Answer:
2
Step-by-step explanation:
The equation of a circle is given as:
(x-h)^2 + (y-k)^2 = r^2
so r^2 = 4
r = sqrt(4)
r = 2
Answer:
A
Step-by-step explanation:
Question with last attempt is displayed for your review only
Amanda rented a bike from Ted's Bikes.
It costs $9 for the helmet plus $5.25 per hour.
If Amanda paid about $43.13, how many hours did she rent the bike?
Let h = the number of hours she rented the bike. Write the equation you would use to solve this problem.
Answer:
[tex]43.13 = 5.25h + 9[/tex]
Step-by-step explanation:
Let's solve this by making an equation.
$9 for the helmet, and $5.25 per hour.
h will stand for hours, C will stand for Amanda's cost.
[tex]C = 5.25h + 9[/tex]
Now, substitute in what we learned from the problem.
[tex]43.13 = 5.25h + 9[/tex]
This is an equation you can use to solve for the hours.
please help this is due right now
Answer:
108.82
Step-by-step explanation:
Enter a formula in cell B10 to return the value of 35000 if the net profit after tax cell B9 is greater than or equal to 470000 or 100 if it is not
Answer:
I hope it help and I guess it is correct
If (-2, y) lies on the graph of y = 3Y, then y =
Answer:
[tex]\displaystyle \frac{1}{9}[/tex]
Step-by-step explanation:
Hi there!
This question is asking us what the value of y is when x is -2, hence the point (-2,y).
[tex]y=3^x[/tex]
To find y, replace x in the equation with -2 and evaluate:
[tex]y=3^-^2[/tex]
When [tex]a^-^n[/tex] where n>0, [tex]a^-^n=\displaystyle \frac{1}{a^n}[/tex]:
[tex]y=\displaystyle \frac{1}{3^2} \\\\y=\displaystyle \frac{1}{9}[/tex]
I hope this helps!
While walking in the country, you count 39 heads and 116 feet in a field of cows and chickens. How many of each animal are there?
Answer: 58
Step-by-step explanation:
its 58 because chickens have two feet each so divide 2 % 166 and its 58
because each chicken has 2 legs count the 2 legs up to 116 then u get ur answer
in how many ways 6 gentleman and 4 ladies can be choosen out of 10 gentleman and 8 ladies?
Answer:
5880 ways
Step-by-step explanation:
For selections like this, we solve using the combination theory. Recall that
nCr = n!/(n-r)!r!
Hence given to find the number of ways 6 gentleman and 4 ladies can be choosen out of 10 gentleman and 8 ladies,
= 10C6 * 8C4
= 10!/(10-6)!6! * 8!/(8-6)!6!
= 10 * 9 * 8 * 7 * 6!/4 *3 *2 * 6! * 8 * 7 * 6!/2 * 6!
= 210 * 28
= 5880 ways
The arrangement can be done in 5880 ways
May I get some help with this question?
Which points are on the graph of a linear function? Select all that apply.
(-1, 7), (0,5), (1,3)
(-1, 1), (0, 0), (1, 1)
(0,5), (2,5), (3, 14)
(0, -3), (2, 5), (4, 13)
Answer:
Step-by-step explanation:
(-1,7), (0,5), (1,3)
and
(0,-3), (2,5), (4,13)
PLS HELP IM CONFUSED
Given the graph of a radical function, which statement is correct?
Radical function going from the point negative 3 comma negative 2 up to the right through the point comma 0
A. R colon open bracket y is an element of all real number close bracket
B. R colon open bracket y is an element of all real numbers such that y is greater than or equal to negative 3 close bracket
C. R colon open bracket y is an element of all real numbers such that y is greater than or equal to negative 2 close bracket
D. R colon open bracket y is an element of all real numbers such that y is greater than or equal to 1 close bracket
Answer:
The answer to your question will be the choice "D."
Shaun is planting trees along his driveway, and he has 66 redwoods and 66 pine trees to plant in one row. What is the probability that he randomly plants the trees so that all 66 redwoods are next to each other and all 66 pine trees are next to each other
Answer:
0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.
Step-by-step explanation:
The trees are arranged, so the arrangements formula is used to solve this question. Also, a probability is the number of desired outcomes divided by the number of total outcomes.
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
Desired outcomes:
Two cases:
6 redwoods(6! ways) then the 6 pine trees(6! ways)
6 pine trees(6! ways) then the 6 redwoods(6! ways)
So
[tex]D = 2*6!*6![/tex]
Total outcomes:
12 trees, so:
[tex]D = 12![/tex]
What is the probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other?
[tex]p = \frac{D}{T} = \frac{2*6!*6!}{12!} = 0.0022[/tex]
0.0022 = 0.22% probability that he randomly plants the trees so that all 6 redwoods are next to each other and all 6 pine trees are next to each other.
