Convert the decimal 0.984 to a fraction.
984/100
984/1000
984/99
984/999​

Answers

Answer 1
the second one (984/1000)
Answer 2

Answer:

[tex]\boxed{\frac{984}{1000}}[/tex]

Step-by-step explanation:

Hey there!

Well .984 is 984 over 1000 so .984 as a fraction is 984/1000.

We can check this by doing 984 / 1000 which is .984.

Hope this helps :)


Related Questions

29. Identify the end behavior of the function f(x) = 3x^4 + x^3 − 7x^2 + 12.

options:
A. As x → –∞, y → +∞, and as x → +∞, y → –∞

B. As x → –∞, y → –∞, and as x → +∞, y → –∞

C. As x → –∞, y → +∞, and as x → +∞, y → +∞

D. As x → –∞, y → –∞, and as x → +∞, y → +∞

Answers

Answer:

  C.  As x → –∞, y → +∞, and as x → +∞, y → +∞

Step-by-step explanation:

The leading coefficient of this even-degree function is positive, so y goes to +∞ when the magnitude of x gets large.

_____

When the function is even degree, its value for large magnitude x heads toward the infinity with the same sign as the leading coefficient.

When the function is odd degree, its value for large magnitude x will head toward the infinity with the sign that matches the product of the sign of x and the sign of the leading coefficient.

It cost Evan $17.70 to send 177 text messages. How many text messages did he send if he spent $19.10

Answers

Answer:

191

Step-by-step explanation:

17.70---- 177

19.10-----191

First just take 177/17.70= 10

all you have to do is multiply by 10

so

19.10= 191

The number of text messages he can send with $19.10 is 191 messages

solve using ratio

let

x = number of text messages he can send with $19.10

cost of messages : number of messages

$17.70 : 177 = $19.10 : x

17.70 / 177 = 19.10 / x

cross product

17.70 × x = 177 × 19.10

17.70x = 3380.7

divide both sides by 17.70

x = 3380.7 / 17.70

x = 191 messages.

Therefore, number of text messages he can send with $19.10 is 191 messages

Read more:

https://brainly.com/question/24425126

please help
-3(-4x+4)=15+3x

Answers

Answer:

x=3

Step-by-step explanation:

● -3 (-4x+4) = 15 + 3x

Multiply -3 by (-4x+4) first

● (-3) × (-4x) + (-3)×(4) = 15 + 3x

● 12 x - 12 = 15 +3x

Add 12 to both sides

● 12x - 12 + 12 = 15 + 3x +12

● 12 x = 27 + 3x

Substract 3x from both sides

● 12x -3x = 27 + 3x - 3x

● 9x = 27

Dividr both sides by 9

● 9x/9 = 27/9

● x = 3

[tex]\sqrt{x+1+5=x}[/tex] Please help [tex]\sqrt{5x-x=0}[/tex] I actually can't do this, also thirty points

Answers

Answer:

It is undefined.

Step-by-step explanation:

Let's take a look at the first equation- if we simplify and move the terms, it becomes sqrt of 6 = 0, which results in an undefined value of x. The second equation works with x=0 but not the first so the value of x is undefined.

Here is some information about the goals scored in some hockey games. Each game has four quarters. Please give the answer asap with full explanation and working out.

Answers

Answer:

8 home games and 10 away games

Step-by-step explanation:

Total home goals

= 8+5+9+8

= 30

Number of home games

= 30/3.75

= 8

Total away game goals

= 7+8+4+5

= 24

Number of away games

= 24/2.4

= 10

Answer:

i think it is 8 home and 10 away matches

Step-by-step explanation:

A random sample of 1003 adult Americans was asked, "Do you think televisions are a necessity or a luxury you could do without?" Of the 1003 adults surveyed, 521 indicated that televisions are a luxury they could do without. Construct and interpret a 95% confidence interval for the population proportion of adult Americans who believe that televisions are a luxury they could do without out.

