Answer: The value of [tex][H_{3}O^{+}][/tex] is 0.0012 M and [tex][OH^{-}][/tex] is [tex]1.02 \times 10^{-14}[/tex].
Explanation:
pH is the negative logarithm of concentration of hydrogen ion.
It is given that pH is 2.89. So, the value of concentration of hydrogen ions is calculated as follows.
[tex]pH = - log [H^{+}]\\2.89 = - log [H^{+}]\\conc. H^{+} = 0.0012 M[/tex]
The relation between pH and pOH value is as follows.
pH + pOH = 14
0.0012 + pOH = 14
pOH = 14 - 0.0012 = 13.99
Now, pOH is the negative logarithm of concentration of hydroxide ions.
Hence, [tex][OH^{-}][/tex] is calculated as follows.
[tex]pOH = - log [OH^{-}]\\13.99 = - log [OH^{-}]\\conc. OH^{-} = 1.02 \times 10^{-14} M[/tex]
Thus, we can conclude that the value of [tex][H_{3}O^{+}][/tex] is 0.0012 M and [tex][OH^{-}][/tex] is [tex]1.02 \times 10^{-14}[/tex].
Identify the bronsted-lowry acid and the bronsted-lowry base in this reaction on the left side of each of the following equations, and also identify the conjugate acid and conjugate base of each on the right side.
mathrm { NH } _ { 4 } ^ { + } ( a q ) + mathrm { CN } ^ { - } ( a q ) rightleftharpoons mathrm { HCN } ( a q ) + mathrm { NH } _ { 3 } ( a q )
Answer: [tex]NH_4^+[/tex] is an acid, [tex]CN^-[/tex] is a base, [tex]NH_3[/tex] is conjugate base and [tex]HCN[/tex] is conjugate acid
Explanation:
According to Bronsted and Lowry's theory:
An acid is defined as a proton donor while a base is defined as a proton acceptor.
In a chemical reaction, an acid loses a proton to form a conjugate base while a base accepts a proton to form conjugate acid.
For the given chemical reaction:
[tex]NH_4^+(aq)+CN^-(aq)\rightleftharpoons HCN(aq)+NH_3(aq)[/tex]
[tex]NH_4^+[/tex] is losing a proton thus it is an acid to form [tex]NH_3[/tex] which is its conjugate base
[tex]CN^-[/tex] is gaining a proton thus it is a base to form [tex]HCN[/tex] which is its conjugate acid
Hence, [tex]NH_4^+[/tex] is an acid, [tex]CN^-[/tex] is a base, [tex]NH_3[/tex] is conjugate base and [tex]HCN[/tex] is conjugate acid
PLZZZZZZZZ HELPPPPPP
Answer:
482
Explanation:
What is the pCu of the resulting solution if 20.00 mL of 0.08 M EDTA (H4Y) is added to 15.00 mL of 0.10 M CuSO4 and buffered at pH 10? The Kf’ for complex CuY2- is 2.21 x 1018
Answer:
The answer is "5.4".
Explanation:
[tex]BoH + HCL =BCL +H_2o \\\\At eq \\\\N_1V_1=N_2V_2 \\\\v_2=20 \ ml\\\\[BCL]=\frac{20 \times 0.08}{20+20}=0.04\\\\pH = \frac{1}{2} [pkw - pk_b - \log e]\\\\pk_b = 2 pH - Pkw + \Log C\\\\pK_b=5.4[/tex]
Which event is an example of melting?
A. Wax drips down the side of a lit candle.
B. Perspiration dries on a person's skin.
C. Rain turns to ice pellets.
D. A mirror fogs up when someone takes a hot shower.
I’m just curious tbh
Answer:
A. Wax drips down the side of a lot candle.
Explanation:
The chemical change from solid to liquid. This is a combustion reaction, so carbon dioxide gas and water vapour is also produced but you can't see them
Answer:
A. Wax drips down the side of a lot candle.
Explanation:
Exercise 2: (7 points)
Augmentin
Augmentin is a drug formed by amoxicillin of molecular formula C16H19N3O5S.3H20 and molar mass 419 g.mol"! Augmenting is used to treat infections caused by certain bacteria. The normal dose is 500mg of tablet each 12 hours. The maximum dose is 40g of Augmentin for 10 days. Augmentin generally has a normal action; a high dose (overdose) in Augmentin causes kidney problems.