Helpppp please !! Thank you :)
Answer: Because they are corresponding angles (second option is the answer).
Answer:
second option...because they are corresponding angles..
STEP BY STEP EXPLANATION: corresponding angles are formed when two parallel lines are intersected by the transversal
the corresponding angles are 2 and 6
What is the slope of the line that passes through the points (4, 10) and (1,10)?
Write
your answer in simplest form.
Answer:
0
Step-by-step explanation:
We have two points so we can use the sloe formula
m = (y2-y1)/(x2-x1)
= ( 10-10)/(1-4)
= 0/ -3
= 0
Answer:
Slope is 0
explanation:
Slope is the same as gradient.
Formular:
[tex]{ \boxed{ \bf{slope = \frac{y _{2} - y _{1}}{x _{2} - x _{1} } }}}[/tex]
Substitute the variables:
[tex]{ \tt{slope = \frac{10 - 10}{1 - 4} }} \\ \\ = { \tt{ \frac{0}{ - 3} }} \\ = 0[/tex]
Help please ….. help
Answer:
Step-by-step explanation:
a) categorical
b) add all of the numbers and divide by how many numbers there were.
c) outliers means any that were far away from the rest of the data
d) not entirely, you can make an estimate based on it, but nat an exact answer.
Karissa purchased a set of LED lights online that normally sells for $72.00 but was marked down to $48.96. What is the discount rate Karissa received? (2 points)
32%
47%
68%
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Answer:
c
Step-by-step explanation:
use the distributive property to expand the expression:
-2(9 + 32n)
-2*9 + (-2*32n)
-18 - 64n
please help with math
Answer:
98
Step-by-step explanation:
2, 10, 18, 26, 34, 42, 50... 98
Hope this helps. Have a great day!
Evaluate [x + 1/y]^m × [x-1/y]^n /[y+1/x]^m [y-1/x]^n
9514 1404 393
Answer:
(x/y)^(m+n)
Step-by-step explanation:
[tex]\displaystyle\frac{\left(x+\frac{1}{y}\right)^m\left(x-\frac{1}{y}\right)^n}{\left(y+\frac{1}{x}\right)^m\left(y-\frac{1}{x}\right)^n}=\left(\frac{x}{y}\right)^m\left(\frac{x}{y}\right)^n\\\\=\boxed{\left(\frac{x}{y}\right)^{m+n}}[/tex]
Find the length of the missing side
Answer:
Step-by-step explanation:
Side=AC=9[tex]\sqrt{2}[/tex]
Side AB= x
Hypotenuse =CB= y
Side AB = 9[tex]\sqrt{2}[/tex]
Hypotenuse CB = 36
Walnut High Schools Enrollment is exactly five times as large as the enrollment at walmut junior high the total enrollment for the two schools is 852 what is the enrollment at each school
Answer:
142
Step-by-step explanation:
If the enrollment is five times as big, then that is six different things. So, take 852 and divide it by 6 to get 142. Or in other words:
852÷6=142
142x6=856
I hope this helps. Cheers^^
The population standard deviation for the heights of dogs, in inches, in a city is 3.7 inches. If we want to be 95% confident that the sample mean is within 2 inches of the true population mean, what is the minimum sample size that can be taken?
z0.101.282z0.051.645z0.0251.960z0.012.326z0.0052.576
Use the table above for the z-score, and be sure to round up to the nearest integer.
========================================================
Explanation:
At 95% confidence, the z critical value is roughly z = 1.960
The population standard deviation is given to be sigma = 3.7
The error is E = 2 since we want to be within 2 inches of the population mean mu
The min sample size needed is:
n = (z*sigma/E)^2
n = (1.960*3.7/2)^2
n = 13.147876
n = 14
We always round up to the nearest whole number to ensure that we clear the hurdle (otherwise, the sample is too small). It doesn't matter that we're closer to 13 than to 14.
Conan puts tennis balls into tubes after gym class. There are 17 tennis balls, and each tube holds 3 balls. How many tubes does Conan completely fill? How many tennis balls are left?
Solve each system by graphing.
9514 1404 393
Answer:
(x, y) = (4, -3)
Step-by-step explanation:
The solution is the point on the graph where the lines intersect:
(x, y) = (4, -3)
I NEED HELP ON C,E,F,G PLEASE ASAP!!!!
A student majoring in accounting is trying to decide on the number of firms to which he should apply. Given his work experience and grades, he can expect to receive a job offer from 70% of the firms to which he applies. The student decides to apply to only four firms.
(a) What is the probability that he receives no job offer?
(b) How many job offers he expects to get?
(c) What is the probability that more than half of the firms he applied do not make him any offer?
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
(e) What is the probability of him securing more than 3 offers?