Answers

Answer:

The  95% confidence interval is  [tex]0.503 < p < 0.535[/tex]

The  interpretation is that there is 95% confidence that the true population proportion lie within the confidence interval

Step-by-step explanation:

From the question we are told that

    The  sample size is n  =  1003

     The number that indicated television are a luxury is  k  =  521

Generally the sample mean is mathematically represented as

           [tex]\r p = \frac{k}{n}[/tex]

          [tex]\r p = \frac{521}{1003}[/tex]

         [tex]\r p = 0.519[/tex]

Given the confidence level is  95% then the level of significance is mathematically evaluated as

       [tex]\alpha = 100 - 95[/tex]

       [tex]\alpha = 5\%[/tex]

       [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is  

          [tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]

The  margin of error is mathematically represented as

           [tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p (1- \r p )}{n} }[/tex]

=>       [tex]E = 1.96 * \sqrt{ \frac{ 0.519 (1- 0.519 )}{1003} }[/tex]

=>       [tex]E = 0.016[/tex]

The  95%  confidence interval is mathematically represented as

       [tex]\r p -E < p < \r p +E[/tex]

=>   [tex]0.519 - 0.016 < p < 0.519 + 0.016[/tex]

=>    [tex]0.503 < p < 0.535[/tex]

Find the perimeter of a rectangle that is 7 centimeters long and 7 centimeters wide

Answers

Answer:

28cm

Step-by-step explanation:

2L+2W=

14+14=28

(It’s a square)

line and passes through C -2,0 in the 1, -3) Quetion of the line in standard form

Answers

Answer:

[tex]\huge\boxed{x+y=-2}[/tex]

Step-by-step explanation:

The standard form of an equation of a line:

[tex]Ax+By=C[/tex]

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

where

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points (-2, 0) and (1, -3).

Substitute:

[tex]x_1=-2;\ y_1=0;\ x_2=1;\ y_2=-3[/tex]

[tex]m=\dfrac{-3-0}{1-(-2)}=\dfrac{-3}{1+2}=\dfrac{-3}{3}=-1\\\\y-0=-1(x-(-2))\\\\y=-(x+2)[/tex]

[tex]y=-x-2[/tex]         add x to both sides

[tex]x+y=-2[/tex]

If one card is randomly selected from a well-shuffled standard deck of 52 cards, what is the probability that the card selected is not a spade

Answers

Answer:

Step-by-step explanation:

Given

Total Number of Cards = 52

Required

Probability of not picking a spade

Let P(S) represents the probability of picking a spade;

[tex]P(S) = \frac{n(S)}{Total}[/tex]

Where n(S) is the number of spades

[tex]n(S) = 13[/tex]

Substitute [tex]n(S) = 13[/tex] and 52 for Total

[tex]P(S) = \frac{13}{52}[/tex]

[tex]P(S) = \frac{1}{4}[/tex]

Let P(S') represents the probability of not picking a spade

In probability;

[tex]P(S) + P(S') = 1[/tex]

Substitute [tex]P(S) = \frac{1}{4}[/tex]

[tex]\frac{1}{4} + P(S') = 1[/tex]

[tex]P(S') = 1 - \frac{1}{4}[/tex]

[tex]P(S') = \frac{4-1}{4}[/tex]

[tex]P(S') = \frac{3}{4}[/tex]

[tex]P(S') = 0.75[/tex]

Hence, the probability of not selecting a spade is 3/4 or 0.75

Based on the dot plots shown in the images, which of the following is a true statement? A. Set B has the greater mode. B. Set A has more items than set B. C. Set A is more symmetric than set B. D. Set B has the greater range.

Answers

D. Set B has the greater range.

pt 2 4-7 please helppp

Answers

Answer:

f = 16

Step-by-step explanation:

                              8

 8  x 2 = _f_    x  

                8

f = 16

Hi there! Hopefully this helps!

-----------------------------------------------------------------------------------------------------

Answer: f = 16~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[tex]2 = \frac{f}{8}[/tex]

Multiply both sides by 8.

[tex]2 \times 8 = f[/tex]

Multiply 2 and 8 to get 16.

[tex]16 = f[/tex]

Swap sides so that all variable terms are on the left hand side.

[tex]f = 16[/tex]

a is inversely proportional to (b - 4).
If a = 8 and b = 22, express a in terms of b.

Answers

Answer:

Step-by-step explanation:

a is expressed in terms of b as a = 144/(b - 4).

If A is inversely proportional to (b - 4), we can express this relationship using the formula:

A = k/(b - 4),

where k is the constant of proportionality.

To determine the value of k, we can use the given information when a = 8 and b = 22:

8 = k/(22 - 4).

Simplifying the equation:

8 = k/18.

To isolate k, we multiply both sides of the equation by 18:

8 * 18 = k.

k = 144.

Now that we know the value of k, we can rewrite the equation in terms of b:

A = 144/(b - 4).

Therefore, a is expressed in terms of b as a = 144/(b - 4).