1) Explain in which case we use Augmentin. 2) 2.1) Il a patients dissolved in the water an Augmentin tablet of 500mg to prepare a 100ml solution, determine the mass concentration and molar concentration of the obtained solution 2.2) Write the procedures followed to prepare this solution and indicate the materials used in this preparation.
3) If a patient takes daily 100ml of Augmentin solution of concentration 50g L for 10 days, will he suffer from kidney problems?
Answer:
See explanation
Explanation:
I) from the question;
500 × 10^-3 g dissolves in 100ml
xg dissolves in 1000ml
x = 500 × 10^-3 g × 1000ml/100 ml
x= 5 g/L
Mass concentration = molar concentration × molar mass
Molar concentration = Mass concentration/ molar mass
Molar concentration = 5g/L/419 g/mol
Molar concentration = 0.0119 M
ii) To prepare this solution, measure out 500mg with a weighing balance. Transfer the solid to a standard 100 ml volumetric flask. Make up to the 100ml mark with distilled water.
iii) mass concentration of the solution = 50 g/L
Volume of the solution= 100 ml
Mass of the solid = 50 g/L × 100/1000 L
Mass of solid = 5g
This 5g was taken for 10 days, hence a total of 50 g
Since the normal dose of the drug is 40g for ten days, the patient will suffer from kidney problems because he/she has taken the drug above the recommended dosage.
5 compounds that has electrovalent and covalent bond
Answer:
electrovalent
NaCl
Lithium Carbonate
ammonium phosphate
aluminium floride
potassium hydride
covalent
methane
benzene
carbon iv oxide
hydro flouride
hydro chloride
One of the nuclides in spent nuclear fuel is U-235, an alpha emitter with a half-life of 703 million years. How long will it take for an amount of U-235 to reach 23.0% of its initial amount
Answer:
1.49 × 10⁹ years
Explanation:
Step 1: Calculate the rate constant (k) for the nuclear decay of U-235
The decay follows first-order kinetics with a half-life (t1/2) of 703 × 10⁶ years. We can calculate "k" using the following expression.
k = ln2/ t1/2 = ln2 / 703 × 10⁶ y = 9.86 × 10⁻¹⁰ y⁻¹
Step 2: Calculate the time elapsed (t) so that the final amount ([U]) is 23.0% of the initial amount ([U]₀)
For first order kinetics, we will use the following expression.
ln ([U]/[U]₀) = -k × t
ln (0.230[U]₀/[U]₀) = -9.86 × 10⁻¹⁰ y⁻¹ × t
ln 0.230 = -9.86 × 10⁻¹⁰ y⁻¹ × t
t = 1.49 × 10⁹ y
Which of the following is true about oxidation-reduction reactions?
=============================================================
One atom is oxidized and one is reduced
Both atoms are oxidized and reduced
The total number of electrons changes
One atom can be oxidized without one being reduced
Answer:
the last one probably
Explanation:
What is the concentration of s solution that contains 55 mL of alcohol per 145 mL solution?
Answer:
37.9% v/v
Explanation:
Since both the alcohol and solution are presumed to be liquid, this concentration can be expressed as a volume concentration (or % v/v):
volume concentration = volume of solute / volume of solution
[tex]\% v/v = 55/145= 0.379[/tex]
Consider the following events that take place when rip currents occur.
A. Waves travel to the beach.
B. Waves are trapped by the sandbars.
C. Waves reach the shore and go back to the ocean.
D. Waves speed up and flow between the sandbars.
E. Waves are broken by the sandbars.
Which list shows the order of events in the production of rip currents?
A mixture of coarse sand and sugar is 45.0 percent sand by mass. 120.0 grams (g) of the mixture is placed in a fine-mesh cloth bag and dunked repeatedly in Lake Michigan. After drying, the mass of the contents of the bag equals: ________.
