b ) - j ( 8a + 3 b ) = - 26 i + 19 j

comparing the coefficients of i and j

6a - 8b = -26

8a + 3b = -19.

multiplying first equation by 4 and second equation by 3  

24a - 32 b = - 104

24a + 9b = -57

9b + 32b = -57 + 104

41 b = 47

b = 1.41

6 a - 8 x 1.41 = -26

6a = -14.72

a = - 2.45  

Official (Closed) - Non Sensitive
MEF Tutorial 2 Q3
A train with a maximum speed of 29.17 m/s has an
acceleration rate of 0.25 m/s2 and a deceleration
rate of 0.7 m/s2. Determine the minimum running
time, if it starts from rest at one station and stops
at the next station 7 km away.​

Answers

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

t = 319.47 s

Pendulum clock. Your friend is trying to construct a clock for a craft show and asks you for some advice. She has decided to construct the clock with a pendulum. The pendulum will be a very thin, very light wooden bar with a thin, but heavy, brass ring fastened to one end. The length of the rod is 80 cm and the diameter of the ring is 10 cm. She is planning to drill a hole in the bar to place the axis of rotation 15 cm from one end. She wants you to tell her the period of this pendulum.

Answers

Answer:

The time period for this pendulum is 1.68 seconds

Explanation:

Solution

Given that:

The length of the pendulum is measured from the axis of rotation to the center of mass of the bob of the pendulum

Now,

In this case, the length becomes:

L= 80 - 15+5

L = 70 cm

The time period = T = 2π √L/g

T = 2* 3.14 *√0.7/9.8

= 1.68 seconds

Note: Kindly find an attached work to the part of the solution of the given question

Find the frequency of the 4th harmonic waves on a violin string that is 48.0cm long with a mass of 0.300 grams
and is under a tension of 4.00N. ​

Answers

Answer:

The frequency of the 4th harmonic of the string is 481.13 Hz.

Explanation:

When a stretch string fixed at both ends is set into vibration, it produces its lowest sound of possible note called the fundamental frequency.  Under certain conditions on the string, higher frequencies called harmonics or overtones can be produced.

The frequency of the forth harmonic is the third overtone of the string and can be determined by:

          f = [tex]\frac{2}{L}[/tex][tex]\sqrt{\frac{T}{m} }[/tex]

Given that; L = 48.0 cm = 0.48 m,

                 m = 0.3 g = 0.0003 Kg,

                 T = 4.0 N,

         f = [tex]\frac{2}{0.48}[/tex][tex]\sqrt{\frac{4}{0.0003} }[/tex]

         f = 4.1667 × 115.4701

           = 481.1252

        f = 481.13 Hz

The frequency of the 4th harmonic of the string is 481.13 Hz.

In a shipping company distribution center, an open cart of mass 50 kg is rolling to the left at a speed of 5 m/s. You can ignore friction between the cart and the floor. A 15 kg package slides down a chute that makes an angle of 27 degrees below the horizontal. The package leaves the chute with a speed of 3 m/s, and lands in the cart after falling for 0.75 seconds. The package comes to a stop in the cart after 4 seconds. What is:a) the speed of the package just before it lands in the cart

Answers

Answer:

Explanation:

The package leaves the chute with a speed of 3 m/s, and lands in the cart after falling for 0.75 seconds . During .75 second duration . package undergoes free fall due to which additional vertical velocity is added

velocity added = a x t

= 9.8 x .75

= 7.35 m /s

Total vertical velocity

= 3 sin27 + 7.35

= 8.71 m /s

Horizontal component = 3 cos 27

= 2.67 m /s

If v be the resultant velocity of these components

v² = 2.67² + 8.71²

v² = 7.13 + 75.86

v = 9.11 m /s .

Two forces are applied on a body. One produces a force of 480-N directly forward while the other gives a 513-N force at 32.4-degrees above the forward direction .Find the magnitude and direction(relative to forward direction of the resultant force that these forces exert on the body)​

Answers

Answer:

F = (913.14 , 274.87 )

|F| = 953.61 direction 16.71°

Explanation:

To calculate the resultant force you take into account both x and y component of the implied forces:

[tex]\Sigma F_x=480N+513Ncos(32.4\°)=913.14N\\\\\Sigma F_y=513sin(32.4\°)=274.87N[/tex]

Thus, the net force over the body is:

[tex]F=(913.14N)\hat{i}+(274.87N)\hat{j}[/tex]

Next, you calculate the magnitude of the force:

[tex]F=\sqrt{(913.14N)+(274.87N)^2}=953.61N[/tex]

and the direction is:

[tex]\theta=tan^{-1}(\frac{274.14N}{913.14N})=16.71\°[/tex]

Two wires, both with current out of the page, are next to one another. The wire on the left has a current of 1 A and the wire on the right has a current of 2 A. We can say that:

A. The left wire attracts the right wire and exerts twice the force as the right wire does.
B. The left wire attracts the right wire and exerts half the force as the right wire does.
C. The left wire attracts the right wire and exerts as much force as the right wire does.
D. The left wire repels the right wire and exerts twice the force as the right wire does.
E. The left wire repels the right wire and exerts half the force as the right wire does.
F. The left wire repels the right wire and exerts as much force as the right wire does.