Learn more about proportional here

https://brainly.com/question/32890782

#SPJ2

pls answer my question please

Answers

Bold = changed words

1. We play tennis every Sunday.

2. I own two dogs and a cat. I love animals.

3. My suitcase weighs four kilos (kilograms).

4. When Mary came in, I talked to my mother on the phone. OR: I talked to Mother on the phone when Mary came in.

5. We passed the hotel two minutes ago. OR: We passed by the hotel two minutes ago.

A tennis team played a total of 25 games and won 20 of them. What percent of the games did the team win?

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

80%

▹ Step-by-Step Explanation

20/25 = 0.8 → 80%

Hope this helps!

CloutAnswers ❁

━━━━━━━☆☆━━━━━━━

20/25 x 100 = 80
Therefore the team won 80% of the games.

Which of the following is the graph of the quadratic parent function

Answers

Answer: Choice C

This is the graph of y = x^2. It is a parabola that opens upward and has its vertex at the origin. Applying various transformations to the parent function will allow us to produce any parabolic graph we want. In effect, the parent function is like the most basic building block.

If two events are mutually exclusive, can they occur concurrently? Explain. Yes. By definition, mutually exclusive events can occur together. No. By definition, mutually exclusive events cannot occur together. No. Two events will never occur concurrently. Yes. Any two events can occur concurrently.

Answers

Answer:

No. By definition, mutually exclusive events cannot occur together.

Step-by-step explanation:

If two events are mutually exclusive, can they not occur concurrently because by definition, mutually exclusive events cannot occur together or at the same time. This ultimately implies that the events or outcome of the sampling is disjointed.

Mathematically, if two events A and B are mutually exclusive;

[tex]P(AnB) = 0[/tex]

From the above expression, we can deduce that the probability of the two (2) events occurring or having an intersection is zero (0).

[tex]P(A or B) = P(A) + P(B)[/tex]

From the above expression, we can deduce that the probability of either of the two (2) events occuring is the sum of the probability of each occurrence.

For example, when a fair die is tossed once, the outcomes are mutually exclusive.

P(d) = 1, 2, 3, 4, 5 and 6.

Other examples include;

1. Tossing a coin once, you'll either get a head or a tail but not a head and a tail at the same time.

2. In cards, both a king and an ace or a king and a queen are mutually exclusive because you can't have both occurring at the same time.

Find the smallest positive integer that satisfies both of the following equations: = 3 (mod4) and = 5 (mod6)

Answers

Answer:

x=3mod4

Means that when x is divided by 4 it gives an unknown integer and a remainder of 3.

x/4 = Z + 3/4

Z= (x-3)/4

Where Z is the integer

x=5 mod6

x/6 = Y + 5/6

Y = (x-5)/6

Where Y is the integer

Z-Y must be an integer on equal to zero

(x-3)/4 - (x-5)/6

3(x-3)/12 - 2(x-5)/12

(3x-9-2x+10)/12

(x+1)/12

If it is equal to 0

x=-1. But x should be positive

If it is equal to 1

x=11

Hence the smallest possible number is 11

A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on
3 separate days? Also find its Standard Deviation

Answers

Answer:

a. 0.06166

b. 0.9447

Step-by-step explanation:

15 percent is the probability it will rain on any given day. P = 0.15

lets define x as the number of days it will rain in one week.

this solution will follow a binomial distribution.

p(X=x) = nCxP^x(1-p)^x

n = 7

x = 3

1-p = 0.85

p =0.15

inserting these values into the formula

p(X=3)=7C3(0.15)^3(0.85)^4

= 7!/4!3! × 0.003375 × 0.5220

= 35 × 0.003375 × 0.5220

= 0.06166

sd = √np(1-p)

= √7 × 0.15(0.85)

= 0.9447

5/7 minus 2/9 please

Answers

Answer:

[tex]\large \boxed{31/63}[/tex]

Step-by-step explanation:

5/7 - 2/9

Make denominators equal by LCM.

(5 × 9)/(7 × 9) - (2 × 7)/(9 × 7)

45/63 - 14/63

Subtract fractions since denominators are equal.

(45 - 14)/63

31/63

Answer:

[tex]\frac{31}{63}[/tex]

Step-by-step explanation:

Find the LCM of 7 and 9: 63Find how much we increased each number to get to 63: we increased 7 by 9, and we increased 9 by 7Multiply the numerators by the corresponding increase numbers: 5 × 9 = 45, and 2 × 7 = 14Put the new numerators over the new denominators, so it looks like this: [tex]\frac{45}{63}[/tex] and [tex]\frac{14}{63}[/tex] Finally, subtract one from the other and here's what you get: [tex]\frac{31}{63}[/tex]

Therefore, the answer is [tex]\frac{31}{63}[/tex].