A. 66.0 g
B. 120.0 g
C. 65.0 g
D. 72.00 g
E. 54.0 g
Answer:
Option E
Explanation:
From the question we are told that:
Amount of sand in percentage [tex]s_p=45%[/tex]
Sample size[tex]n=120g[/tex]
Note:After being dumped in the river repeatedly the sugar melts away leaving behind the insoluble sand
Generally the equation for Amount of sand content is mathematically given by
[tex]X=n*s_p[/tex]
[tex]X=120*\frac{45}{100}[/tex]
[tex]X=54g[/tex]
Therefore
After drying, the mass of the contents of the bag equals
[tex]X=54g[/tex]
Option E
Arrange the forms of electromagnetic radiation in order of decreasing energy (from highest energy to lowest energy). You are currently in a ranking module. Turn off browse mode or quick nav, Tab to move, Space or Enter to pick up, Tab to move items between bins, Arrow Keys to change the order of items, Space or Enter to drop.
highest energy lowest energy
radio waves
x rays
gamma rays
infrared
microwaves
ultraviolet
visible
Answer:
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
Explanation:
Electromagnetic waves are those waves that require no material medium for propagation. They can travel through space and they all move at the speed of light.
Electromagnetic waves are composed of both electric and magnetic fields which are mutually at right angles to each other.
The order of decreasing energy of electromagnetic waves is;
gamma rays > X-rays > ultraviolet radiation > visible light > infrared > radio waves.
Which state of matter is characterized by having an indefinite shape, but a definite volume?
solid
gas
liquid
Answer:
liquid is the right answer k
Answer:
liquid
Explanation:
12.0: A
Mention three body fluids that are alkaline in nature
atomic number of element is 15 write a formula of an oxide
Answer:
Atomic Number. 15=phosphorus
Valency=3
So, Oxide=P203
Which of the following aqueous solutions are good buffer systems?
a. 0.34 M calcium iodide + 0.22 M sodium iodide.
b. 0.27 M ammonia + 0.38 M ammonium nitrate.
c. 0.27 M nitric acid + 0.18 M sodium nitrate.
d. 0.18 M hydrofluoric acid + 0.14 M hydroiodic acid.
e. 0.14 M calcium hydroxide + 0.28 M calcium chloride.
Answer:
b. 0.27 M ammonia + 0.38 M ammonium nitrate.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to bear to mind the fact that buffest must be prepared by using either of the following pairs:
weak acid/conjugate base
weak base/conjugate acid
So that the pH might be set constant. In such a way, since a. shows two salts, c. a strong acid with a neutral base, d, shows two acids and e. a strong base with a neutral base, we infer the correct buffer is b. 0.27 M ammonia + 0.38 M ammonium nitrate because it has a weak base (ammonia) and its conjugate acid, ammonium.
Regards!
Complete the following road map for converting volume of A to volume of B for a titration of aqueous solution A with aqueous solution B.
a. multiply by the molarity of B
b. multiply by the moles of B per moles of A
c. divide by the molarity of B
d. multiply by the molarity of A
e. divide by the molarity of A
f. multiply by the moles of A per moles of B
1. volume A (L)
2. moles A
3. moles B
4. volume B (L)
Answer:
Explanation:
The solution of known concentration is expressed as molarity. Molarity is the mole fraction of solute (i.e. the dissolved substance) per liter of the solution, Molarity is also commonly called molar concentration.
Mathematically;
[tex]\mathtt{Molarity = \dfrac{moles \ of \ solute}{ liters \ of \ solution}}[/tex]
To copy and complete the road map from the given question, we have the following array:
Volume A (L)
↓
d. multiplied by the molarity of A
↓
moles A
↓
b. multiplied by the moles of B / moles of A
↓
moles B
↓
c. divided by the molarity of B
↓
volume B (L)
Help me please , I got 0.003 for a I need help with b and c
Answer:
(a) The moles of CuSO₄ is 3.125 × 10⁻³ moles.