Answers

Answer:

C. The left wire attracts the right wire and exerts as much force as the right wire does.

Explanation:

To know what is the answer you first take into account the magnetic field generated by each current, for a distance of d:

[tex]B_1=\frac{\mu_oI_1}{2\pi d}=\frac{\mu_o}{2\pi d}(1A)\\\\B_2=\frac{\mu_oI_2}{2\pi d}=\frac{\mu_o}{2\pi d}(2A)=2B_1\\\\[/tex]

Next, you use the formula for the magnetic force produced by the wires:

[tex]\vec{F_B}=I\vec{L}\ X \vec{B}[/tex]

if the direction of the L vector is in +k direction, the first wire produced a magnetic field with direction +y, that is, +j and the second wire produced magnetic field with direction -y, that is, -j (this because the direction of the magnetic field is obtained by suing the right hand rule). Hence, the direction of the magnetic force on each wire, produced by the other one is:

[tex]\vec{F_{B1}}=I_1L\hat{k}\ X\ B_2(-\hat{j})=I_1LB_2\hat{i}=(2A^2)\frac{L\mu_o}{2\pi d}\hat{i}\\\\\vec{F_{B2}}=I_2L\hat{k}\ X\ B_2(\hat{j})=I_2LB_1\hat{i}=-(2A^2)\frac{L\mu_o}{2\pi d}\hat{i}[/tex]

Hence, due to this result you have that:

C. The left wire attracts the right wire and exerts as much force as the right wire does.

The universal law of gravitation states that the force of attraction between two objects depends on which quantities?
the masses of the objects and their densities
the distance between the objects and their shapes
the densities of the objects and their shapes
the masses of the objects and the distance between them
Save and Exit
Next
Subm
Kandretum

Answers

Answer:depends on the masses of the objects and the distance between them

Explanation:

According to Newton's law of universal gravitation,the force of attraction between two objects depends on the masses of the objects and the distance between them

Coulomb's law for the magnitude of the force FFF between two particles with charges QQQ and Q′Q′Q^\prime separated by a distance ddd is


|F|=K|QQ′|d2|F|=K|QQ′|d2,


where K=14πϵ0K=14πϵ0, and ϵ0=8.854×10−12C2/(N⋅m2)ϵ0=8.854×10−12C2/(N⋅m2) is the permittivity of free space.


Consider two point charges located on the x axis: one charge, q1q1q_1 = -15.0 nCnC , is located at x1x1x_1 = -1.660 mm ; the second charge, q2q2q_2 = 34.5 nCnC , is at the origin (x=0.0000)(x=0.0000).


What is the net force exerted by these two charges on a third charge q3q3q_3 = 47.0 nCnC placed between q1q1q_1 and q2q2q_2 at x3x3x_3 = -1.240 mm ?


Your answer may be positive or negative, depending on the direction of the force.

Answers

Answer:

Explanation:

Force between two charges of q₁ and q₂ at distance d is given by the expression

F = k q₁ q₂ / d₂

Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm

k = 1/ 4π x 8.85 x 10⁻¹²

putting the values in the expression

F = 1/ 4π x 8.85 x 10⁻¹²  x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²

= 9 x 10⁹ x  - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²

= 35969.4 x 10⁻³ N .

force between charge q₂ =  34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .

putting the values in the expression

F = 1/ 4π x 8.85 x 10⁻¹²  x  34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²

= 9 x 10⁹ x  - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²

= 82729.6  x 10⁻³ N

Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)

Total force = 118699 x 10⁻³

= 118.7 N.

In order to get going fast, eagles will use a technique called stooping, in which they dive nearly straight down and tuck in their wings to reduce their surface area. While stooping, a 6- kg golden eagle can reach speeds of up to 53 m/s . While golden eagles are not very vocal, they sometimes make a weak, high-pitched sound. Suppose that while traveling at maximum speed, a golden eagle heads directly towards a pigeon while emitting a sound at 1.1 kHz. The emitted sound has a sound intensity level of 30 dB when heard at a distance of 5 m .A) Model this stooping golden eagle as an object moving at terminal velocity. The eagle’s drag coefficient is 0.5 and the density of air is 1.2 kg/m 3 . What is the effective cross-sectional area of the eagle’s body while stooping?B) What is the doppler-shifted frequency that the pigeon will hear coming from the eagle?C) Consider the moment when the pigeon is 5 m away from the eagle. At the pigeon’s position, what is the intensity (in W/m^2 ) of the sound the eagle makes?D) The golden eagle slams into the 250- g pigeon, which is initially moving at 10 m/s in the opposite direction (toward the eagle). The eagle grabs the pigeon in its talons, and they move off together in a perfectly inelastic collision. How fast do they move after the collision?