A factory produces plate glass with a mean thickness of 4 mm and a standard deviation of 1.1 mm. A simple random sample of 100 sheets of glass is to be measured, and the mean thickness of the 100 sheets is to be computed. What is the probability that the average thickness of the 100 sheets is less than 3.74 mm

Answers

Answer:

0.0090483

Approximately = 0.00905

Step-by-step explanation:

z = (x - μ)/σ, where

x is the raw score = 3.74

μ is the sample mean = population mean = 4 mm

σ is the sample standard deviation

This is calculated as:

= Population standard deviation/√n

Where n = number of samples = 100

σ = 1.1/√100

σ = 1.1/10 = 0.11

z = (3.74 - 4) / 0.11

z = -2.36364

Using the z score table to determine the probability,

The probability that the average thickness of the 100 sheets is less than 3.74 mm

P(x<3.74) = 0.0090483

Approximately = 0.00905

Using the normal distribution and the central limit theorem, it is found that there is a 0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.

In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

It measures how many standard deviations the measure is from the mean.  After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.By the Central Limit Theorem, the sampling distribution of sample means for size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

In this problem:

Mean thickness of 4 mm, thus [tex]\mu = 4[/tex].Standard deviation of 1.1 mm, thus [tex]\sigma = 1.1[/tex].Sample of 100, thus [tex]n = 100, s = \frac{1.1}{\sqrt{100}} = 0.11[/tex].

The probability is the p-value of Z when X = 3.74, then:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{3.74 - 4}{0.11}[/tex]

[tex]Z = -2.36[/tex]

[tex]Z = -2.36[/tex] has a p-value of 0.0091.

0.0091 = 0.91% probability that the average thickness of the 100 sheets is less than 3.74 mm.

A similar problem is given at https://brainly.com/question/14228383

In a study of 24 criminals convicted of antitrust offenses, the average age was 60 years, with a standard deviation of 7.4 years. Construct a 95% confidence interval on the true mean age. (Give your answers correct to one decimal place.)___ to____ years

Answers

Answer: 56.9 years to 63.1 years.

Step-by-step explanation:

Confidence interval for population mean (when population standard deviation is unknown):

[tex]\overline{x}\pm t_{\alpha/2}{\dfrac{s}{\sqrt{n}}}[/tex]

, where [tex]\overline{x}[/tex]= sample mean, n= sample size, s= sample standard deviation, [tex]t_{\alpha/2}[/tex]= Two tailed t-value for [tex]\alpha[/tex].

Given: n= 24

degree of freedom = n- 1= 23

[tex]\overline{x}[/tex]= 60 years

s= 7.4 years

[tex]\alpha=0.05[/tex]

Two tailed t-critical value for significance level of [tex]\alpha=0.05[/tex] and degree of freedom 23:

[tex]t_{\alpha/2}=2.0687[/tex]

A 95% confidence interval on the true mean age:

[tex]60\pm (2.0686){\dfrac{7.4}{\sqrt{24}}}\\\\\approx60\pm3.1\\\\=(60-3.1,\ 60+3.1)\\\\=(56.9,\ 63.1)[/tex]

Hence, a 95% confidence interval on the true mean age. : 56.9 years to 63.1 years.

a) which function has the graph with the greatest slope?

b) which functions have graphs with y intercepts greater than 3?

c)which function has the graph with a y intercept closest to 0

Answers

Answer:

a). Function (4)

b). Function (2)

c). Function (3)

Step-by-step explanation:

Characteristics of the functions given,

Function (1),

Form the given graph,

Slope = [tex]\frac{\text{Rise}}{\text{Run}}[/tex]

          = [tex]-\frac{4}{1}[/tex]

          = -4

Y- intercept of the given function = 2

Function (2),

From he given table,

Slope = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

         = [tex]\frac{5-3}{0+1}[/tex]

         = 2

y-intercept = 5 [Value of y for x = 0]

Function (3),

y = -x - 1

By comparing this equation with y = mx + b

Where 'm' = slope

and b = y-intercept

Slope = (-1)

y-intercept = (-1)

Function (4),

Slope = 5

y-intercept = (-4)

(a). Greatest slope of the function → Function (4)

(b). y-intercept greater than 3 → Function (2)

(c). Function with y-intercept closest to 0 → Function (3)

nolan completely fills a glass with water and then pours the water into a bowl. he does this until the bowl is completely filled with water. The full glass holds 1 1/3 cups of water the full bowl holds 4 2/3 cups of water How many full glasses of water does the bowl hold

Answers

Answer:

[tex]\bold{3\dfrac{1}{2 }}[/tex] full glasses of water the bowl holds.