(b) The moles of Cu is 3.125 × 10⁻³ moles.
(c) The mass of Cu is 0.2 g.
Explanation:
Given:
Mass of CuSO₄ = 0.5 g
Molar mass of CuSO₄ = 160 g/mol
The given balanced chemical equation is:
[tex]2Al+3CuSO_4\rightarrow 3Cu+Al_2(SO_4)_3[/tex]
Part (a):
Calculating the moles of CuSO₄.
[tex]\text{Moles of } CuSO_4=\frac{\text{Mass of }CuSO_4}{\text{Molar mass of }CuSO_4}\\\\\text{Moles of } CuSO_4=\frac{0.5g}{160g/mol}\\\\\text{Moles of } CuSO_4=3.125\times 10^{-3}mol[/tex]
Thus, the moles of CuSO₄ is 3.125 × 10⁻³ moles.
Part (b):
Calculating the moles of Cu.
From the balanced chemical equation, we conclude that:
As, 3 moles of CuSO₄ reacts to give 3 moles of Cu
So, 3.125 × 10⁻³ moles of CuSO₄ reacts to give 3.125 × 10⁻³ moles of Cu
Thus, the moles of Cu is 3.125 × 10⁻³ moles.
Part (c):
Calculating the mass of Cu.
Mass of Cu = Moles of Cu × Molar mass of Cu
Molar mass of Cu = 64 g/mol
Mass of Cu = (3.125 × 10⁻³ mole) × (64 g/mol)
Mass of Cu = 0.2 g
Thus, the mass of Cu is 0.2 g.
name hydrogen ion
what the symbolotom
Answer:
H+
Explanation:
it's H+
as you see hydrogen ion it could H+
A penny has a thickness of approximately 1.0 mm. If you stacked Avogadro's number of pennies one on top of the other on Earth's surface, how far would the stack extend (in kilometers). For comparison, the sun is about 150 million km from Earth and the nearest star (Proxima Centauri) is about 40 trillion km from Earth].
Answer:
6.02 × 10²⁷ km
Explanation:
Step 1: Calculate the height of the stack of pennies
A penny has a thickness of approximately 1.0 mm. If you stacked Avogadro's number of pennies (6.02 × 10²³ pennies) one on top of the other on Earth's surface, the height of the stack of pennies would be:
6.02 × 10²³ pennie × 1.0 mm/1 pennie = 6.02 × 10²³ mm
Step 2: Convert 6.02 × 10²³ mm to kilometers
We will use the following conversion factors.
1 km = 10³ m1 m = 10³ mm6.02 × 10²³ mm × 1 m/10³ mm × 1 km/10³ m = 6.02 × 10²⁷ km
Which of the following is not generally a characteristic of metal?
Ductility
O
Malleability
High melting point
Low boiling point
A student named a particular compound 2-ethyl-3-methyl-2-butene. Assuming that the student's choice actually corresponded to the correct distribution of the double bond and the substituents, what is the correct IUPAC name for this compound
Answer:
2-ethyl-3-methylbut-2-ene
Explanation:
The whole idea of IUPAC nomenclature is to devise a universally accepted system of writing the name of a compound from its structure.
According to IUPAC nomenclature, the root of the compound is the longest carbon chain. The substituents are named in alphabetical order and in such a way as to give each one the lowest number. The position of the functional group is indicated accordingly.
For the compound in question, its correct IUPAC name is 2-ethyl-3-methylbut-2-ene.
Using the following equation how many grams of water you would get from 886 g of glucose:
C6H12O6 + 6O2 → 6CO2 + 6H2O + energy
Answer:
531.6g
Explanation:
Total moles of glucose in this case is: 886/180= 4.922 (mole)
For every 1 mole glucose we get 6 mole water
-> Mole of water is: 4.922 * 6= 29.533 (mole)
weight of water is 18. Therefore, total weight of water that we will have from 886g of glucose are: 25.933*18= 531.6g
How many moles of water are produced if 3.30 moles of N20 is
produced? NH4NO3 --> N20 + 2 H2O (mole to mole conversion) 1 step
Answer:
The netto reaction equation is:
2 OH- + 2H+ = 2 H2O
So the answer is 2 moles.