Answers

Answer:

Check the explanation

Explanation:

Part A

F = CA

this drag force balances the weight = 6X 9.8

so

6X9.8 = 0.5 X A X0.5 X 1.2 X 532

A= 0.069 m2

Part B

here the sorce is moving and the observer is at rest

so f= f(- 1 - 1

f = 1.1X10 343 343 – 53

f' = 1.3 KHz

Part C:

given the intensity = 30 dB

we know that I dB = 10 log (I(W/m2))

so we get I (W/m2) = 1000

Part D : The catch

Given that U1 = 53 M1 = 6 kg

U2 =-10 M2=0.25

V1=V2

now conserving momentum

6 X 53 -0.25 X10 =(6+0.25)V

V= 50.48 m/sec

Match these items.


1 . pls help


asteroids

between Mars and Jupiter

2 .

fission

ice, dust, frozen gases

3 .

energy

sun's atmosphere

4 .

fusion

ability to do work

5 .

corona

splitting atoms

6 .

comets

the combining of atomic nuclei to form one nucleus

Answers

Answer:

Here's your answer :

Asteroids - Between mars and JupiterFission - splitting atomsEnergy - Sun's atmosphereFusion - The combining of atomic nuclei to form one nucleusCorona - Ability to do workComets - Ice, dust, frozen gases

hope it helps!

You expend 1000 W of power in moving a piano 5 meters in 5 seconds. How much force did you exert?

Answers

Answer:B

Explanation:

Power=1000 watts

Time=5 seconds

Distance=5 meters

Force=(power x time) ➗ distance

Force=(1000 x 5) ➗ 5

Force=5000 ➗ 5

Force=1000

Force=1000N

Answer:1,000

Explanation:

ape.x

What spectacles are required for reading purposes by a person whose near point is 2.0m

Answers

Answer:Convex lens spectacles is required for reading purpose..

Explanation:

I don't say you have to mark my ans as brainliest but if it has really helped you please don't forget to thank me...

The friends now feel prepared for a homework problem. Consider a cylinder initially filled with 9.30 10-4 m3 of ideal gas at atmospheric pressure. An external force is applied to slowly compress the gas at constant temperature to 1/6 of its initial volume. Calculate the work that is done. Note that atmospheric pressure is 1.013 105 Pa

Answers

Answer:

Explanation:

Initial volume of gas V₁ = 9.30 x 10⁻⁴ m³

final volume V₂ = 1 / 6 x  9.30 x 10⁻⁴

= 1.55 x 10⁻⁴ m³

Atmospheric pressure P = 1.013 x 10⁵ Pa .

temperature T .

PV = n RT

nRT = 1.013 x 10⁵ x 9.3 x 10⁻⁴

= 94.21

work done in isothermal process

= 2.303 nRT log V₁ / V₂

= 2.303 x 94.21 log 6

= 168.83 J .

A 25kg box in released on a 27° incline and accelerates down the incline at 0.3 m/s2. Find the friction force impending its motion? What is the coefficient of kinetic friction?
A block is given an initial speed of 3m/s up a 25° incline. Coefficient of friction

Answers

Answer:

a)  μ = 0.475 , b)   μ = 0.433

Explanation:

a) For this exercise of Newton's second law, we create a reference system with the x-axis parallel to the plane and the y-axis perpendicular to it

X axis

     Wₓ - fr = m a

the friction force has the expression

     fr = μ N

y Axis

     N - [tex]W_{y}[/tex] = 0

let's use trigonometry for the components the weight

     sin 27 = Wₓ / W

     Wₓ = W sin 27

     cos 27 = W_{y} / W

     W_{y} = W cos 27

     N = W cos 27

     W sin 27 - μ W cos 27 = m a

     mg sin 27 - μ mg cos 27 = m a

      μ = (g sin 27 - a) / (g cos 27)

      very = tan 27 - a / g sec 27

      μ = 0.510 - 0.0344

      μ = 0.475

b) now the block starts with an initial speed of 3m / s. In Newton's second law velocity does not appear, so this term does not affect the result, the change in slope does affect the result

         μ = tan 25 - 0.3 / 9.8 sec 25

         μ = 0.466 -0.03378

         μ = 0.433

One of your classmates, Kevin, is trying to calculate the acceleration due to gravity at the top of Mt. Everest. Looking at an equation sheet, he sees that the acceleration due to gravity is g = G M r 2. For G, he plugs in the gravitational constant. For M, he plugs in the mass of the Earth. For r, Kevin plugs in the elevation (the height above sea level) of Mt. Everest. Will Kevin arrive at the right answer for g at the top of Mt Everest?

Answers

Answer:

no.

Explanation:

No because for M he put the mass of the earth instead of the mass of the object.

Kevin will not arrive at the right answer for g if he calculates the height from sea level, it must be from the center of the earth.

Gravitational acceleration:

The force of gravity on an object of mass m is given by:

F = GMm/r²

where G is the gravitational constant

M is the mass of the earth

r is the distance from the center of the earth

This force is equal to the weight of the object given by:

mg = GMm/r²

so,

g = GM/r²

But here r is the distance of the object from the center of the earth not from the sea level.