Step-by-step explanation:

Full glass of water holds [tex]1\frac{1}{3}[/tex] cups of water.

Full bowl of water holds [tex]4\frac{2}{3}[/tex] cups of water.

To find:

How many full glasses of water does the bowl hold ?

Solution:

Let us convert the unit of cups of water to glass of water.

Given that

[tex]1\frac{1}{3}[/tex] or [tex]\frac{4}{3}[/tex] cups of water is equivalent to 1 full glass of water

Now, let us use unitary method to find the answer.

[tex]\frac{4}{3}[/tex] cups of water is equivalent to 1 full glass of water

1 cups of water is equivalent to [tex]\frac{3}{4}[/tex] full glass of water

[tex]4\frac{2}{3}[/tex] or [tex]\frac{14}{4}[/tex] cups of water is equivalent to [tex]\frac{3}{4}\times \frac{14}3 = \frac{14}{4}[/tex] full glass of water

[tex]\dfrac{14}{4} = \dfrac{7}{2} = \bold{3\dfrac{1}{2}}[/tex] full glass of water is the quantity the bowl holds.

Find the sum of the first 6 terms of 3 - 6 + 12 + …

Answers

Answer:

[tex] S_6 = -63 [/tex]

Step-by-step explanation:

The sequence above is a geometric sequence.

The common ratio (r) = [tex] \frac{-6}{3} = \frac{12}{-6} = -2 [/tex]

The common ratio < 1, therefore, the formula for the sum of nth terms of the sequence would be: [tex] S_n = \frac{a_1(1 - r^n)}{1 - r} [/tex]

a1 = 3

r = -2

n = 6

Plug in the values into the formula

[tex] S_6 = \frac{3(1 - (-2^6)}{1 - (-2)} [/tex]

[tex] S_6 = \frac{3(1 - (64)}{1 + 2} [/tex]

[tex] S_6 = \frac{3(-63)}{3} [/tex]

[tex] S_6 = -63 [/tex]

Evaluate the expression: (-2) + (-44) + (18 - 23).

A) -17
B) - 19
C) 3
D) 19​

Answers

Answer:

-51

Step-by-step explanation:

-46+(-5)

= -51

Answer:

the answer is -17

I hope this helps you

Find the SURFACE AREA of the composite figure below
ASAP

Answers

Answer:

248.26 cm²

Step-by-step explanation:

Surface area of the composite figure = (surface area of cuboid + surface area of hemisphere) - 2(base area of hemisphere)

Surface area of cuboid = [tex] 2(lw + lh + hw) [/tex]

Where,

l = 10 cm

w = 5 cm

h = 4 cm

Plug in the values into the formula:

[tex] SA = 2(10*5 + 10*4 + 4*5) [/tex]

[tex] SA = 2(50 + 40 + 20) [/tex]

[tex] SA = 2(110) = 220 cm^2 [/tex]

Surface area of hemisphere = 3πr²

Where,

π = 3.14

r = 3 cm

SA of hemisphere = 3*3.14*3² = 3*3.14*9 = 84.78 cm²

Base area of hemisphere = πr²

BA = 3.14*3² = 3.14*9 = 28.26 cm²

Surface area of the composite shape = (220 + 84.78) - 2(28.26)

= 304.78 - 56.52

SA = 248.26 cm²

Use the quadratic function to predict f(x) if x equals 2. f(x) = −3x2 + 180x − 285

Answers

Is the x squared? Cause if so the answer is 63

Answer:

if x = 2

f(x) = -3x^2 + 180x -285

f(x) = -3*2*2 + 180*2 -285

f(x) = -12 + 360 -285

f (x) = 63

Step-by-step explanation:

Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer ​

Answers

Answer:

Step-by-step explanation:

Hello, first, let's use the product rule.

Derivative of uv is u'v + u v', so it gives:

[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Now, we distribute the expression of f(x) and find the derivative afterwards.