Which best illustrates the way in which radiation transfers thermal energy?
O
Warr
Cool
o
Warm
Cool
Warm
Cool
Warm
H11
Cool
Answer:
It is so because heat is flowing from hot body to cold body, and there is no direct contact between the body. It explains correctly the mode of transmission of thermal energy through the process of radiations.
Explanation:
Fun fact:
How does thermal energy transfer by radiation?
Radiation. All objects transfer energy to their surroundings by infrared radiation . The hotter an object is, the more infrared radiation it gives off. No particles are involved in radiation, unlike conduction.
A 8.29g sample of calcium sulfide was decomposed into its constituent elements, producing 4.61g of calcium and 3.68g of sulfur. Which of the statements are consistent with the law of constant composition (definite proportions)?
a. Every sample of calcium sulfide will have 44.4% mass of calcium.
b. Every sample of calcium sulfide will have 2.86 g of calcium.
c. The mass ratio of Ca to S in every sample of calcium sulfide is 1.25.
d. The ratio of calcium to sulfur will vary based on how the sample was prepared.
e. The mass percentage of calcium plus the mass percentage of sulfur in every sample of calcium sulfide equals 100%.
Answer:
d,e
Explanation:
The literature values listed for the unknowns in this assignment are from either the Merck Index or the CRC Handbook, the two most used reference handbooks. However, the values tend to vary slightly across literature sources and sometimes the temperatures are given as ranges. Give at least one reason for the variations in these reported temperatures.
In general, the boiling points of compounds increase down a group in the periodic table. The melting points and boiling points for the hydrogen compounds of group 6A elements are in the table below.
Melting point (0C) Boiling point (oC)
H2O 0.0 100.0
H2S -82.0 -60.0
H2Se -65.7 -41.2
H2Te -49.0 -2.2
Answer:
See explanation
Explanation:
One of the important trends in the periodic table is electronegativity. Electro negativity decreases down the group and increases across the period. This trend has important consequences on the observed properties of the compounds of elements in a particular group in the periodic table.
As we move down in group 6A, the electro negativity of the elements elements the group decrease and as such, the magnitude of intermolecular hydrogen bonding between the molecules also decrease accordingly. Hydrogen bonds occur between
molecules of a substance when hydrogen is covalently bonded to an electronegative element. Hydrogen bonding is responsible for the high melting and boiling points of small molecules such as water which contain the highly electronegative oxygen atom.
So, as we move down the group there is lesser intermolecular hydrogen bonding between the hydride molecules of group 6A elements resulting in the observed trend in melting and boiling points of the hydrides.
The weaker hydrogen bonds that occurbetween molecules of group 6A hydrides lead to a steady decrease in melting and boiling points of the hydrides of group 6A elements as we move down the group.
When the following oxidation-reduction reaction in acidic solution is balanced, what is the
lowest whole-number coefficient for Rb+ (aq)?
Rb(s) + Sr2+ (aq) → Rb+(aq) + Sr(s)
Answer:
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
Explanation:
In a redox reaction, we must ensure that the number of electrons gained equals the number of electrons lost in the reduction and oxidation half reaction equations respectively.
Having that in mind;
Oxidation half reaction;
2Rb(s) ---->2Rb^+(aq) + 2e
Reduction half equation;
Sr^2+(aq) + 2e---> Sr(s)
Hence, the overall redox reaction equation is;
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
Consider the following reaction at 298 K.
2 SO2(g) + O2(g) → 2 SO3(g)
An equilibrium mixture contains O2(g) and SO3(g) at partial pressures of 0.43 atm and 2.6 atm, respectively. Using data from Appendix 4, determine the equilibrium partial pressure of SO2 in the mixture.