So, Kevin will not arrive at the right answer for g if he calculates the height from sea level.

Learn more about gravitational acceleration:

https://brainly.com/question/13769294?referrer=searchResults

Derive the equation relating the total charge Q that flows through a search coil (Conceptual Example 29.3) to the magnetic-field magnitude B. The search coil has N turns, each with area A, and the flux through the coil is decreased from its initial maximum value to zero in a time Δt. The resistance of the coil is R, and the total charge is Q=IΔt, where I is the average current induced by the change in flux.

Answers

Answer:

Q= NBA/R

Explanation:

Check attachment for derivation

The equation relating the total charge, magnitude, turns, time will be "[tex]\frac{NBA}{R}[/tex]".

Magnetic field

According to the question,

Resistance = R

Total charge = Q

Current = I

Number of turns = N

Time = Δt

and,

Q = IΔt ...(equation 1)

We know the flux,

→ [tex]\Phi[/tex] = NBA

Emf induced,

   ε = [tex]\frac{- \Delta \Phi}{\Delta t}[/tex]

Δ[tex]\Phi[/tex] = [tex]\Phi_2 - \Phi_1[/tex]

then,

   ε = [tex]\frac{NBA}{\Delta t}[/tex]

As we know, Voltage (V) = iR

then, ε = [tex]\frac{NBA}{\Delta t}[/tex] = iR

         i = [tex]\frac{NBA}{R \Delta t}[/tex]

Hence, by applying the values in "equation 1"    

→ Q = iΔt

      = [tex]\frac{NBA}{R \Delta t}[/tex] × Δt

      = [tex]\frac{NBA}{R}[/tex]

Thus the response above is correct.

Find out more information magnetic field here:

https://brainly.com/question/14411049

(20) A rocket is launched vertically. At time t = 0 seconds, the rocket’s engine shuts down. At the time, the rocket has reached an altitude of 500m and is rising at a velocity of 125 m/s. Gravity then takes over. The height of the rocket as a function of time is h(t)=-9.8/2 t^2+125t+500,t>0. Using your function file from HW2A: Generate a plot of height (vertical axis) vs. time (horizontal axis) from 0 to 30 seconds. Include proper axis labels. Find the maximum height and the time at which it occurs: Analytically, showing your steps and equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using the MAX function on your data from part (a) Using FMINSEARCH on your m file Comment on the differences between the methods. How closely does each method match the "true" (analytical) value? Find the time when the rocket hits the ground: Analytically, showing your equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using FZERO on your m file Comment on the differences between the methods in each of part (B) and (C). How closely does each method match the "true" (analytical) value? Use a quantitative comparison to make your argument.

Answers

Answer:

Explanation:

Given that,

h(t) = -9.8t² / 2 + 125t + 500

for t > 0.

At t = 0, the rocket is at height h = 500m, at a velocity of Vo = 125m/s.

We want to find the maximum height reached by rocket

Using mathematics maxima and minima

let find the turning point when dh/dt = 0

dh/dt = -9.8t + 125

dh / dt = 0 = -9.8t + 125

9.8t = 125

t = 125 / 9.8

t = 12.76s

Let find the turning point to know if this time t = 12.76 is maximum or minimum point

Let find d²h / dt²

d²h / dt² = -9.8

Since, d²h/dt² < 0, then, at t = 12.76s is the maximum points.

Then, the maximum height reached is

h =  -9.8t² / 2 + 125t + 500

h =  -9.8(12.76)² / 2 + 125(12.76) + 500

h = -797.80 + 1595 + 500

h = 1297.2 m

The maximum height reached is 1297.2 m

From the attachment, the maximum height is 1297.2m at t = 12.76sec.

Comment, the result are the same for both the analysis aspect and the graphical aspect.

Distributions of electric charges in a cell play a role in moving ions into and out of a cell. In this situation, the motion of the ion is affected by two forces: the electric force due to the non-uniform charge distribution in the cell membrane, and the resistive force (viscosity) due to colliding with the fluid molecules. In order to begin our analysis of this, let's consider a toy model in which the ion is moving in response to electric forces alone.

Charges in a cell membrane are distributed along the opposite sides of the membrane approximately uniformly. This leads to an (on the average) constant electric field inside the membrane. A simple model that gives this kind of field is two large parallel plates close together. The field between the plates is approximately constant pointing from the negative to the parallel plate. This results in a charge feeling a constant force anywhere between the plates (sort of like flat-earth gravity turned sideways). Outside of the plates the electric fields from the two plates cancel and there is no force.

2. The electric field between the plates (inside the membrane) is about 107 N/C and the thickness of the membrane is about 7 nm. Estimate:

2.1 The electric force on the ion when it is in the center of the channel.
F = N

Explain your reasoning.



2.2 The acceleration of the ion when it is in the center of the channel.
a = nm/s2
Explain your reasoning.



2.3 The magnitude of the change in the ion's potential energy as it crosses from one side of the plates to the other.
U = J
Explain your reasoning.



2.4 The kinetic energy the ion would gain as it crosses from one side of the plates to the other.
KE = J
Explain your reasoning.