[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

4/17 + 3/10 + 9/20 + 3/11 + 7/15

Answers

Answer:

[tex]\frac{19351}{11220}[/tex]

Step-by-step explanation:

[tex]\frac{2640+3366+5049+3060+5236}{11220} = \frac{19251}{11220}[/tex]

In the figure below, angle y and angle x form vertical angles. Angle x forms a straight line with the 50° angle and the 40° angle. A straight line is shown and is marked with three angles. The first angle measures 50 degrees. The second angle measures 60 degrees. The third angle is labeled x. The line between the 40 degree angle and angle x extends below the straight line. The angle formed is labeled angle y. Write and solve an equation to determine the measure of angle y.

Answers

Step-by-step explanation:

sorry but u should provide with a diagram for better understanding of ur question

Other Questions
plzzzz HELP ME ASAP WILL MARK AS BRAINLEIEST an astronaut takes a tuning fork with her to the moon she strikes it inside the cabin the cabin is normally filled with air so the humans inside the spacecraft are comfortable she also strikes it outside the spacecraft when she gets down on the surface of the moon which of the following is true about the tuning fork?A: it does not vibrate inside the spacecraftB: id does not vibrate on moon surfaceC: it vibrations are not transmitted inside the spacecraft D:it's vibrations are not transmitted to the moon's atmosphere Two ice skaters push off against one another starting from a stationary position. The 45.0-kg skater acquires a speed of 0.375 m/s. What speed does the 60.0-kg skater acquire in m/s help me plz can somewon help me URGENT! The range of y=Arccosx is (-pi/2,pi/2). True or False? An air-conditioner which uses R-134a operates on the ideal vapor compression refrigeration cycle with a given compressor efficiency.--Given Values--Evaporator Temperature: T1 (C) = 9Condenser Temperature: T3 (C) = 39Mass flow rate of refrigerant: mdot (kg/s) = 0.027Compressor Efficiency: nc (%) = 90a) Determine the specific enthalpy (kJ/kg) at the compressor inlet. Your Answer =b) Determine the specific entropy (kJ/kg-K) at the compressor inlet Your Answer =c) Determine the specific enthalpy (kJ/kg) at the compressor exit Your Answer =d) Determine the specific enthalpy (kJ/kg) at the condenser exit. Your Answer =e) Determine the specific enthalpy (kJ/kg) at the evaporator inlet. Your Answer =f) Determine the coefficient of performance for the system. Your Answer =g) Determine the cooling capacity (kW) of the system. Your Answer =h) Determine the power input (kW)to the compressor. Your Answer = Which of the following lists of three numbers could form the side lengths of a triangle? A. 10, 20, 30 B. 122, 257, 137 C. 8.6, 12.2, 2.7 D. 1/2, 1/5, 1/6 A car dealership union negotiates a contract that dramatically increases the salaries of all salesmen. If one of the salesmen is thinking of changing careers to be a hardware salesman, his opportunity cost:___________. a. Would not be affected b. Of becoming a hardware salesman would decrease c. Of becoming a hardware salesman would increase d. None of the above In right triangle ABC (mC = 90), point P is the intersection of the angle bisectors of the acute angles. The distance from P to the hypotenuse is equal to 2 in. Find the perimeter of ABC if AB = 12 in. PLEASE HELP ILL AWARD MORE BRAINLY POINTS Joeys pizza sells large cheese pizzas for $12.00. Each additional topping costs $0.50. Basketball Boosters bought 12 large pizzas, each with 3 toppings. There are 8 slices per pizza. How much does it cost per slice? Round to the nearest cent. A broker from Nebraska wants a license in Florida. He takes a written exam of 40 questions and passes 35 of them. The broker has taken advantage of the written agreements between the states for real estate licensing. This is an example of: Will Give Brainliest, answer ASAP in the figure above, pqrs is a parallelogram. What is the value of x? Explain the structure of a clinical thermometer I need one positive and one negative example of health and fitness advertisements and reflect each example in the chart below Answer it answer it answer it b. Does refactoring mean that you modify the entire design iteratively? If not, what does it mean? A certain game involves tossing 3 fair coins, and it pays .14 for 3 heads, .06 for 2 heads, and .01 for 1 head. The expected winnings are? Rational equation of 3/x+1=2/x-3 When purchased, a beach ball is deflated and packaged flat. The package states that when inflated to its maximum capacity, the radius of the inflated ball is 7.6 inches. To the nearest hundredth of a cubic inch, how much air will occupy the space contained by the inflated beach ball? Use 3.14 for [tex]\pi[/tex]. In your final answer, include all of your calculations.