Answer:
a) 0.0081 = 0.81% probability that he receives no job offer
b) He expects to get 2.8 job offers.
c) 0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
d) Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
e) 0.2401 = 24.01% probability of him securing more than 3 offers.
Step-by-step explanation:
For each application, there are only two possible outcomes. Either he gets an offer, or he does not. The probability of getting an offer for a job is independent of any other job, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He can expect to receive a job offer from 70% of the firms to which he applies.
This means that [tex]p = 0.7[/tex]
The student decides to apply to only four firms.
This means that [tex]n = 4[/tex]
(a) What is the probability that he receives no job offer?
This is [tex]P(X = 0)[/tex]. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
0.0081 = 0.81% probability that he receives no job offer.
(b) How many job offers he expects to get?
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
In this question:
[tex]E(X) = 4(0.7) = 2.8[/tex]
He expects to get 2.8 job offers.
(c) What is the probability that more than half of the firms he applied do not make him any offer?
Less than 2 offers, which is:
[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
[tex]P(X = 1) = C_{4,1}.(0.7)^{1}.(0.3)^{3} = 0.0756[/tex]
Then
[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0081 + 0.0756 = 0.0837[/tex]
0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
(e) What is the probability of him securing more than 3 offers?
Between 4 and n, since n is 4, 4 offers, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 4) = C_{4,4}.(0.7)^{4}.(0.3)^{0} = 0.2401[/tex]
0.2401 = 24.01% probability of him securing more than 3 offers.
Is this a function graph
Answer:
No, it is not a function graph, as there are no variables present in this image.
Can someone help me out plz
Volume = πr²h
Radius = 3yd
Height = 12yd
Take π = 22/7
Volume = 22/7×3×3×12
= 2376/7
= 339.4285714yd³
Rounding off to nearest tenth
= 339.43yd³
Answered by Gauthmath must click thanks and mark brainliest
A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of the experiment.
n=12, p=0.35, x=2
Answer:
0.1088 or 10.88%
Step-by-step explanation:
q = 1 - 0.35 = 0.65
P(X=2) = 12C2 × (0.35)² × (0.65)¹⁰
= 0.1088
find the missing length indicated
explainion:
[tex] {a}^{2} + {b}^{2} = {c}^{2} [/tex]
Use The (Pythagorean Theorem) to find the length of any side of a right triangle. Form it like its shown in picture above. Follow the instructions that also shown in the picture above.
Most linear graphs are direct variation, unless they go through the origin.
True
False
If a seed is planted, it has a 90% chance of growing into a healthy plant.
If 6 seeds are planted, what is the probability that exactly 2 don't grow?
Answer:
[tex]\displaystyle\frac{19,683}{200,000}\text{ or }\approx 9.84\%[/tex]
Step-by-step explanation:
For each planted seed, there is a 90% chance that it grows into a healthy plant, which means that there is a [tex]100\%-90\%=10\%[/tex] chance it does not grow into a healthy plant.
Since we are planting 6 seeds, we want to choose 2 that do not grow and 4 that do grow:
[tex]\displaystyle \frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}[/tex]
However, this is only one case that meets the conditions. We can choose any 2 out of the 6 seeds to be the ones that don't grow into a healthy plant, not just the first and second ones. Therefore, we need to multiply this by number of ways we can choose 2 things from 6 (6 choose 2):
[tex]\displaystyle \binom{6}{2}=\frac{6\cdot 5}{2!}=\frac{30}{2}=15[/tex]
Therefore, we have:
[tex]\displaystyle\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \binom{6}{2},\\\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot 15,\\\\P(\text{exactly 2 don't grow})=\boxed{\frac{19,683}{200,000}}\approx 9.84\%[/tex]
Answer:
[tex] {?}^{?} However, this is only one case that meets the conditions. We can choose any 2 out of the 6 seeds to be the ones that don't grow into a healthy plant, not just the first and second ones. Therefore, we need to multiply this by number of ways we can choose 2 things from 6 (6 choose 2):
\displaystyle \binom{6}{2}=\frac{6\cdot 5}{2!}=\frac{30}{2}=15(26)=2!6⋅5=230=15
Therefore, we have:
\begin{gathered}\displaystyle\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \binom{6}{2},\\\\P(\text{exactly 2 don't grow})=\frac{1}{10}\cdot \frac{1}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot \frac{9}{10}\cdot 15,\\\\P(\text{exactly 2 don't grow})=\boxed{\frac{19,683}{200,000}}\approx 9.84\%\end{gathered}P(exactly 2 don’t grow)=101⋅101⋅109⋅109⋅109⋅109⋅(26),P(exactly 2 don’t grow)=101⋅101⋅109⋅109⋅109⋅109⋅15,P(exactly 2 don’t grow)=200,00019,683≈9.84%
[/tex]