Could you explain 2.3!

Answers

Answer:

An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.Explanation:

An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element.

What is atom?

Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.

Each atom is made up of a nucleus and one or more electrons that are linked to it. One or more protons and a significant number of neutrons make up the nucleus. Only the most prevalent type of hydrogen is neutron-free.

Atoms that are neutral or ionized make up every solid, liquid, gas, and form of plasma. Atoms are incredibly tiny, measuring typically 100 picometers across. The nucleus of an atom contains more than 99.94% of its mass.

Therefore, An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element.

To learn more about atom, refer to the link:

https://brainly.com/question/1566330

#SPJ2

Modified Newtonian dynamics(MoND)proposes that, for small accelerations, Newton’s second law, F = ma, approaches the form F = ma2/a0, where a0 is a constant.

(a) (10 points) Show how such a modified version of Newton’s second law can lead to flat rotation curves, without the need for dark matter.
(b) (10 points) Alternatively, propose a new law of gravitation to replace F = GMm/r2 at distances greater than some characteristic scale r0 so that again, you can explain the observed flat rotation curved of galaxies without dark matter.

Answers

Answer:

Explanation:

The two pictures attached here shows the solution to the two questions from the problem. thank you and I hope it helps you

This is a measure of quantity of matter

Answers

Answer:

Mass

Explanation:

Mass is the measure of amount of matter contained within any substance and hence mass determines the weight. Unit of mass is kilogram as per ISI system of units.  

Mass is measured through a balance. The more is the mass of an object, the more the balance tilts towards the object side.  

Weight is equal to product of mass and the gravitational constant i.e 9.8m/s^2

Mr. Dunn drives 64.8km from work at a speed of 48km/h. Mrs. Dunn drives 81.2km from work
at a speed of 58km/h. They both leave work at the same time. Show complete working to secure
full credits. [4]
i. Who arrives home first?
ii. How many minutes later is it before the second person gets home?
iii. A Coyote is chasing its meal (the Road Runner). Unfortunately, the Coyote has difficulty
adjusting to the Road Runner’s speed but we have a good idea of what it is.
plz help me i will mark you as brainliest

Answers

Answer:

i) Mr. Dunn arrives to home first.

ii) 3 min

Explanation:

i. To find who arrives first to home you calculate the time, by using the following formula:

[tex]t=\frac{x}{v}[/tex]

x: distance

v: velocity

Mr. Dunn:

[tex]t=\frac{64.8km}{48km/h}=1.35h[/tex]

Mrs. Dunn:

[tex]t=\frac{81.2km}{58km/h}=1.4h[/tex]

Hence, Mr. Dunn arrives to home first.

ii. To calculate the difference in minutes, you convert hours to minutes:

[tex]1.35h*\frac{60min}{1h}=81min\\\\1.40h*\frac{60min}{1h}=84min\\\\\Delta\ t=(84-81)min=3min[/tex]

the difference between the times is 3min

(i) Mr. Dunn takes less time so he arrives at home first.

(ii) The second person arrives 3 min late.

Time taken to arrive home:

(i) We have to calculate the time taken to reach home by Mr. Dunn and Mrs. Dunn.

t = x/v

where x is the distance

and v is the velocity

Time taken by Mr. Dunn:

distance x = 64.8 km

speed v  = 48 km/h

t = 64.8 / 48

t = 1.35 h

Time taken by Mrs. Dunn:

distance x = 81.2 km

speed v  = 58 km/h

t' = 81.2 / 58

t' = 1.4 h

Hence, Mr. Dunn arrives at home first.

(ii) To calculate the difference in minutes, you convert hours to minutes:

The time taken by Mr. Dunn in minutes is:

t = 1.35×60 = 81 minutes

The time taken by Mrs. Dunn in minutes is:

t' = 1.4×60 = 84 minutes

the difference between the times is 3min

Learn more about distance and time :

https://brainly.com/question/4199102?referrer=searchResults

An astronaut is being tested in a centrifuge. The centrifuge has a radius of 11.0 m and, in starting, rotates according to θ = 0.260t2, where t is in seconds and θ is in radians. When t = 2.40 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?

Answers

Answer:

a) 1.248 rad/s

b) 13.728 m/s

c) 0.52 rad/s^2

d) 17.132m/s^2

Explanation:

You have that the angles described by a astronaut is given by:

[tex]\theta=0.260t^2[/tex]

(a) To find the angular velocity of the astronaut you use the derivative og the angle respect to time:

[tex]\omega=\frac{d\theta}{dt}=\frac{d}{dt}[0.260t^2]=0.52t[/tex]

Then, you evaluate for t=2.40 s:

[tex]\omega=0.52(2.40)=1.248\frac{rad}{s}[/tex]

(b) The linear velocity is calculated by using the following formula:

[tex]v=\omega r[/tex]

r: radius if the trajectory of the astronaut = 11.0m

You replace r and w and obtain:

[tex]v=(1.248\frac{rad}{s})(11.0m)=13.728\frac{m}{s}[/tex]