______atm.
Answer and Explanation:
The reaction is in the gas phase, so the equilibrium constant is expressed in terms of the partial pressures (P) of the products and reactants, as follows:
[tex]Kp = \frac{P^{2}_{SO_{3} } }{P_{SO_{2}} ^{2}P_{O_{2}} }[/tex]
We have the following data:
P(SO₃) = 2.6 atm
P(O₂) = 0.43 atm
We need Kp for this reaction. We can assume that in Appendix 4 we found that Kp = 7 x 10²⁴.
Then, we introduce the data in the equilibrium constant expression to calculate the partial pressure f SO₂ (PSO₂), as follows:
[tex]P_{SO_{2} } = \sqrt{\frac{P_{SO_{3} } ^{2} }{Kp P_{O_{2} } } } = \sqrt{\frac{(2.6 atm)^{2} }{(7 x 10^{24)}(0.43 atm) } } = 1.5 x 10^{-12} atm[/tex]
Therefore, the partial pressure of SO₂ is 1.5 x 10⁻¹² atm (for the given Kp).
list some applications of chemistry in your dail life
Chemistry and chemical reactions are not just limited to the laboratories but also the world around you.
Chemistry in Food Production:
Plants produce food for themselves through photosynthesis; which is a complex chemical reaction in itself. The chemical reaction that takes place in photosynthesis is the most common and vital chemical reaction.
6 CO2 + 6 H2O + light → C 6H12O6 + 6 O2
Chemistry in Hygiene:
Right before you consume your food, you make it a point to wash your hands with soap. Isn’t it? The cleaning action of soap is based on its ability to act as an emulsifying agent. Soaps are fatty acids salts of sodium or potassium; produced by a chemical reaction called saponification. Soaps interact with the grease or oil molecule, which, in turn, results in a cleaner surface.
The Chemistry of an Onion:
Ever wondered why you shed tears while chopping an onion? This also happens because of the underlying chemistry concepts. As soon as you slice an onion, sulfenic acid is formed from amino acid sulfoxides. Sulfenic acid is responsible for the volatile gas, propanethiol S-oxide, that stimulates the production of tears in the eyes.
Chemistry in Baking:
Who does not like to eat fluffy freshly baked bread? Baking soda is an efficient leavening agent. The addition of baking soda to food items before cooking leads to the production of carbon dioxide (CO2); which causes the foods to rise. This whole process of rising of baked good is called chemical leavening.
Chemistry in Food Preservatives:
In case you ever read the ingredients on the bottle of ketchup, jams or pickles, you might be surprised to see a never-ending list of chemicals. What are they? These chemicals are called food preservatives; which delay the growth of microorganisms in foods. The chemical food preservatives not only prohibit the growth of bacteria, virus, fungi but also hinder the oxidation of fats, which is responsible for making the foods rancid. The most common chemical food preservatives are sodium benzoate, sorbic acid, potassium sorbate, calcium sorbate, sodium sorbate, propionic acid, and the salts of nitrous acid.
Chemistry in Digestion
The moment you put food in your mouth, a number of different chemical reactions start in your digestive tract. Saliva contains the enzyme amylase, which is responsible for breaking down carbohydrates, the stomach starts producing hydrochloric acid, the liver releases bile and the list of compounds released during digestion goes on. How do they work? All these enzymes undergo chemical reactions so that proper digestion, as well as assimilation of the food, occurs.
The Working of a Sunscreen
Before going out on a sunny day, you make it a point to wear sunscreen. Even the principle, behind the working of a sunscreen, has a chemistry background. The sunscreen uses a combination of organic and inorganic compounds to act as a filter for incoming ultraviolet rays. Sunblocks, on the other hand, scatter away UV light; so that it is unable to penetrate deep into the skin. Sunblocks contain complex chemical compounds like zinc oxide or titanium oxide, which prevent the UV rays to invade deeper into the skin.
Chemistry in Rust Formation
With time, your iron instruments start developing an orange-brown flaky coating called rust. The rusting of iron is a type of oxidation reaction. The atoms in the metal iron undergo oxidation and reduction; causing rusting. The formation of verdigris on copper and the tarnishing of silver are also the other everyday examples of chemical reactions. The chemical equation underlying rusting is:
Fe + O2 + H2O → Fe2O3. XH2O
Hope it helps.