(c) The tangential acceleration is:

[tex]a_T=\alpha r\\\\\alpha=\frac{\omega^2}{2\theta}=\frac{(1.248rad/s)^2}{2(0.260(2.40s)^2)}=0.52\frac{rad}{s^2}[/tex]

(d) The radial acceleration is:

[tex]a_r=\frac{v^2}{r}=\frac{(13.728m/s)^2}{11.0m}=17.132\frac{m}{s^2}[/tex]

A cobalt-60 source with activity 2.60×10-4 Ci is embedded in a tumor that has
mas 0.20 kg. The source emits gamma photons with average energy 1.25 MeV.
Half the photons are absorbed in the tumor, and half escape.
i. What energy is delivered to the tumor per second? [4 marks]
ii. What absorbed dose, in rad, is delivered per second? [2 marks]
iii. What equivalent dose, in rem, is delivered per second if the RBE for
these gamma rays is 0.70? [2 marks]
Page 6 of 7
iv. What exposure time is required for an equivalent dose of 200 rem? [2
marks]
B. A laser with power output of 2.0 mW at a wavelength of 400 nm is projected
onto a Calcium metal. The binding energy is 2.31 eV.
i. How many electrons per second are ejected? [6 marks]
ii. What power is carried away by the electrons? [4 marks]
C. A hypodermic needle of diameter 1.19 mm and length 50 mm is used to
withdraw blood from a patient? How long would it take for 500 ml of blood to be
taken? Assume a blood viscosity of 0.0027 Pa.s and a pressure in the vein of
1,900 Pa. [10 marks]
D. A person with lymphoma receives a dose of 35 gray in the form of gamma
radiation during a course of radiotherapy. Most of this dose is absorbed in 18
grams of cancerous lymphatic tissue.
i. How much energy is absorbed by the cancerous tissue? [2 marks]
ii. If this treatment consists of five 15-minute sessions per week over the
course of 5 weeks and just one percent of the gamma photons in the
gamma ray beam are absorbed, what is the power of the gamma ray
beam? [4 marks]
iii. If the gamma ray beam consists of just 0.5 percent of the photons
emitted by the gamma source, each of which has an energy of 0.03
MeV, what is the activity, in Curies, of the gamma ray source? [4 marks]
E. A water heater that is connected across the terminals of a 15.0 V power supply
is able to heat 250 ml of water from room temperature of 25°C to boiling point
in 45.0 secs. What is the resistance of the heater? The density of water is 1,000
kg/m2 and the specific heat capacity of water is 4,200 J/kg/°C. [10 marks]

Answers

Answer:

A i. E = 9.62 × 10⁻⁷ J/s

ii. The absorbed dose is 4.81 × 10⁻⁶ Gy

iii. The equivalent dose is  3.37 × 10⁻⁴ rem/s

iv.  t = 593471.81 seconds

B. i. 4.025 × 10¹⁵/s

ii. 0.512 mW

C. 7218092.2 seconds

D. i. 6.3 × 10⁻¹ J

ii. 1.4 × 10⁻² W

iii. 1.57 × 10³ Curie

E. 0.129 Ω

Explanation:

The given parameters are;

Mass of tumor = 0.20 kg

Activity of Cobalt-60 = 2.60 × 10⁻⁴ Ci

Photon energy = 1.25 MeV

(i) The energy, E, delivered to the tumor is given by the relation;

[tex]E = \frac{1}{2}\left (Number \, of \, decay / seconds \right )\times \left (Energy \, of \, photon \right )[/tex]

[tex]E = \frac{1}{2}\left (2.6\times 10^{-4}Ci )\times \left (\frac{3.70\times 10^{10}decays/s}{1 Ci} \right )\times 1.25\times 10^{6}eV\times \frac{1.6\times 10^{-19}J}{1eV}[/tex]

E = 9.62 × 10⁻⁷ J/s

(ii) The equation for absorbed dose is given as follows;

Absorbed dose, D, in Grays Gy = (Energy Absorbed Joules J)/Mass kg

Therefore, absorbed dose = (9.62 × 10⁻⁷ J/s)/( kg) = 4.81 × 10⁻⁶ Gy

1 Gray = 100 rad

4.81 × 10⁻⁷ Gy = 100 × 4.81 × 10⁻⁶ = 4.81 × 10⁻⁴ rad/s

(iii) Equivalent dose, H, is  given by the relation;

H = D × Radiation factor, [tex]w_R[/tex]

∴ H = 0.7 × 4.81 × 10⁻⁴ rad/s = 3.37 × 10⁻⁴ Sv = 3.37 × 10⁻⁴ rem/s

(iv) The exposure time required for an equivalent dose of 200 rem is given as follows;

[tex]\dot{H} = \dfrac{H}{t}[/tex]

Therefore;

[tex]t= \dfrac{200}{{3.37 \times 10^{-4}} } = 593471.81 \, s[/tex]

∴ t = 6.9 days

B. The number of electrons ejected is given by the relation;

[tex]N = \frac{P}{E} = \frac{P \times \lambda}{hc}[/tex]

[tex]N = \dfrac{2.0 \times 10^{-3} \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 4.025 \times 10^{15}/s[/tex]

(ii) The power carried by the electron

The energy carried away by the electrons is given by the relation;

[tex]KE_e = hv - \Phi[/tex]

[tex]KE_e = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{400 \times 10^{-9}} - 2.31 \times \frac{1.6 \times 10 ^{-19} }{1}[/tex]

[tex]KE_e = 4.9695 \times 10^{-19} - 3.696 \times 10 ^{-19} = 1.2735 \times 10^{-19} J[/tex]

Power, P[tex]_e[/tex], carried away by the electron = 4.025 × 10¹⁵ × 1.2735 × 10⁻¹⁹ = 0.512 mW

C. The given parameters are;

d = 1.19 mm, ∴ r = 1.19/2 = 0.595 × 10⁻³ m

l = 50 mm = 5 × 10⁻³ m

V = 500 ml = 5 × 10⁻⁴ m³

η = 0.0027 Pa

p = 1,900 Pa.

[tex]\dfrac{V}{t} = \dfrac{\pi }{8} \times \dfrac{P/l}{\eta } \times r^4[/tex]

[tex]t = \dfrac{8\times \eta\times V\times l }{\pi \times P \times r^4}[/tex]

[tex]t = \dfrac{8\times 0.0027 \times 5 \times 10^{-4} \times 5 \times 10^{-2} }{\pi \times 1900 \times (0.595 \times 10^{-4} )^4}[/tex]

t = 7218092.2 seconds

D) i. Energy absorbed is given by the relation;

E = m×D

Where:

D = 35 Gray = 35 J/kg

m = 18 g = 18 × 10⁻³ kg

∴ E = 35 × 18 × 10⁻³ = 6.3 × 10⁻¹ J

ii. Total time for treatment = 15 × 5 = 75 minutes

Energy absorbed = 6.3 × 10⁻¹ × 100 = 63 J

Power = Energy(in Joules)/Time (in seconds)

∴ Power = 63/(75×60) = 1.4 × 10⁻² W

iii. Whereby the power is provided by 0.5% of the photons emitted by the source, we have;

[tex]P_{source}= \frac{P_{beam}}{0.005} =\frac{0.0014}{0.005} =0.28 \, W[/tex]

1 MeV = 1.60218 × 10⁻¹³ J

0.03 MeV = 0.03 × 1.60218 × 10⁻¹³ J = 4.80654 × 10⁻¹⁵ J/photon

Therefore, the number of disintegration per second = 0.28 J/s ÷  4.80654 × 10⁻¹⁵ J/photon = 5.83 × 10¹³ disintegrations per second

1 Curie = 3.7 × 10¹⁰  disintegrations per second

Hence, 5.83 × 10¹³ disintegrations per second = (5.83 × 10¹³)/(3.7 × 10¹⁰) Curie

= 1.57 × 10³ Curie

E. The parameters given are;

Density of water = 1000 kg/m³

Volume of water = 250 ml = 0.00025 m³

Initial temperature, T₁, = 25°C

Final temperature, T₂, = 100°C

Change in temperature, ΔT = 100 - 25 = 75°

Specific heat capacity of the water = 4200 J/kg/°C

Mass of water = Density × Volume = 1000 × 0.00025 = 0.25 kg

∴ Heat supplied = 4200 × 0.25 × 75 = 78,750 J

Time to heat the water = 45.0 sec

Therefore, power = Energy/time = 78750/45 = 1750 W

The formula for electrical power = I²R =VI = V²/R

Therefore, where V = 15.0 V, we have;

15²/R = 1750

R = 15²/1750 = 0.129 Ω.

The resistance of the heater = 0.129 Ω.

which one of the following statements is true? A.in an elastic collision,only momentum is conserved B. in any collision,both momentum & kinetic energy are conserved C.in an inelastic collision,both momentum & kinetic energy are conserved D.in an elastic collision,only kinetic energy is conserved ​

Answers

Answer:

option C is correct

................

Answer:

C- in an inelastic collision, both momentum & kinetic energy are conserved

Explanation:

Took the test

Why does current flow in a coil when a magnet is pushed in and out of the coil ?

Answers

Answer:

So the induced current opposes the motion that induced it (from Lenz's Law). When we pull the magnet out, the left hand end of the coil becomes a south pole (to try and hold the magnet back). Therefore the induced current must be flowing clockwise.

hope this helps u...

When a high‑energy photon passes near a heavy nucleus, a process known as pair production can occur. As a result, an electron and a positron (the electron's antiparticle) are produced. In one such occurrence, a researcher notes that the electron and positron fly off in opposite directions after being produced, each traveling at speed 0.941c. The researcher records the time that it takes for the electron to travel from one position to another within the detector as 15.7 ns. How much time would it take for the electron to move between the same two positions as measured by an observer moving along with the positron?

Answers

Answer:

1.47*10^{-8}s

Explanation:

You first calculate the distance traveled by the electron:

[tex]x=vt\\\\x=(0.941(3*10^8m/s))(15.7*10^{-9}s)=4.43m[/tex]

Next, you calculate the relative speed as measure by an observer in the positron, of the electron:

[tex]u'=\frac{u+v}{1+\frac{uv}{c^2}}\\\\u'=\frac{0.941c+0.941c}{1+\frac{(0.941)^2c^2}{c^2}}\\\\u'=0.99c[/tex]

with this relative velocity you calculate the time:

[tex]t=\frac{x}{u'}\\\\t=\frac{4.43m}{0.99c}=1.47*10^{-8}s[/tex]

An ideal spring is fixed at one end. A variable force F pulls on the spring. When the magnitude of F reaches a value of 30.8 N, the spring is stretched by 17.7 cm from its equilibrium length. Calculate the additional work required by F to stretch the spring by an additional 12.4 cm from that position.

Answers

Answer:

[tex]W=5.16 J[/tex]  

Explanation:

Using the Hooke's law we can find the elasticity constant:

[tex]F=-k\Delta x[/tex]

[tex]30.8=-k*0.177[/tex]

[tex]k=|-\frac{30.8}{0.177}|[/tex]

[tex]k=174 N/m[/tex]

Now, we know that the work done is equal to the elastic energy, so we will have:

[tex]W=\frac{1}{2}k(x_{2}^{2}-x_{1}^{2})[/tex]

x2 is the final distance (x2 = 0.177+0.124 = 0.301 m)

x1 is the initial distance (x1 = 0.177 m)

[tex]W=\frac{1}{2}*174(0.301^{2}-0.177^{2})[/tex]

[tex]W=5.16 J[/tex]    

I hope it helps you!

Other Questions
If a gas occupies 22.4 L at 0.265 atm, then what will the pressure be in atmospheres if the gas occupies 35.52 L? Assume all othervariables are held constantA)0.167 atmB)0.437 atmC)0.886 atmD)149 atm What did the Committees of Safety do? The expression (x2 - 5x - 2) - (-6x2 - 7x - 3) isequivalent to Spaulding, a minor, is injured in an automobile accident. His guardian sues the driver. The insurance company provides Lawyer for a driver, and Lawyer learns from the doctor hired by the defense to examine Spaulding that Spaulding suffers from an aneurysm that probably resulted from an injury occurring during an accident. The aneurysm is life-threatening. The lawyer also knows that Spaulding and his medical experts have not identified the aneurysm. Case settles. The lawyer does not reveal the aneurysm before or after settlement. Discipline? a. Yes b. No Purdum Farms borrowed $16 million by signing a five-year note on December 31, 2017. Repayments of the principal are payable annually in installments of $3.2 million each. Purdum Farms makes the first payment on December 31, 2018 and then prepares its balance sheet. What amount will be reported as current and long-term liabilities, respectively, in connection with the note at December 31, 2018, after the first payment is made? Which sentence best uses the active voice to emphasize the actions of the subject? A. Ross ate his sandwich after completing his work. B. Finn's science project was appreciated by his teacher. C. The stage curtains were drawn before the play. D. Jared's performance was recorded by the local news station. Can your answers be wrong A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency. Determine the values of the variables in isosceles trapezoid CHLE below.Enter numbers only, do not enter units. what is the answer to factorise 10x - 15 PLZ HELP IM TIMED!!!Which fraction is equivalent to -(7/8)?A. -7/8B.-(-7/8)C.-(7/-8)D.-7/-8 Help im failing miserably I NEED IMMEDIATE HELP ANNOTATING THIS POEM! BRANLIEST WILL BE GIVEN.ChoicesBY TESS GALLAGHERI go to the mountain sideof the house to cut saplings,and clear a view to snowon the mountain. But when I look up,saw in hand, I see a nest clutched inthe uppermost branches.I dont cut that one.I dont cut the others either.Suddenly, in every tree, an unseen nestwhere a mountain would be.Please help me understand what this poem means. I have to find the literary devices, but I'll do that myself. Which of the following depicts correct base-pairing in DNA?A-G-AB-A-UC-C-TD-T-A what is the answer to i^{2n+1} The following data pertain to last year's operations at Tredder Corporation, a company that produces a single product: Units in beginning inventory 0 Units produced 20,000 Units sold 19,000 Selling price per unit $100.00 Variable costs per unit: Direct materials $12.00 Direct labor $25.00 Variable manufacturing overhead $3.00 Variable selling and administrative $2.00 Fixed expenses per year: Fixed manufacturing overhead $500,000 Fixed selling and administrative $600,000 What was the absorption costing net operating income last year? . You deposit $600 in an account that earns simple interest. The difference between the total interest earned after 5 years and the total interest earned after 3 years is $24. What is the annual interest rate? He drew a line as straight as an arrow what type of figurative language is used in this sentence Unit 5. 10) Please help. A rectangle with a width of 9 ft. and a length of 13 ft. is the base of a 30 ft. tall pyramid. What is the volume of the pyramid? Begin authentic and genuine during interactions with others is most demonstrative of which of the following